$hp$-error analysis of mixed-order hybrid high-order methods for elliptic problems on simplicial meshes - Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique
Pré-Publication, Document De Travail Année : 2024

$hp$-error analysis of mixed-order hybrid high-order methods for elliptic problems on simplicial meshes

Résumé

We present both hp-a priori and hp-a posteriori error analysis of a mixed-order hybrid high-order (HHO) method to approximate second-order elliptic problems on simplicial meshes. Our main result on the hp-a priori error analysis is a 12-order p-suboptimal error estimate. This result is, to our knowledge, the first of this kind for hybrid nonconforming methods and matches the state-of-the-art for other nonconforming methods as discontinuous Galerkin methods. Our second main result is a residual-based hp-a posteriori upper error bound, comprising residual, normal flux jump, tangential jump, and stabilization estimators (plus data oscillation terms). The first three terms are p-optimal and only the latter is 12-order p-suboptimal. This result is, to our knowledge, the first hp-a posteriori error estimate for HHO methods. A novel approach based on the partition-of-unity provided by hat basis functions and on local Helmholtz decompositions on vertex stars is devised to estimate the nonconformity error. Finally, we establish local lower error bounds. Remarkably, the normal flux jump estimator is only 12-order p-suboptimal, as it can be bounded by the stabilization owing to the local conservation property of HHO methods. Numerical examples illustrate the theory.
Fichier principal
Vignette du fichier
aposteriori_HHO.pdf (1.53 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04720237 , version 1 (03-10-2024)

Licence

Identifiants

  • HAL Id : hal-04720237 , version 1

Citer

Zhaonan Dong, Alexandre Ern. $hp$-error analysis of mixed-order hybrid high-order methods for elliptic problems on simplicial meshes. 2024. ⟨hal-04720237⟩
48 Consultations
10 Téléchargements

Partager

More