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SUMMARY

PARP-1 synthesizes long poly(ADP-ribose) chains
(PAR) at DNA damage sites to recruit DNA repair fac-
tors. Among proteins relocated on damaged DNA,
the RNA-binding protein FUS is one of the most
abundant, raising the issue about its involvement in
DNA repair. Here, we reconstituted the PARP-1/
PAR/DNA system in vitro and analyzed at the sin-
gle-molecule level the role of FUS. We demonstrate
successively the dissociation of FUS from mRNA,
its recruitment at DNA damage sites through its bind-
ing to PAR, and the assembly of damaged DNA-rich
compartments. PARG, an enzyme family that hydro-
lyzes PAR, is sufficient to dissociate damaged DNA-
rich compartments in vitro and initiates the nucleocy-
toplasmic shuttling of FUS in cells. We anticipate
that, consistent with previousmodels, FUS facilitates
DNA repair through the transient compartmentaliza-
tion of DNA damage sites. The nucleocytoplasmic
shuttling of FUS after the PARG-mediated compart-
ment dissociation may participate in the formation
of cytoplasmic FUS aggregates.

INTRODUCTION

In mammalian cells, DNA single- and double-strand breaks

(SSBs and DSBs, respectively) (Ciccia and Elledge, 2010;

Schreiber et al., 2006) trigger a complex cascade of events in

which the members of the ADP-ribosyltransferase family—

PARP-1 being the most abundant—recognize DNA damage

sites and synthesize long and branched poly(ADP-ribose)

(PAR) chains covalently attached to themselves or to other

acceptor proteins. PAR is hydrolyzed by poly(ADP-ribose) glyco-

hydrolase (PARG) (Illuzzi et al., 2014), whichmakes PARylation of

acceptor proteins a reversible post-translational modification.

Both high PARylation level among RNA-binding proteins

(RBPs) (Gagné et al., 2012; Jungmichel et al., 2013) and their

abundance in nuclear regions damaged by short laser beam ex-

posures (Izhar et al., 2015; Rulten et al., 2014) raise issues about
C
This is an open access article und
the putative role of RBPs in DNA damage response (Bock et al.,

2015; Leung, 2014). Here, we focus our attention on FUS (FUS/

TLS, Fused in Sarcoma) and itsmutant forms. FUS, together with

EWS and TAF15, is a member of the FET family and one of the

most abundant and highly PARylated nuclear RNA-binding pro-

teins (Britton et al., 2014; Singh et al., 2015; Zhen et al., 2017).

As shown in previous studies, multivalent interactions occur-

ring between the low-complexity domains (LCDs) of RNA-bind-

ing proteins (Banani et al., 2017) such as FUS, TDP-43, and

TIA-1 participate in the formation of membraneless compart-

ments (Bergeron-Sandoval et al., 2016; Li et al., 2012; Patel

et al., 2015; Zhang et al., 2015), among them being stress gran-

ules (Strzyz, 2016), nucleoli (Feric et al., 2016), nuclear speckles

(Zhu and Brangwynne, 2015), and paraspeckles (Hennig et al.,

2015). FUS has been intensively studied because of its link to

neurodegenerative diseases and cancer (Aguzzi and Altmeyer,

2016). In addition, FUS condensates have liquid-like properties

whose dynamics and structure are affected by pathogenic

mutations (Patel et al., 2015) and controlled by phosphorylation

of its N-terminal LCD (Monahan et al., 2017; Murray et al., 2017).

It was proposed that the C-terminal RGG repeats of FUS also

participate in liquid-liquid phase separation and that arginine

methylation may modulate the properties of FUS condensates

(Hofweber et al., 2018; Qamar et al., 2018).

The interplay between FUS and PAR has been examined since

the recruitment of FUS to DNA damaged regions was evidenced

(Altmeyer et al., 2015; Mastrocola et al., 2013; Naumann et al.,

2018; Patel et al., 2015; Rulten et al., 2014). In vitro analyses

also demonstrated that purified PAR interacts directly with

FUS to promote liquid-liquid phase separation (Altmeyer et al.,

2015; Patel et al., 2015; Teloni and Altmeyer, 2016), which re-

quires the C-terminal positively charged RGGdomains (Altmeyer

et al., 2015). As RGG domains are also involved in the binding of

FUS to mRNA, mRNA and PAR may, therefore, compete for the

electrostatic binding to FUS (Altmeyer et al., 2015).

The formation of FUS-rich compartments in DNA regions

exposed to laser beam is transient, lasting no more than

15–30 min (Altmeyer et al., 2015; Mastrocola et al., 2013;

Patel et al., 2015; Rulten et al., 2014). A rapid dissociation of

these compartments may be necessary to resume performing

normal DNA-related processes. In cells, reducing PAR hydro-

lysis by silencing PARG delays the dissociation of FUS-rich
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compartments in the nucleus (Altmeyer et al., 2015; Naumann

et al., 2018; Patel et al., 2015), suggesting that PARG hydrolyzes

PAR to release the protein factors that previously were recruited

to DNA damage sites. Recently, PARG activity has been also

associated with an increased presence of FUS in the cytoplasm

of neurons after stress (Naumann et al., 2018). However, phos-

phorylation of FUS residues in the LCD, notably by DNA-depen-

dent protein kinase (DNA-PK) (Deng et al., 2014; Monahan et al.,

2017), and methylation of the RGG domains (Kaneb et al., 2012)

may also participate in the nucleocytoplasmic shuttling, even if

this is still a debated issue (Rhoads et al., 2018). The PARG-

dependent translocation of FUS provides an interesting link be-

tween DNA repair and neurodegenerative diseases (Naumann

et al., 2018).

While cellular observations suggest that FUS could bind to

PAR synthesized at DNA damage sites to form transient liquid-

like compartments (Altmeyer et al., 2015; Naumann et al.,

2018; Patel et al., 2015; Rulten et al., 2014), many proteins are

recruited to DNA damage sites after laser beam exposures.

The molecular mechanisms responsible for the formation and

the possible functions of these compartments are, therefore,

difficult to address in a cellular context. Here, we developed an

original approach based on a single molecule analysis by atomic

force microscopy (AFM) (Hamon et al., 2007; Sukhanova et al.,

2016) to reconstitute the molecular system that serves to recruit

FUS at DNA damage sites, including factors such as intact and

damaged DNA, PARP-1, and mRNA that have not been previ-

ously considered in vitro. Through this in vitro system, the bind-

ing events and the molecular assemblies orchestrated by FUS at

DNA damage sites after PARP-1 activation were dissected. We

evidenced the local recruitment of FUS to PAR synthesized by

PARP-1 at damaged DNA sites. Importantly, we also found

that FUS then triggers the formation of large compartments in

which damaged DNA is enriched, even in the presence of

mRNA. Consistent with the role of kinases, notably DNA-PK, in

controlling the formation of FUS liquid-like compartments, the

assembly of damaged DNA compartments is progressively

impaired by mutations mimicking phosphorylation in FUS LCDs.

Moreover, we demonstrate the reversible nature of these com-

partments as the hydrolysis of PAR by PARG is sufficient to

dissociate damaged-DNA compartments formed by FUS.

Consistent with results in neuron cells (Naumann et al., 2018),

we show that PARP-1 activation leads to the shuttling of FUS

from the nucleus to the cytoplasm in H2O2-treated HeLa cells.

In addition, we demonstrate that FUS translocation takes place

at a later stage (>15 min) when PARG activity promotes the

dissociation of damaged-DNA compartments in the nucleus.

Other nuclear mRNA-binding proteins (TDP-43 and TIA-1) that

also contain RNA-recognition motifs (RRMs) and LCDs with

prion-like properties do not follow the same trend.

In light of these results, we anticipate that the transient forma-

tion of damaged DNA-rich compartments can promote the rapid

repair of damaged DNA that does not rely on homologous

recombination. The shuttling of FUS to the cytoplasm after the

dissociation of damaged-DNA rich compartments may, in turn,

participate in an adapted translational response toDNAdamage,

but the presence of such an aggregation-prone protein in the

cytoplasm may also provide a link between PARP-1 activation
1810 Cell Reports 27, 1809–1821, May 7, 2019
and neurodegenerative diseases (Hoch et al., 2017; Li et al.,

2013; Naumann et al., 2018).

RESULTS

FUS Leads to the Formation of Large Compartments
Containing DNA and PAR
We recently found optimal conditions to visualize the synthesis of

PAR polymers after the activation of PARP-1 on DNA damage

sites at the single-molecule level by AFM (Sukhanova et al.,

2016). AlthoughPAR is known to promote liquid-liquid phase sep-

aration of FUS in vitro (Patel et al., 2015), no nanoscopic view of

PAR:FUS self-assembly or any interplay with DNA and PARP-1

was reported. In addition, we planned to visualize and analyze

the interaction of FUS with PAR in the presence of damaged

DNA to trigger PAR synthesis by PARP-1 at damaged DNA sites.

To undertake this study, a long linear DNA fragment with a single

DNA break (1,200-bp nicked DNA) was used to analyze whether

PARP-1 activation leads to the synthesis of PAR at damaged

DNA sites in the presence of NAD+ (Figure 1A). While FUS has a

weak affinity for double-stranded DNA (dsDNA) (Sama et al.,

2014;Wang et al., 2015), PARP-1 activation leads to the formation

of compartments in which PAR polymer and DNA are embedded

(Figure 1A). When PARP-1 was not activated, no compartment

was formed, which indicates that the PAR:FUS interaction is crit-

ical to trigger the compartmentalization (Figure 1A).

Nuclear mRNA being the main target of FUS, we then sus-

pected that the presence of mRNA may abrogate the formation

of compartments containing PAR, FUS, and DNA. FUS displays

a moderate preference for short and redundant RNA sequences

in cells but binds to long mRNA in a nonspecific manner in vitro

(Wang et al., 2015). Therefore, to mimic the binding of FUS to

mRNA, we used synthetic mRNA (�3,000 nt) that, in addition,

are easily distinguished fromDNA and PAR by AFM (Figure S1A).

Preforming mRNA:FUS complexes do not affect the capacity of

FUS to form DNA-rich compartments after PARP-1 activation. In

addition, height measurements ofmRNAmolecules lying outside

large molecular assemblies indicate that the binding of FUS to

PAR may be strong enough to displace FUS from mRNA (Fig-

ure 1B). In contrast, PAR does not release HuR, an mRNA-bind-

ing protein with three RRMs (Mukherjee et al., 2011), frommRNA

similarly (Figure 1B). To further probe whether PAR affects the

binding of FUS to mRNA, we analyzed the binding of FUS to

mRNA using gel mobility shift assay in the presence or absence

of free PAR (Figure 1C). As FUS forms large granules in the

presence of mRNA, mRNA does not enter the gel. However,

the addition of free PAR after the formation of FUS:mRNA com-

plexes impairs mRNA:FUS interactions. PAR and mRNA, there-

fore, compete for the binding to FUS.

FUS Binds to PAR Synthesized at DNA Damaged Sites
after PARP-1 Activation Leading to the Formation of
Damaged DNA-Rich Compartments
The recruitment of FUS to DNA damage sites upon PARP-1 acti-

vation may provide a means to organize and concentrate DNA

repair factors where and when they are most needed. In this

model, FUS has to bind PARwhen autoPARylated PARP-1 is still

anchored to damaged DNA and then forms a compartment



Figure 1. FUS Forms DNA-Rich Compartments upon PARP-1 Activation

(A) Upper panels: AFM images of 1,200-bp nicked DNA (1.25 nM) after incubation with PARP-1 (3 nM) for 5 min in the presence or absence of NAD+ (0.3 mM) to

trigger the synthesis of PAR. The nicked DNAwas also pre-incubated with PARP-1 and NAD+ for 5min, followed by the addition of FUS (40 nM) and incubation for

1 min. Lower panel: surface density of free DNA molecules measured by AFM as indicated. Horizontal bars indicate mean; scanned area: 20 mm2 per sample, 3

samples per condition. Note the formation of large DNA-rich assemblies and, consistently, the decrease in free DNA density in the presence of FUS but only after

PAR synthesis by PARP-1.

(B) Upper panels: FUS and mRNA (40 nM and 2 nM, respectively) were first mixed to form ribonucleoprotein complexes, as indicated. Then, we analyzed the

putative binding of FUS to mRNA in the presence of 1200-bp nicked DNA with or without PARP-1 activation. Note that PAR synthesis leads to the apparent

dissociation of FUS:mRNA complexes. Lower panels: heights of mRNA or PAR particles were measured under the indicated conditions in the presence of either

HuR or FUS (40 nM each). PAR disrupts RNA:FUS but not RNA:HuR complexes. **p < 0.05, paired t test; n = 25 per sample. Different colors represent inde-

pendent experiments.

(C) Agarose gels showing the electrophoretic mobility of mRNA in the presence of FUS and/or free PAR.mRNA (0.8 nM) was pre-incubated with either FUS or free

PAR for 10 min at indicated concentrations. The presence of mRNA in the well is due to the formation of mRNA:FUS granules. PAR clearly affects the elec-

trophoretic mobility of mRNA:FUS complexes, whether preformed or not.
enriched in DNA damage sites. To test this model, we first

probed whether PAR alone is sufficient to form FUS-PAR com-

partments in order to discard the role of the binding of FUS to

damaged DNA or PARP-1 in this process. In the presence of

free PAR, FUS retains its ability to form large FUS-PAR compart-

ments (Figure 2A). We then examined whether free FUS-PAR

compartments have an affinity for damaged plasmid DNA

(pBR) in the presence of PARP-1 but without NAD+ to prevent

PAR synthesis. Under such conditions, the damaged DNA mol-

ecules were mostly found away from FUS-PAR compartments.

In contrast, the activation of PARP-1 at DNA damage sites leads
to the enrichment of damaged DNA inside FUS-PAR compart-

ments (Figure 2B). FUS most probably binds to PAR newly syn-

thesized by PARP-1 and then subsequently forms large com-

partments in which damaged DNA is entrapped. To confirm

this point, activated PARP-1 was incubated with damaged

DNA for a longer time to induce the progressive release of

auto-PARylated PARP-1 from damaged DNA (Sukhanova

et al., 2016). Accordingly, the enrichment of damaged DNA

found inside FUS-PAR compartments was reduced when the

addition of FUS was delayed (Figure S1B). Moreover, when

PARG was used to hydrolyze PAR prior to mixing FUS with
Cell Reports 27, 1809–1821, May 7, 2019 1811



Figure 2. After PARP-1 Activation, FUS Is PARylated at DNA Damage Sites and Forms Compartments

(A) Representative AFM images of PAR:FUS complexes at different incubation times. PAR: 1 mM; FUS: 40 nM. We observed the progressive formation of large

FUS:PAR assemblies.

(B) The formation of DNA-rich compartments by FUS was probed in the presence of either free PAR or PAR attached to PARP-1 after incubation with damaged

pBR (1.25 nM) and NAD+ (0.3 mM). Multiple DNA damage sites were generated in plasmid DNA to induce PARP-1 activation and increase the level of PAR

synthesis (see theMethods Details section in STARMethods). The formation of damagedDNA-rich compartments requires both the activation of PARP-1 and the

presence of FUS.

(C) Analysis of the PARylation of RNA-binding proteins (0.1 mg/mL each) by PARP-1 (50 nM) in the presence of DNase-activated DNA and [32P]-NAD+ (0.4 mCi).

The reactionmixtures were analyzed by SDS-PAGEwith subsequent phosphorimaging (left panel) and Coomassie blue staining (right panel). Note the PARylation

of FUS in contrast to other tested proteins (see also Figure S2).
damaged DNA (Figure S1C), the assembly of damaged DNA

compartments no longer took place, further suggesting the crit-

ical role of the synthesis of long PAR chains in the assembly of

these compartments.

However, direct evidence that FUS binds to PAR synthesized

by PARP-1 at DNA damage sites was still lacking. We then sup-

posed that the recruitment of FUS to PAR when PARP-1 is acti-

vated at DNA damage sites should result in the PARylation of

FUS by PARP-1, due to their close proximity. In contrast to other

RNA-binding proteins, TDP-43, HuR, and G3BP1, FUS was,

indeed, PARylated by PARP-1 in the presence of damaged

DNA and NAD+ (Figures 2C and S2). In addition, the PARylation

of FUS by PARP-1 also takes place after truncation of the LCD of

FUS. As the RGG and/or RRM domains of FUS bind to PAR,

these domains probably undergo PARylation by PARP-1.

Finally, to explore the notion that FUS can concentrate DNA

damage sites into FUS-PAR compartments, a solution contain-

ing damaged (relaxed or linear) and supercoiled (intact) pBR

plasmids was prepared prior to PAR synthesis catalyzed by
1812 Cell Reports 27, 1809–1821, May 7, 2019
PARP-1. Upon PARP-1 activation, FUS gathered many plasmid

DNAs inside large compartments whose DNA composition was

analyzed (Figure 3A). Isolated supercoiled and damaged plasmid

DNAs can be clearly identified by AFM. Bymeasuring the ratio of

supercoiled to relaxed or linear DNA lying outside compart-

ments, we found that damaged DNA is preferentially located in

compartments formed by FUS after PAR synthesis by PARP-1

(Figure 3A). To further explore this point, we performed a co-

sedimentation assay in the presence of FUS and a mixture of

linear plasmid DNAs (damaged and undamaged; Figures 3 and

S3). FUS preferentially co-sediments with DNA with multiple

damage sites as long as PARP-1 synthesizes PAR from NAD+

(Figure 3B). Consistently, while experiments performed under

similar conditions do not give exactly similar results, the vari-

ability is not significant compared to the large increase in

damaged DNA found in the pellet in the presence of FUS after

PARP-1 activation (Figure 3B). In addition, co-sedimentation of

damaged DNA with FUS does not depend on DNA sequences,

as similar results were obtained after permuting plasmid DNAs



Figure 3. FUS Forms Compartments in Which Damaged DNA Is Enriched

(A) Left panel: an equimolar ratio of supercoiled and damaged pBR (0.625 nM each) was incubated with PARP-1 in the presence of NAD+ for 5 min to synthesize

PAR. Then, the formation of DNA-rich compartments was analyzed by AFM after the addition of FUS and incubation for 1min. Right panel: the ratio of damaged to

supercoiled plasmid DNA detected outside compartments was thenmeasured (**p < 0.05, paired t test; n = 5; mean of 5 independent samples, n = 100molecules

per sample). Note that the surface density of damaged pBR located outside compartments decreases relatively to supercoiled pBR.

(B) Right panel: co-sedimentation of FUS with linear plasmid DNAs (damaged pT7 and undamaged pBR) before and after PARP-1 activation in the presence of

NAD+. An equimolar ratio (1 nM each) of pBR (4.36 kb) and pT7 (5.35 kb) were incubated with 10 nM PARP-1 and NAD+ in the presence of 1 mM FUS. P, pellet; S,

supernatant. Left panels: quantitative measurements of the ratio of damaged to intact DNA in pellets and in supernatants obtained from 3 independent ex-

periments shown in Figure S3A. The ratio of sedimented to soluble DNA (damaged and intact) after PARP1 activation in the presence or absence of FUS is also

displayed. Damaged DNA preferentially co-sediments with FUS after PARP-1 activation.

(C) Co-sedimentation performed under similar conditions as described as (B) but using an equimolar ratio of linear damaged pBR and linear pT7 and FUS (0.7 mM).

Independent experiments are shown in Figure S3C.

(D) Co-sedimentation performed under similar conditions as described as (B) but using HuR (1 mM) instead of FUS. Independent experiments are shown in

Figure S3B.

Cell Reports 27, 1809–1821, May 7, 2019 1813



in which multiple damages were generated (Figure 3C). In an

additional control experiment, damaged DNA is less efficiently

brought into the pellet when HuR, compared with FUS, was

added after PARP-1 activation (Figures 3B and 3D; see the ratio

of sedimented to soluble DNA for damaged DNA). The ratio of

damaged to intact DNA in the pellet also increases significantly

in the presence of FUS, which is not observed in the presence

of HuR (compare PARP-1 + NAD+ with and without HuR or

FUS; Figures 3B and 3D).

Both the N-Terminal LCD and C-Terminal RGG Domains
of FUS Contribute to the Formation of Damaged DNA
Compartments
To understand the molecular mechanism leading to the forma-

tion of damaged DNA-rich compartments by FUS, we compared

the capacity of FUS and that of two other RNA-binding proteins,

HuR and G3BP-1, to bind to PAR and form compartments after

PARP-1 activation on 1,200-bp nicked DNA. HuR and G3BP-1

also bind to PAR but failed to trigger the formation of large

DNA-rich compartments (Figures 4B and 4D). Consistent with

this result, FUS sediments more damaged plasmid DNA (pBR)

than HuR after the activation of PARP-1 at DNA damage sites

(Figures 3B and 3D). A self-attracting LCD, which is present in

FUS but not in G3BP1 and HuR, may promote compartmentali-

zation of damaged DNA. To test this hypothesis, a truncated

version of FUS (FUSDLCD), in which most of the N-terminal

LCD of FUS was missing, was produced to impair the capacity

of FUS to form large damaged DNA compartments (Figure 4A).

After this deletion, the formation of large compartments is

impaired (Figures 4B and 4D).

Given the critical role of the N-terminal LCD, we prepared re-

combinant FUS mutants containing six (FUS-6E) or 12 (FUS-

12E) mutations of serine or threonine to glutamic acid, mimicking

LCD phosphorylation by DNA-PK, as previously described

(Monahan et al., 2017) (Figure 4A). The six mutations in the

FUS LCD generated small but still noticeable damaged DNA-

rich compartments, while 12 mutations totally abrogated the

compartmentalization (Figures 4C and 4E). Co-sedimentation

assays confirmed the progressive decrease in compartmentali-

zation efficiency by increasing the number of mutations in the

LCD (Figures 4E and S4).

An electrostatic interaction between the C-terminal RGG re-

peats of FUS and PAR has been previously reported in vitro (Alt-

meyer et al., 2015). FUS possesses two RGG domains in its C

terminus but also another one between the LCD and the RRM

(aa 165–267) (Figure 4A). We then probedwhether the C-terminal

RGG domains play a key role in damaged DNA compartmental-

ization by binding FUS to PAR. Two truncated FUS mutants

missing either one (FUSDRGG1) or two (FUSDRGG1-2) C-termi-

nal RGG repeats were prepared (Figure 4A). Observations

through AFM indicate that truncations of the two C-terminal

RGG repeats inhibit the formation of compartments (Figure 4C),

which was again confirmed by co-sedimentation assay (Fig-

ure 4E). The C-terminal RGG repeats are, thus, necessary to fully

capture the compartmentalization of damaged DNA, most prob-

ably due to the high affinity of RGG repeats for PAR that provides

a strong basis for forming large molecular assemblies. However,

we noticed that the binding of FUSDRGG1 to PAR is still signifi-
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cant (Figure 4D). Therefore, although FUSDRGG1 has an intact

LCD and a preserved binding to PAR, its capacity to form com-

partments is impaired (Figures 4C and 4E). A possible explana-

tion is that multivalent interactions between C-terminal RGG re-

peats and N-terminal LCD domains play a key role in the

compartmentalization process mediated by FUS, as recently re-

ported (Wang et al., 2018b). To further test this hypothesis, we

performed a similar analysis with mRNA granules formed in the

presence of FUS (Figure 4F). As a control, full-length FUS has

the capacity to form large mRNA-rich assemblies. Both trunca-

tions of the C-terminal RGG repeats and mutations mimicking

the phosphorylated form of the FUS LCD impaired the capacity

of FUS to form large mRNA-rich molecular assemblies. Interest-

ingly, while the affinity of FUSDRGG1-2 for mRNA appears as

strongly reduced in gel shift assays, FUSDRGG1 still binds to

PAR significantly (Figure 4D). Again, if LCD was the only domain

responsible for the self-attraction between mRNAs bound by

proteins, we would have detected large mRNA granules in the

presence of FUSDRGG1. Altogether, these results point toward

C-terminal RGG repeats and LCDs driving together large molec-

ular assemblies, but, in addition, the RGG domains participate in

the competitive binding of FUS to PAR and mRNA through elec-

trostatic interactions.

PARG Dissociates Damaged DNA-Rich Compartments
In Vitro and Its Activity Correlates with the Shuttling of
FUS from the Nucleus to the Cytoplasm in H2O2-Treated
HeLa Cells
Single-cell analysis after laser beam damage has revealed the

reversible recruitment of FUS to DNA damage sites and a de-

layed dissociation of FUS-rich compartments at damage DNA

sites after the silencing of PARG expression (Altmeyer et al.,

2015; Patel et al., 2015). More recently, a PARG-dependent nu-

cleocytoplasmic shuttling of FUS has been reported in neurons

(Naumann et al., 2018). PARG may thus be directly responsible

for the release of FUS from damaged DNA regions and the sub-

sequent FUS translocation to the cytoplasm. However, phos-

phorylation of FUS by DNA-PK and, possibly, other kinases

may also promote FUS translocation in response to DNA dam-

ages (Deng et al., 2014; Naumann et al., 2018). In addition, argi-

nine methylation modulates the binding of transportin to FUS

(Dormann et al., 2010), its nuclear import (Dormann et al.,

2012), and inhibits the liquid-liquid phase separation of FUS

(Hofweber et al., 2018; Qamar et al., 2018).

We then asked whether the translocation of FUS in cells is

consecutive to the dissociation of FUS-rich compartments in

damaged DNA regions in cells. To answer this question, we

decided to explore the fate of FUS in HeLa cells following its tran-

sient recruitment to DNA damage sites and its putative release

upon PAR hydrolysis by PARG at different times after cell expo-

sure to H2O2. We chose H2O2 treatment that results in massive

PAR synthesis (Figure 5A). The subcellular locations of FUS or

other nuclear RNA-binding proteins—HuR, TIA-1, SF1 and

TDP-43—were measured (Figure 5A). Solely TDP-43 and FUS

shuttle from the nucleus to the cytoplasm after a 90-min incuba-

tion (Figure 5A). To test the role of PAR synthesis in this process,

cells were pretreated with a specific inhibitor of PARP-1 and

PARP-2, olaparib. FUS, but not TDP-43, translocation was



Figure 4. Either Phosphorylation in the N-Terminal LCD or Truncation of the C-Terminal RGG Domains Impairs the Formation of DNA

Compartments

(A) FUS constructs and mutations used in this study.

(B) 1,200-bp nicked DNA (1 nM) was pre-incubated with PARP-1 andNAD+ before the addition of indicatedmRNA-binding proteins (40 nM). Full-length FUS is the

only protein that generates the formation of large DNA-rich molecular assemblies.

(C) Same as in (B), with indicated FUS mutants.

(D) Measurement of PAR particle heights in the presence of indicated proteins by atomic force microscopy (horizontal bars indicate mean; n = 27 per samples, 3

samples per condition represented with a different color). **p < 0.05, paired t test.

(E) Co-sedimentation of mRNA-binding proteins with linear plasmid DNAs (damaged pT7 and undamaged pBR) after PARP-1 activation in the presence of NAD+.

Damaged pT7 and undamaged pBR (1 nM each) were incubated with PARP-1 (10 nM) and NAD+ (0.3 mM) in the presence of indicated protein (1 mM). P, pellet; S,

supernatant. The ratios of damaged to intact DNA measured in pellets and supernatants were obtained from the independent experiments shown in Figure S4.

(F) Upper panels: AFM images of mRNA (2 nM) incubated with indicated FUS mutants (40 nM) for 10 min to probe the formation of mRNA-rich granules by AFM.

The scatterplots represent the diameter of mRNA particles for the indicated conditions (horizontal bars indicate mean; n = 27 per sample, 3 samples per condition

represented with a different color). Full-length FUS formed large molecular assemblies in the presence of mRNA, while both truncations of the RGG domain and

phosphorylation events in the FUS LCD affect the formation of mRNA granules in vitro. Lower panels: agarose gels showing the electrophoretic mobility of mRNA

in the presence of FUSmutants. mRNA (0.8 nM) was pre-incubated with either FUS or mutants at the indicated concentrations for 10min. The presence of mRNA

in the well is due to the formation of mRNA:FUS granules.
dependent on PAR synthesis (Figures 5B, 5C, and S5B). The

translocation of FUS after H2O2 exposure was confirmed with

two different antibodies and in GFP-FUS-expressing cells (Fig-

ure S5A). Furthermore, decreased expression of PARP-1 sup-

presses the translocation of FUS in H2O2-treated cells (Fig-

ure 5B). Interestingly, in contrast to TDP-43, the level of

cytoplasmic FUS rather decreases at the early stage after stress

(15min, PARylation spike) and increases solely after longer incu-

bation times (30 and 90 min), reflecting the initial recruitment of
FUS to DNA damage sites. We then examined why we did

not observe the nucleocytoplasmic shuttling of HuR after H2O2

treatment while a PARP-dependent translocation of HuR was

recently reported after a long lipopolysaccharide exposure (Ke

et al., 2017). To address this point, we used actinomycin D

(ActD), a transcription inhibitor that is particularly efficient in

inducing the rapid translocation of HuR to the cytoplasm (Bou-

nedjah et al., 2014). H2O2 treatment prevents HuR translocation

triggered by ActD (Figure 5D). Inhibiting of PARP activity restores
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Figure 5. FUS, but Not TDP-43, HuR, SF1, or TIA-1, Shuttles from theNucleus to the Cytoplasm after PARP-1 Activation in H2O2-TreatedCells

(A) The relative distribution of PAR and five other RNA-binding proteins—SF1, TDP-43, TIA-1, FUS, and HuR—between the cytoplasm and nucleus of HeLa cells

wasmeasured at different times after H2O2 treatment (300 mM). The integrated fluorescence intensities were measured at the single-cell level by using cell profiler

software and secondary antibody fluorescence. Statistical analysis of protein translocation was performed under the indicated conditions. Horizontal bars

indicate mean; n > 244. Note that FUS translocation takes place after 15 min, which is not observed for TDP-43.

(B) Upper left panel: anti-PAR fluorescence after H2O2 treatment (300 mM) for 10 min in the presence or absence of olabarib (10 mM). Upper right panels: sub-

cellular FUS distribution after the indicated treatments. Lower panels: statistical analysis of FUS translocation under indicated conditions. H2O2 treatment:

300 mM, 90min. Horizontal bars indicate mean. **p < 0.05, paired t test; n.s., non-significant; n > 278. Olaparib treatment or silencing PARP-1 inhibits the shuttling

of FUS from the nucleus to the cytoplasm.

(C) Subcellular distribution of TDP-43 in HeLa cells under the same conditions as in (B). Olaparib does not impair the nucleocytoplasmic shuttling of TDP-43.

(D) Left panels: subcellular distribution of HuR in HeLa cells under the indicated conditions. Right panel: analysis of the nucleocytoplasmic shuttling of HuR. **p <

0.05, paired t test; n = 240. Actinomycin D, ActD: 5 mg/mL. Scale bar, 10 mm.H2O2 treatment prevents the translocation of HuR in response to ActD in HeLa cells in

a PAR-dependent manner. n.s., not significant.
HuR translocation after H2O2 treatment. PARP-1 activation thus

disrupts the signalization pathways (Doller et al., 2008) related to

HuR translocation from the nucleus to the cytoplasm. In sum-

mary, FUS relocates to the cytoplasm in response to H2O2 treat-

ment after 15min, when the nuclear PAR level starts to decrease,

but not before. In addition, we demonstrate the specific behavior

of FUS since, among the five RNA-binding proteins tested here,

only the nucleocytoplasmic shuttling of FUS is promoted by the

synthesis of PAR in H2O2-treated cells.

The correlation between decreasing PAR level and FUS trans-

location (Figure 5A) suggests that the hydrolysis of PAR by PARG

may release FUS from DNA damage sites, thus promoting its

translocation to the cytoplasm. To test this hypothesis, we

analyzed the subcellular distribution of FUS at the single-cell
1816 Cell Reports 27, 1809–1821, May 7, 2019
level after having decreased PARG expression (Figure S6) at

different times after cell exposure to H2O2. We found that

decreased PARG level has dual consequences on FUS translo-

cation (Figure 6A). On the one hand, decreased PARG level

slightly promotes FUS translocation from the nucleus to the cyto-

plasm (the mean cytoplasmic to nuclear fluorescence ratio of

anti-FUS antibody increases from 0.66 a.u. ± 0.28 a.u. to 0.77

a.u. ± 0.29 a.u., for control Small interfering RNA (siRNA) and

SiPARG, respectively, after H2O2 exposure for 90 min). Higher

levels of PAR in PARG-silenced cells than in control cells

enhance the recruitment of FUS to DNA damage sites. In addi-

tion, the remaining PARG activity may be sufficient to cleave

long PAR into short chains, thus enabling the release of FUS

from DNA damage sites. For these two reasons, the subsequent



Figure 6. PARG Dissociates DNA-Rich Compartments and Favors FUS Translocation

(A) Nuclear to cytoplasmic PAR ratio (nuclear PAR level) and cytoplasmic to nuclear ratio of FUS (FUS translocation) after different exposure times (H2O2, 300 mM)

in HeLa cells treated with SiPARG or control siRNA. The polynomial curve shows the correlation between PAR digestion by PARG and FUS translocation.

(B) HeLa cells were treated with SiPARG or control siRNA and then exposed to 300 mM H2O2 for the indicated time. The presence of a bright anti-PAR signal in

some nucleus of cells treated with SiPARG is most probably due to a lower PARG activity. Staining: anti-PAR (red) and anti-FUS (green) antibodies. Scale bar,

10 mm.

(C) AFM images of PAR degradation by PARG. PAR synthesized by PARP-1 in the presence of damaged pBR was digested by PARG (4 nM) for the indicated

times. The diameter of PAR particles was measured under the indicated conditions. Statistical analysis: horizontal bars indicate mean; n = 27 for each sample, 3

samples per condition shown with a different color.

(D) PAGE analysis of PAR degradation by PARG in the presence of RNA-binding proteins. PARP-1 (30 nM) was incubated with damaged pBR (3 nM) in the

presence of [32P]-NAD followed by incubation with PARG (4 nM) for 1–5 min in the absence or presence of indicated mRNA-binding proteins (2.4 mM) for the

indicated time. The products of hydrolysis of PAR were analyzed by denaturing 10% PAGE with subsequent phosphorimaging.

(E) Representative AFM images of damaged DNA-rich compartments prior to or after the hydrolysis of PAR by PARG. Compartments were preformed after

PARP-1 activation and FUS addition. PARG dissociates preformed DNA-rich compartments.
release of FUS from damaged DNA may be, on average, more

efficient when PARG is partially silenced. On the other hand,

analyzing the correlation between FUS translocation and the

PAR level at the single-cell level revealed that elevated PAR

levels in nucleus inhibit the FUS translocation after 90 min of

H2O2 exposure (Figures 6A and 6B). We hypothesized that cells

displaying elevated levels of PAR in nucleus at this time are actu-

ally the ones for which PARG activity is not sufficient to release

FUS from DNA damage sites. This observation confirms the

notion that PARG activity is required for the translocation of

FUS from the nucleus to the cytoplasm.
To challenge this hypothesis, we considered whether

damaged DNA-rich compartments formed by FUS in vitro can

be readily dissociated by recombinant PARG. After demon-

strating that recombinant PARG hydrolyzes PAR in vitro (Fig-

ure 6C), we analyzed whether FUS protects PAR from degrada-

tion by PARG. FUS, to a similar extent than other mRNA-binding

proteins, indeed, partly protects PAR from hydrolysis. However,

most of PAR is clearly hydrolyzed, despite the presence of FUS

(Figure 6D). We then probed the consequences of PARG activity

on preformed DNA-rich compartments formed after the activa-

tion of PARP-1 and in the presence of FUS (Figure 6E). In vitro,
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Figure 7. Schematic View of the Different

Steps of Damaged DNA Compartmentaliza-

tion by FUS
PARG induces the rapid dissociation of damaged DNA compart-

ments, as evidenced by the appearance of isolated DNA mole-

cules. Thus, PARG activity is sufficient to dissociate damaged

DNA-rich compartments in vitro, which possibly contributes to

the shuttling of FUS from the nucleus to the cytoplasm.

As AFM results reveal that both FUS phosphorylation in the

N-terminal LCD and truncations of the C-terminal RGG repeats

antagonize the formation of damaged DNA-rich compartments

(Figures 4C and 4E), it is therefore tempting to speculate that

FUS phosphorylation and/or arginine methylation may as well

control the reversibility of these compartments.

DISCUSSION

The putative functions attributed to PAR synthesis in the nucleus

are numerous, among which are unlocking the histone-driven

compaction of chromatin, signaling functions, and recruiting

DNA repair factors. Here, we explored the role of PARP-1 acti-

vated by DNA damages in the redistribution of RNA-binding pro-

teins (Altmeyer et al., 2015; Izhar et al., 2015), which could have

functional consequences in DNA repair (Wang et al., 2013) but

also in the ensuing translational response to stress (Leung

et al., 2011). Based on its high PARylation level after genotoxic

stress (Jungmichel et al., 2013) and its early PAR-dependent

recruitment to DNA damage sites (Rulten et al., 2014), we

focused this study on FUS. Through a single-molecule approach

in vitro, we reconstituted the molecular system including FUS,

mRNA to mimic nuclear mRNA targets of FUS, damaged DNA,

PARP-1 (to recognize DNA damages sites), NAD+ (to trigger

the synthesis of PAR by PARP-1), and PARG (to hydrolyze

PAR). We demonstrate the strong affinity of FUS for PAR, which

can then successfully compete with mRNA for the binding to
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FUS (Figures 1B and 1C), the recruitment

of FUS to PAR synthesized by PARP-1 at

DNA damage sites, and the formation of

large compartments in which damaged

DNA is concentrated (Figures 2B, 3A,

and 3B). FUS, thus, generates dynamic

compartments in which damaged DNA

accumulates, which should facilitate the

recognition of damaged DNA by DNA

repair factors due to the relative decrease

in undamaged DNA concentration within

the compartments. This function cannot

be fulfilled by PAR alone, due to its

inability to self-attract, in contrast to the

multivalent interactions taking place in

the LCD and RGG repeats of FUS. Inter-

estingly, phosphorylation of the FUS

LCD impairs the formation of liquid-like

compartments (Monahan et al., 2017;

Murray et al., 2017) and, accordingly, in-
hibits the formation of damaged DNA-rich compartments,

suggesting an important role for kinases such as DNA-PK in

regulating their formation. Arginine methylation of the RGG

domains may be also finely regulating the assembly of DNA

damaged compartments by decreasing the affinity of FUS for

PAR or by tuningmultivalent interactions between the C-terminal

RGGdomain and the N-terminal LCD (Bogaert et al., 2018;Wang

et al., 2018b).

Having evidenced the capacity of FUS to segregate damaged

DNA from intact DNA in liquid-like compartments, we wondered

whether it could provide an advantage in the process of DNA

repair in cells. After exposure to H2O2, mammalian cells rejoin

DNA strand breaks rapidly (t1/2,�15 min for HeLa cells) (Lorenzo

et al., 2009). During this time interval (<30 min), there might be a

kinetic advantage to gather damaged DNA sites (Figure 7).

Concentrating DNA repair factors where they are most needed

should increase the rate of DNA repair. Chromatin mobility is,

indeed, reduced (Liu et al., 2015) or corralled in small volumes

(Jakob et al., 2009) just after PARP-1 activation (<30 min). These

observations are in agreement with the participation of FUS and

possibly other RNA-binding proteins in DNA repair, notably in

neurons (Wang et al., 2013). Most of the experimental data ob-

tained so far were focused on late chromatin mobility after dou-

ble-strand DNA break formation, which induces homology

search during homologous recombination. However, a clus-

tering of DNA DSBs repaired by non-homologous end joining

in cells has been proposed to generate repair domains that could

be essential for rapid DNA repair (Schrank et al., 2018). Similarly,

PAR, together with FUS, may shape chromatin organization to

form transient compartments in which damaged DNA repair

that does not require homologous recombination is processed

effectively and rapidly.



We also demonstrate at the single-molecule level that, after an

initial PAR-dependent recruitment of FUS on DNA damage sites,

FUS—but not other mRNA-binding proteins, TDP-43, G3BP-1,

and HuR—is highly PARylated by PARP-1 in vitro (Figure 2C),

providing an explanation for the preferential PARylation of FUS

detected in cells (Britton et al., 2014; Jungmichel et al., 2013;

Zhen et al., 2017). FUS is then progressively released from

DNA damage sites in cells, this process being orchestrated

by PARG (Altmeyer et al., 2015; Naumann et al., 2018;

Patel et al., 2015). Incidentally, PARG activity is sufficient to

dissociate damaged DNA-rich compartments in vitro (Figure 6E).

By exploring the fate of FUS after the dissociation of these com-

partments in HeLa cells after H2O2 exposure, we also show evi-

dence that FUS shuttles from the nucleus to the cytoplasm,

generalizing recent results found in neurons (Naumann et al.,

2018). In addition, the PARP-dependent nucleocytoplasmic

shuttling of FUS is not shared by other RNA-binding proteins

such as TDP-43, HuR, SF1, or TIA-1 (Figures 5A–5C). As the

phosphorylation of FUS LCDs inhibits the capacity of FUS to

form damaged-DNA compartments in vitro (Figure 4E), we may

speculate that DNA-PK may release FUS from these compart-

ments to facilitate FUS translocation. Nevertheless, we do not

know whether DNA-PK phosphorylates FUS in preformed

damaged-DNA rich compartments and thus acts upstream of

PARG activity (Deng et al., 2014; Monahan et al., 2017).

In light of the results presented here, we may also ask whether

pathogenic FUS mutations, notably in the RGG repeats, impair

DNA repair in damaged DNA-rich compartments and/or the nu-

cleocytoplasmic shuttling of FUS. These issues deserve to be

addressed to increase our understanding of the link between

DNA repair and neurodegenerative diseases (Hoch et al., 2017;

Naumann et al., 2018; Wang et al., 2018a).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-FUS Novus Biologicals Cat#NBP2-52874

Rabbit polyclonal anti-FUS (used only in the Figure S2a) Novus Biologicals Cat#NB100-565

Rabbit polyclonal anti-PARP1 Santa Cruz Biotechnology Cat#sc-7150

Mouse polyclonal anti-HuR Abcam Cat#ab54987

Goat polyclonal anti-TIA-1 Santa Cruz Biotechnology Cat#sc-1751

Mouse monoclonal anti-TDP-43 Santa Cruz Biotechnology Cat#sc-376532

Rabbit polyclonal anti-PAR Trevigen Cat#4336-BPC-100

Mouse monoclonal anti- PARG Santa Cruz Biotechnology Cat#sc-398563

Mouse monoclonal anti-Alpha-Tubulin Abcam Cat#ab7291

Mouse monoclonal anti-SF1 Invitrogen Cat#MA5-27159

Goat polyclonal anti-Rabbit IgG (H+L) Thermo Fisher Scientific Cat#11012

Goat polyclonal anti-Mouse IgG1 Thermo Fisher Scientific Cat#21121

Goat anti-Mouse IgG (H+L) LI-COR Cat#926-32210

Bacterial and Virus Strains

Escherichia coli BL21(DE3) EMD Millipore Cat#69450

Chemicals, Peptides, and Recombinant Proteins

Actinomycin D (ActD) Thermo Fisher Scientific Cat#11805017

Lipofectamine 2000 Thermo Fisher Scientific Cat#11668019

SYBR Green II RNA Gel Stain Thermo Fisher Scientific Cat#S7564

Nb.BsmI, nicking endonuclease New England BioLabs Cat#R0706S

HiScribe T7 High Yield RNA Synthesis Kit New England BioLabs Cat#E2040S

PAR Polymer Trevigen Cat#4336-100-01

Olaparib (AZD2281, Ku-0059436) Apexbio Technology Cat#A4154

Ni-NTA Agarose QIAGEN Cat#30210

GelRed Biotium Cat #41003

Experimental Models: Cell Lines

Human: HeLa ATCC Cat #CRM-CCL-2

Oligonucleotides

FlexiTube GeneSolution for PARG QIAGEN Cat#GS8505

FlexiTube GeneSolution for PARP1 QIAGEN Cat#GS14

AllStars Negative Control siRNA QIAGEN Cat#1027281

Calf thymus DNA Sigma Cat#D4522

Recombinant DNA

Vector pT7-FLAG-MAT-Tag-2 Sigma Cat#E5030

Vector pBR322 New England BioLabs Cat#N3033S

pET-FUS This paper N/A

pET-FUS-DLCD This paper N/A

pET-FUS_1-374 This paper N/A

pET-FUS_1-454 This paper N/A

pET-MBP-FUS_FL_6E Monahan et al., 2017 Addgene #98652

pET-MBP-FUS_FL_12E Monahan et al., 2017 Addgene #98655

pET-Hur This paper N/A

pET-G3BP1 This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pET-TDP-43 This paper N/A

pET32a-hPARP-1-His Dr. S.H. Wilson N/A

pGEX-2T-bPARG-GST Dr. V. Schreiber N/A

pXC53-hAPE1 Dr. S.H. Wilson N/A

Software and Algorithms

ImageJ 1.50i (Java 1.8.0_131 (32-bit)) Wayne Rasband, NIH, USA https://imagej.nih.gov/ij/

GraphPad Prism GraphPad Software, Inc N/A

CellProfiler Broad Institute, USA https://cellprofiler.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources reagents should be directed to and will be fulfilled by the Lead Contact, David Pastré

(david.pastre@univ-evry.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture conditions
HeLa cells (female) were cultured in DMEM (Dulbecco’s modified eagle’s medium) supplemented with 10% FBS (fetal bovine serum)

and penicillin-streptomycin (all GIBCO Life Technologies, United Kingdom). Cells were maintained at 37�C in a 5% CO2 incubator.

Cells were grown on 12 mm round coverslips inside 24-well plates for immunofluorescence or in Petri dishes (10 cm in diameter) for

cell extract preparation.

Cell cultures, transfections and chemicals/drug treatment
Fresh culture medium with 5% serum was added to the cells before the transient transfections. HeLa cells were transfected with

1.5 mg of FUS-GFP encoding plasmid for each well by using Lipofectamine 2000. The cells were analyzed 24 h after plasmid DNA

transfection. The efficiency of transfection was controlled by immunofluorescence or immunoblotting experiments (Figure S5a).

For oxidative stress induction, HeLa cells were treated with 300 mM hydrogen peroxide (H2O2) and incubated at 37�C for 15, 30 and

90 min. When indicated, cells were pre-treated with 10 mM olaparib for 15 min at 37�C or 5 mg/mL actinomycin D (ActD) at 37�C for

30 min before H2O2 treatment. After incubation with the drugs at indicated time-points or concentrations, the cells were washed with

PBS and with 4% paraformaldehyde (PFA) in PBS for 45 min at 37 �C.

RNA interference
For the silencing of PARG or PARP-1, HeLa cells were then transfected with 20 nM of small-interfering RNA (siRNA) duplex using

Lipofectamine 2000. A non-targeting sequence siRNA (AllStars Negative Control siRNA) was used as negative control. Cells trans-

fectedwith the siRNAwere placed in incubator at 37�C for 48 h, then themediumwas replacedwith freshmediumwith 10%FBS, and

cells were incubated for 24 h at 37�C. PARG or PARP-1 expression levels were analyzed by immunoblot 72 h after transfection using

primary antibody.

METHODS DETAILS

Protein production and purification
The recombinant His-tagged PARP-1, APE-1 and GST-tagged PARG were overexpressed in E. coli strain BL21(DE3) pLysS and

purified, as previously described (Amé et al., 2017; Sukhanova et al., 2004). The recombinant FUS, FUSDLCD, FUSDRGG1,

FUSDRGG1-2, FUS-6E, FUS-12E, HuR, G3BP1 or TDP-43 were overexpressed in E. coli strain BL21 (DE3) and purified as described

below. Mutations for FUS-6E, S26E, S30E, T68E, S84E, S87E, S117E, and; FUS-12E, T7E, T11E, T19E, S26E, S30E, S42E, S61E,

T68E, S84E, S87E, S117E S131E (Monahan et al., 2017).

Expression and purification of FUS, FUSDLCD, TDP-43, HuR, G3BP1, FUS-6E, FUS-12E, FUSDRGG1 or FUSDRGG1-2
BL21(DE3) E.coli cells carrying plasmid pET-FUS, pET-FUSDLCD, pET- FUS_1-374, pET- FUS_1-454, pET-MBP-FUS_FL_6E, pET-

MBP-FUS_FL_12E, pET-TDP-43, pET-HuR or pET-G3BP1 were grown at 37�C in 2YT-ampicillin medium (1 L culture). When the op-

tical density of the culture reached 0.7 OD at 600 nm, IPTGwas added to a final concentration of 1mM, and growth was continued for

3 h. Cells were harvested and washed with 20 mL of cold buffer A containing 25 mM potassium phosphate, pH 7.4, 0.5 mM DTT,
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1 mMPMSF and 1MNaCl. The cell pellet (4 g wet) was suspended in 10 mL of the buffer A, and cells were disrupted by sonication in

the cold (Bioblock Vibracell sonicator, model 72412). The resulting suspension was centrifuged at 4�C for 30 min at 150,000 x g in a

TL100 Beckman centrifuge. In the case of G3BP1 protein, the supernatant was stored at �20�C and used for purification experi-

ments. However, for FUS, FUSDLCD, FUSDRGG1, FUSDRGG1-2, FUS mutants mimicking 6 or 12 phosphorylations (FUS-6E

and FUS-12E), TDP-43 and HuR, the pellet was resuspended in 10 mL of the buffer A containing 6 M Urea and incubated

for 120 min at 4�C. The resulting suspension was centrifuged at 4�C for 30 min at 200,000 x g in a TL100 Beckman centrifuge.

The supernatant was stored at �20�C and used for purification experiments.

The His6-tagged proteins were purified as follows: soluble fractions described above were incubated for 2 h at 4�Cwith Ni2+-NTA-

agarose (15mg of proteins/mL of resin) pre-equilibrated in buffer A. After incubation, the resin was transferred to an Econo-Pac chro-

matography column (Bio-Rad). The resin was then washed extensively with buffer A containing 20 mM imidazole and elution of the

protein was obtained by increasing step by step the concentration of imidazole, from 40 to 250 mM, in buffer A. The purity of the

resulting protein preparations was monitored at all stages of the purification by SDS-PAGE (Laemmli, 1970). The pure protein-con-

taining fractions (100-250 mM imidazole) were concentrated to 2 mL and then dialyzed overnight against 100 volumes of buffer B

(20 mM Tris-HCl, pH 7.4, 0.5 mM DTT, 6M urea and 200 mM NaCl). The final preparations were stored at �20�C.
In the case of FUS mutants mimicking 6 or 12 phosphorylations (FUS-6E and FUS-12E (Monahan et al., 2017), recombinant His6-

MBP-FUS-6 or His6-MBP-FUS-12 was expressed in BL21(DE3) E.coli and purified as described above. His6-MBP tag was cleaved

off using a His6-tagged TEV protease. Briefly, 1 mg of the protein was incubated with His6-tagged TEV protease (10 mg) in buffer con-

taining 25 mM Tris-HCl, pH 7.4, 1 mM DTT, 150 mM NaCl and 0.5 mM EDTA at room temperature for 20 h. SDS-PAGE was used to

checked this proteolysis step. After that, EDTA was removed by using PD-10 Desalting column. Finally, the FUS-6E and FUS-12E

proteins were separated from His6-tagged TEV protease and His6-MBP tag by using Ni2+-NTA-agarose.

The purity of the proteins and proteolysis step were monitored at all stages of the purification by SDS-PAGE (Laemmli, 1970).

Preparation of DNA Substrates, mRNA and PAR
The 1200-bp nicked DNA containing a single nick in the middle of the chain was prepared as described previously (Sukhanova et al.,

2016). The pBR322 (pBR) plasmid (or pT7) containing DNA breaks (damaged plasmid DNA) was prepared using heat and acid treat-

ment to create abasic sites followed by AP site cleavage with apurinic/apyrimidinic endonuclease 1 (APE-1) activity. Briefly, plasmid

DNA (0.25 mg/mL) was incubated in buffer containing 20mM sodium citrate, pH 5.0 and 200 mMNaCl at 70�C for 4 hours. To induce

single-strand breaks, the AP-site containing pBR (or pT7) plasmid (0.160 mg/mL) was incubated with 30 nM APE-1 in buffer contain-

ing 50 mM Tris-HCl, pH 8.0, 40 mM NaCl, 5 mM MgCl, 1 mM DTT for 1 h at 37�C. The DNA was rapidly chilled on ice and used for

analysis.

To create linear plasmid DNA with blunt-ends the plasmids were linearized with enzymes EcoRV for pBR and Sma1 for pT7.

Linearized plasmid pSP72�2Luc, containing two full-length cDNAs of luciferases from Renilla reinformis and Photinus pyralis

separated by a polylinker, was used as a template for RNA synthesis by T7 polymerase of 2Luc mRNA (�3000 nt). Transcription

in vitro was performed by a HiScribe T7 High Yield RNA Synthesis Kit (New England BioLabs). Synthesized RNA was purified using

phenol extraction.

PAR polymer was synthesized as described early (Amé et al., 2017). PAR yield wasmeasured using the absorbance at 260 nm and

the extinction coefficient of 13.5 mM�1cm�1 for ADP-ribose.

Preparation of samples for atomic force microscopy
Protein complexes for AFM analysis were formed in reaction mixtures (20 mL) containing binding buffer (12.5 mM HEPES, pH 7.6,

12.5 mM NaCl, 1 mM DTT, 100 mM urea), 3 nM PARP-1 and 40 nM of RNA-binding proteins and 1.25 nM 1200-bp nicked DNA,

2 nM 2luc mRNA or 1 mM PAR. To analyze the binding of proteins to mRNA in the presence of PAR, 40 nM FUS, FUSDLCD, HuR

or G3PB1 was pre-incubated with 2 nMmRNA and then the reaction mixtures were supplemented with PAR to a final concentration

of 1 mM and further incubated for 30 s at 37�C.
To image protein complexes in the presence of auto-PARylated PARP-1, 30 nM PARP-1 was incubated with 12.5 nM 1200-bp

nicked DNA, 12,5 nM supercoiled pBR and/or damaged pBR in the binding buffer containing 10 mM MgCl2 and 0.3 mM NAD+ at

37�C for 5 min. After that, the reaction mixtures were diluted 10-fold in the binding buffer containing 200 mM urea and incubated

with 40 nM of RNA-binding proteins at 37�C for 1 min and immediately deposited on mica.

To analyze the dissociation of FUS/PAR compartments in the presence of PARG, the diluted reaction mixtures were pre-incubated

with 40 nMFUS at 37�C for 1min in the reaction buffer, followed by incubation with 4 nMPARGat 37�Cand immediately deposited on

mica.

To adsorb the molecules on mica, putrescine (Pu2+) was added to the solution to a final concentration of 1 mM, after which a 10 mL

droplet was deposited on the surface of freshly cleaved mica at room temperature for 30 s and dried for AFM imaging as describe

previously.

AFM imaging and image analysis
AFM images were recorded in air by using a Nanoscope V Multimode 8 (Bruker, Santa Barbara, CA) in PeakForce Tapping

(PFT) mode using Scanasyst-Air probes (Bruker). Continuous force-distance curves were thus recorded with an amplitude of
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100-300 nm at low frequency (1-2 kHz). PFT mode decreases the lateral and shear forces. Images were recorded at 2048 3 2048

pixels at a line rate of 1.5 Hz.

Radioactive assay of protein PARylation and PAR hydrolysis by PARG in vitro

[32P]-NAD+ labeled on the adenylate phosphate was synthesized in a reaction mixture (100mL) containing 2 mM b-Nicotinamide

mononucleotide, 1 mM ATP and 0.25 mCi of [a-32P]-ATP (1000 Ci/mmol), 1.5 mg/mL nicotinamide mononucleotide adenylyl trans-

ferase (NMNAT), 25 mM Tris- HCl (pH 7.5), and 20 mMMgCl2 was incubated for 1 h at 37�C. The enzyme was denatured at 65�C for

10 min and precipitated proteins were removed by centrifugation.

An in vitro poly(ADP-ribosyl)ation assay was performed in the reaction mixtures (20 mL) contained 20 mM Tris-HCl, pH 7.5, 25 mM

NaCl, 1 mM DTT, 5 mM MgCl2, 400 mM Urea, 0.05 A260/mL of DNase I-activated calf thymus DNA, 50 nM PARP-1, 0.3 mM NAD+,

0.4 mCi [32P]-NAD+ and 2 mg FUS, FUSDLCD, G3BP1, HuR, TDP-43, or BSA as indicated at the figure legends. The reactions were

initiated by the addition of NAD+. The reaction mixtures were incubated at 37 for 30 min and stopped by adding SDS-sample buffer

and heating for 5 min at 90�C. The reaction mixtures were analyzed by 10% SDS-PAGE with subsequent phosphorimaging and/or

colloidal Coomassie staining.

For the analysis of the degradation of PARP-1-bound PAR by PARG, 30 nMPARP-1 was incubated with 3 nM damaged pBR in the

buffer containing 12.5mMHEPES-KOH, pH 8.0, 25mMNaCl, 1 mMDTT, 5mMMgCl2, 260mMUrea, 400 mM, 0.3mMNAD+, 0.4 mCi

[32P]-NAD+ at 37�C for 30 min followed by addition of EDTA to the final concentration of 15 mM. After that, the samples were sup-

plemented with 2.4 mMFUS, FUSDLCD, G3BP1, HuR or TDP-43 and incubated at 37�C for 5 min, and then PARGwas added to final

concentration 4 nM followed by incubation for 1-5 min at 37�C. The reaction mixture (20 mL) was stopped by adding 4 mL of the

loading solution containing 90% formamide, 50 mM EDTA, 0.1% xylene cyanol, and 0.1% bromophenol blue, heated for 5 min at

95�C, and the products were separated by denaturing electrophoresis in 20% polyacrylamide gel followed by visualization with

phosphorimaging.

Analysis of binding of FUS to RNA by EMSA
To assay stability of RNA-protein complexes in the presence of PAR, the reactions were performed in a mixture 25 mL containing

12.5 mM HEPES, pH 8.0, 25 mM KCl, 260 mM urea, 0.8 nM mRNA, 30-120 nM FUS and 0.4-4 mM PAR, as indicated in the figure

legends. The reaction mixtures were incubated at 37�C for 10 min. Loading buffer (0.2 volume) containing 12,5 mM HEPES, pH

8.0, 50% glycerol and 0.015% bromophenol blue was then added to the samples. The RNA-protein complexes were analyzed by

electrophoresis in 0.8% agarose in 0.5 X TBE buffer at room temperature at 5 V/cm followed by staining with SYBR Green II.

Co-sedimentation assays to probe the enrichment of damaged DNA in FUS/PAR compartments
A mixture (40 mL) containing 12.5 mM HEPES, 25 mM NaCl, 260 mM Urea, 5 mMMgCl2, 1 nM linearized plasmid DNA (damaged or

undamaged pBR/pT7), 10 nM PARP-1 and when indicated 0.3 mM NAD+ was first prepared and incubated at 37�C for 5 min. After

that the reactions were incubated with RNA-binding proteins (1 mM) for 5 min at 37�C. For sedimentation analysis, the reactions were

centrifuged at 10,000 3 g for 5 min at 25�C. Supernatants were collected, and pellets were resuspended in 20 mL of the buffer with

0.25 volume of the loading solution containing 5% SDS, 5% 2-mercaptoethanol, 0.3 M Tris-HCl (pH 6.8), 50% glycerol, and 0.015%

bromophenol blue. Supernatants and pellets were divided into two parts. One part (20 mL) was analyzed by separation in 10% SDS-

PAGE and visualized with Coomassie staining. The other part (20 mL) was resolved in a 0.8% agarose gel in 0.53 TAE buffer at room

temperature at 5 V/cm and stained with GelRed.

Immunofluorescence analysis
Cells were washed with PBS and fixed with 4% paraformaldehyde (PFA) in PBS for 45 min at 37 �C. After washing with PBS, cov-

erslips were kept with blocking buffer (50 mM Tris pH 7.5, 100 mMNaCl, BSA 2%, 0.15% Triton X-100) for 40 min at 37 �C in order to

permeabilize the cells and reduce nonspecific recognition by antibodies. Blocking buffer was removed and cells were washed and

then incubated for 1 h at room temperature with primary antibody described in supplementary methods. The cells were washed

5 times with PBS and incubated for 1 h with fluorochrome (Alexa Fluor�488 and �594)-coupled secondary antibodies in 50 mM

Tris pH 7.5. After final washes with PBS, the cells were stained with 300 nMDAPI to visualize the nuclei andmounted for fluorescence

microscopy analysis.

Western blot analysis of PARG expression
Cells were lysed in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Triton X-100, 1 mm EDTA, and protease inhibitor mixture. Lysates

were centrifuged at 14,0003 g for 15 min at 4�C, and supernatants were collected. Proteins (120 mg) of cell extracts were separated

on 12% SDS-PAGE gels and transferred onto a PVDF membrane. The membranes were blocked in 5% (w/v) non fat dried milk, PBS

for 30min at room temperature (20�C) and incubated for 1 h at room temperature with primary anti-PARG and anti-tubulin antibodies.

After that, membrane was washed in PBS 3 times for 5 min. Bound antibodies were detected and quantified using anti-mouse-IRDye

680 secondary antibodies with an Odyssey imaging system.
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QUANTIFICATION AND STATISTICAL ANALYSIS

AFM analysis: images shown in the figures are representative of three different and independent samples. The ‘‘particle analysis’’ tool

in the Nanoscope Analysis software (version 1.50) was used to determine the heights of the adsorbed molecules, PAR, RNA and

multicomponent complexe particles from at least three independent samples. Basically, for each particles of interest, the particle

analysis tool measured the maximum height of the particle. Significance of height were tested by using t test; *, p < 0.05; **, p <

0.01; ns, non-significant. The particle diameter is twice the smallest radius of a circle in which the particle can be placed.

Co-sedimentation analysis: quantification of the amounts of DNA in the pellets and supernatants was performed by measuring the

integrated GelRed fluorescence intensity of a given band from agarose gels by using the Quantity One analysis software.

Analysis of cell by fluorescence microscopy: themeasurements of themean anti-FUS, anti-HuR, anti-TIA-1, anti-TDP-43, anti-SF1

or anti–PAR antibodies fluorescence intensities were performed using the ‘‘CellProfiler’’ software.
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