Article Dans Une Revue ACM Transactions on the Web Année : 2017

Monadic Second-Order Logic with Arbitrary Monadic Predicates

Résumé

We study Monadic Second-Order Logic (MSO) over finite words, extended with (non-uniform arbitrary) monadic predicates. We show that it defines a class of languages that has algebraic, automata-theoretic, and machine-independent characterizations. We consider the regularity question: Given a language in this class, when is it regular? To answer this, we show a substitution property and the existence of a syntactical predicate.We give three applications. The first two are to give very simple proofs that the Straubing Conjecture holds for all fragments of MSO with monadic predicates and that the Crane Beach Conjecture holds for MSO with monadic predicates. The third is to show that it is decidable whether a language defined by an MSO formula with morphic predicates is regular.
Fichier principal
Vignette du fichier
1709.03117v1.pdf (252.5 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01587624 , version 1 (26-01-2025)

Identifiants

Citer

Nathanaël Fijalkow, Charles Paperman. Monadic Second-Order Logic with Arbitrary Monadic Predicates. ACM Transactions on the Web, 2017, 9 (3), pp.39 - 56. ⟨10.1145/3091124⟩. ⟨hal-01587624⟩
61 Consultations
1 Téléchargements

Altmetric

Partager

More