Inference of the Cultural Transmission of Reproductive Success from human genomic data: ABC and machine learning methods - Réseau de recherche en Théorie des Systèmes Distribués, Modélisation, Analyse et Contrôle des Systèmes
Poster De Conférence Année : 2022

Inference of the Cultural Transmission of Reproductive Success from human genomic data: ABC and machine learning methods

Résumé

The Cultural Transmission of Reproductive Success (CTRS) is one of the various cultural processes that can impact human genetic evolution. In this process, individuals from large families have more children on average. Here, we develop and evaluate methods to infer this process from genomic data, using two approaches: (1) Approximate Bayesian computation, which uses summary statistics computed on inferred genealogies from genomic data and (2) deep neural networks, which are directly trained on genomic data. These methods rely on large simulated datasets incorporating varying levels of CTRS. Both competing approaches show a good ability to infer CTRS on genomic data and worth investigating under more complex evolutionary histories.
Fichier principal
Vignette du fichier
Poster_AIEM.pdf (692.71 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04011855 , version 1 (08-11-2024)

Identifiants

  • HAL Id : hal-04011855 , version 1

Citer

Arnaud Quelin, Jérémy Guez, Ferdinand Petit, Flora Jay, Frederic Austerlitz. Inference of the Cultural Transmission of Reproductive Success from human genomic data: ABC and machine learning methods. Junior Conference on DataScience and Engeneering 2022, Sep 2022, Palaiseau, France. ⟨hal-04011855⟩
129 Consultations
2 Téléchargements

Partager

More