SUPPLEMENTAL INFORMATION

Analysis of CRISPR-SaCas9 Off-Targets

In order to verify whether SaCas9 and sgRNAs led to unspecific cuts in the genome of transduced cells, we analyzed genomic DNA from DM1 edited clones, which were exposed to the action of CRISPR-SaCas9 for several weeks during cell amplification before gDNA extraction (Table S3). In particular, we focused on sgRNAs 4 and 23 and selected 20 potential off-targets having a number of mismatches between 4 and 6 (off-targets 1 to 10 for sgRNA 4 in Table S3A, and 11 to 20 for sgRNA 23 in Table S3B). Most off-target sites were located within intergenic regions or introns, except one, number 17, which was located within an exon. We PCR amplified and sequenced the corresponding off-target genomic regions from four DM1 edited clones carrying the deletion of the expanded CTG repeats (DM1-Delta clones 3, 10, 17, 22) and used a DM1 nontransduced clone (DM1), and a clone transduced only with the sgRNA₄₋₂₃ lentiviral vector (DM1sgRNA), as controls. Examination of the off-target chromatograms was followed by TIDE analysis, which should result in a cutting efficiency of ~50% if the clonal population harbors indels in one of the two alleles for the selected target. The total cutting efficiency calculated by TIDE using the non-transduced clone control sequence, ranged between 0 and 3.8% in DM1-Delta clones (see Table S3C). These values represent the signal background of each amplified genomic region and similar values were obtained also for the DM1-sgRNA clone. Therefore, we found no offtarget indels in all four analyzed DM1-Delta myoblast clones, suggesting that sgRNAs 4 and 23 appeared specific in these cells.

Supplementary Figure Legends

Figure S1. Deletion of *DMPK* **CTG Repeat by Nm CRISPR-Cas9.** (A) Scheme representing position of sgRNAs (gray arrows) flanking CTG repeat [(CTG)n] within the 3' UTR of human *DMPK* exon 15, which are located between the stop codon of the gene (stop) and the polyadenylation signal (pA). (B) Plasmid constructs encoding *Neisseria meningitidis* Cas9 (NmCas9) and the sgRNAs targeting regions upstream (up) and downstream (dw) the CTG repeats. EFS: Elongation Factor1-alpha (EF1- α) gene short promoter; U6: human U6 small nuclear RNA (snRNA) gene promoter; pA: polyadenylation signal. (C) Gel electrophoresis of PCR products using primers F and R from genomic DNA of HeLa cells, non-transfected (NT) or transfected with plasmids expressing NmCas9 and the indicated sgRNAs couples. White and black arrowheads show PCR amplicons without or with the CTG repeats deletion, respectively.

Figure S2. Reduction of foci-containing nuclei in DM1 cells treated with lentiviral CRISPR-

SaCas9 vectors. The percentage of DM1 patient-derived muscle line cells without nuclear foci after treatment with indicated MOI of lentiviral vectors SaCas9 and sgRNA couples 4-12A, 8-23 and 8-12A is indicated. Histograms show values obtained from manually counted FISH images of one biological replicate.

Figure S3. Deletion of *DMPK* **CTG Repeat Expansion in Heterozygous DMSXL Mice.** (A) Gel electrophoresis of PCR products from the genomic *DMPK* 3' UTR of TA muscles 4 weeks after intramuscular administration of rAAV9 vectors. (+) left TA co-injected with equal viral genomes (1:1) of rAAV9-SaCas9 (AAV-Cas9) and rAAV9-sgRNA₄₋₂₃ (AAV-sgRNA) (0.6 x 10^{11} and 1.0 x 10^{11} total vg, in 7 DMSXL mice at 3 and 6 weeks of age each (3w, 6w), respectively. (-): right TA injected with PBS as control. Black arrowheads show the band with deleted CTG repeats. (B) Optimized PCR amplification of the genomic *DMPK* 3' UTR revealed products with

undeleted (4527 bp, white arrowheads) or deleted (399 bp, black arrowhead) expanded CTG repeats in PBS (-) and rAAV9 (+) treated TA muscles of two mice.

Figure S4. PCR analysis of the *DMPK* **3'-UTR showing presence of heteroduplex amplicons.** (A-C) Intermediate bands located between PCR amplicons with (upper bands) and without (lower bands) the *DMPK* CTG repeat, obtained in the bulk population of transduced DM1 cells (BULK), and in DM1 clones containing a monoallelic CTG repeat deletion (Delta 17 and 22), were reproduced by using as PCR template a mix of gDNA from DM1 cells not treated (NT) and DM1- Delta clone with biallelic CTG repeat deletion (Delta 10 or 3), or (D) by simple denaturation and renaturation of a mixture of PCR amplicons from gDNA NT and Delta 10, and from NT and Delta 3.

Figure S5. *DMPK* **mRNA levels upon effect of the CTG repeat deletion.** (A) Expression of the human *DMPK* mRNA *in vitro* in DM1 cells and derivatives clones DM1-Delta 10, 3, 17 and 22 harboring biallelic or monoallelic CTG repeat deletion after treatment with lentiviral vectors SaCas9 and sgRNA 4-23. *DMPK* expression values are normalized for *GAPDH* or *HPRT1*, and represented as fold change relative to control cells from non-affected individual (Ctrl). (B) *DMPK* expression levels *in vivo* in TA muscles of DMSXL mice, 4 weeks after intramuscular injection of rAAV vectors SaCas9 and sgRNA 4-23 (+). *DMPK* values are normalized for the mouse gene *Gapdh*, *Hprt1* or *Tbp*, and represented as fold change relative to the contralateral TA muscle, injected with PBS (-). Data are average of three independent biological replicates in (A) and of 6 animals per group in (B). Statistical analysis by two-tailed Student *t*-test. *: P < 0.05; **: P < 0.01; ns: not significant.

Figure S1.

A

Figure S3.

Figure S5.

Sa sgRNA protospacer								
sgRNA number	protospacer sequence [5'->3']	Lenght	genomic target sequence (in black) and PAM (in blue) [5'->3']	Genomic position ^a (start-end)	Strand	% cutting by TIDE		
1	GCCCCGGAGTCGAAGACAGTTC	22	GCCCCGGAGTCGAAGACAGTTCTAGGGT	45770460 45770487	+	47.4		
4	<u>G</u> CAGTTCACAACCGCTCCGAGC	G + 21	CAGTTCACAACCGCTCCGAGCGTGGGT	45770377 45770403	-	42.4		
7	GCGGCCGGCGAACGGGGCTCG	21	GCGGCCGGCGAACGGGGCTCGAAGGGT	45770282 45770308	-	43.8		
8	GGCTCGAAGGGTCCTTGTAGCC	22	GGCTCGAAGGGTCCTTGTAGCCGGGAAT	45770266 45770293	-	42		
10	<u>G</u> CGGCCAGGCTGAGGCCCTGAC	G + 21	CGGCCAGGCTGAGGCCCTGACGTGGAT	45770151 45770177	-	7.8		
12A	<u>G</u> CTTTGCGAACCAACGATAGGT	G + 21	CTTTGCGAACCAACGATAGGTGGGGGT	45770064 45770090	+	32.5		
12B	GCACTTTGCGAACCAACGATAGGT	24	GCACTTTGCGAACCAACGATAGGTGGGGGGT	45770061 45770090	+	28.8		
13A	GGTTTGGCAAAAGCAAATTTC	21	GGTTTGGCAAAAGCAAATTTCCCCGAGT	45769973 45769999	+	36.5		
13B	GCGGGTTTGGCAAAAGCAAATTTC	24	GCGGGTTTGGCAAAAGCAAATTTCCCCGAGT	45769970 45769999	+	22.7		
15	GGGGGGGCGCGGGGATCCCCGAAAAA	24	GGGGGGGCGCGGGATCCCCGAAAAAGCGGGT	45769946 45769975	+	3.3		
17A	GGCTCCGCCCGCTTCGGCGGT	21	GGCTCCGCCCGCTTCGGCGGTTTGGAT	45769887 45769913	-	1.8		
17B	GCCGGCTCCGCCCGCTTCGGCGGT	24	GCCGGCTCCGCCCGCTTCGGCGGTTTGGAT	45769887 45769916	-	2		
19	<u>G</u> AAAACGTGGATTGGGGTTGTT	G+21	AAAACGTGGATTGGGGGTTGTTGGGGGGT	45769819 45769845	+	1.1		
22	GGGGTCTCAGTGCATCCAAAAC	22	GGGGTCTCAGTGCATCCAAAACGTGGAT	45769802 45769829	+	7.9		
23	GACAATAAATACCGAGGAATGT	22	GACAATAAATACCGAGGAATGTCGGGGT	45769779 45769806	+	48.3		

Table S1. Sa sgRNA Sequences, Positions and Cutting Efficiencies

 $\underline{\mathbf{G}}$ = not part of the target sequence, it has been added to optimize the transcription of the sgRNA from U6 promoter ^a Reference genome: Human GRCh38/hg38 (UCSC/Blat)

Name	Description	Ref
pX601-AAV-CMV::NLS-SaCas9-NLS-3xHA-	AAV plasmid carrying <i>Staphylococcus aureus</i> (Sa) Cas9	MLS42; gift
bGHpA;U6::Bsal-sgRNA	under the control of CMV promoter, and one sgRNA	from Feng
	expression cassette (U6::Bsal-sgRNA) under the control of	Zhang
	numan oo promoter.	(Addgene
		plasmid #
		61591); ¹
pAAV-EFS::NLS-SaCas9-NLS-3xHA-	Derivative of plasmid MLS42 carrying EFS promoter	MLS43; this
bGHpA;U6::BsaI-sgRNA	instead CMV promoter.	study
pAAV-EFS::NLS-SaCas9-NLS-3xHA-	Derivative of plasmid MLS43 carrying a second sgRNA	MLS47; this
bGHpA;U6::BbsI-sgRNA;U6::BsaI-sgRNA	expression cassette (U6::BbsI-sgRNA).	study
pAAV-EFS::NLS-SaCas9-NLS-3xHA-bGHpA;U6::4-	Derivative of plasmid MLS47 carrying sgRNA	MLS93; this
sgRNA;U6::23-sgRNA_DMPK	protospacers 4 into BbsI site and 23 into BsaI site.	study
pCCL-hPGK.GFP	pCCL plasmid harboring eGFP under the control of hPGK	Gift from Mario
	promoter.	Amendola
pCCL-CMV-GFP	Derivative of plasmid MLS87 carrying CMV instead	MLS107; this
	hPGK promoter.	study
pCCL-CMV-SaCas9	Derivative of plasmid MLS107 carrying SaCas9 instead	MLS110; this
	eGFP.	study
pCCL-U6::4-sgRNA;U6::23-sgRNA_DMPK-	Derivative of plasmid MLS87 carrying insert U6::4-	MLS100; this
hPGK.GFP	sgRNA;U6::23-sgRNA-DMPK from plasmid MLS93.	study
pC512-Int-smSVpolyA	AAV plasmid with SPc5-12 promoter, chimeric intron,	MLS1; this
	MCS and small SV40polyA.	study
pAAV-SPc5-12-SaCas9	Derivative of plasmid MLS1 carrying SaCas9 in front of	MLS118; this
	SPc5-12 promoter.	study
pAAV-Desmin-MCS	AAV plasmid carrying Desmin promoter, chimeric intron,	Genethon
	MCS and polyA.	plasmid bank
pBlue-eGFP-KASH	Plasmid carrying synthetically synthesized eGFP-KASH	MLS22; this
	insert (GeneCust) consisting of eGFP coding sequence	study
	with a C-terminus KASH peptide.	MI CO2. this
pAAv-Des-eGFP-KASH	from alcomid ML S22	MLS23; this
IDS246NMCool and U6apDNANM	Plaamida aamming Naissania maningididia (Nm) Cast	Cift from Icon
JDS2401111Cas9 alla OusgKINAINIVI	andsaRNA	Paul Concordet
DAAV-Des-eGEP-KASH-U6gPNA-NM-1N DMPK	Derivative of plasmid MI \$23 carrying insert U6@DNA	MI \$27: this
PAAV-DG-COIT-KASH-OUGKINA-INNI-IN-DIVIFK	NM_1N_DMPK	study
nAAV-Des-eGEP-KASH-U64-23-sgRNA DMPK	Derivative of plasmid MI \$27 with insert LI6	MI S123. this
print Des cont-KASH-00+-25-sgRIVA_DIVILK	soRNA DMPK (from plasmid MI S93) instead insert	study
	U6gRNA-NM-1N-DMPK.	Stady

Table S3A. Predicted Off-Target Sites of sgRNA 4

	Off-targets						
Off-target number sgRNA 4	position	sequence	strand	N mismatches	location		
1	chr11:97774468-97774495	aCAGaaCtCAAaCtCTCCGAGCTTGAGT	+	6	intergenic		
2	chr21:20427038-20427065	aCAaaTCACAAaaGCTCtGAGCTTGAGT	-	6	intergenic		
3	chr20:46065382-46065409	GCAagTCACAACCGtTCtGAGC <i>CAGGGT</i>	-	4	INTRON 5 gene NCOA5		
4	chr17:2435999-2436026	GCAcTcCACAcCaGCTCCGAGaCCGAGT	-	5	INTRON 8 gene METTL16		
5	chr15:97366952-97366979	GCACTTCAtAACaGCaCCCAGCATGAAT	+	5	INTRON gene CTD-2147F2.2		
6	chr2:117323541-117323568	tgAGTgCACAACtGCTCtGAtC <i>GAGAGT</i>	-	6	intergenic		
7	chr19:42201303-42201330	aCAagTCACAACCtCTCtGAGCATGGGT	+	5	INTRON 4 gene DEDD		
8	chr19:41888650-41888677	GCAcTTCACAAggGaTCCaAGC <i>CAGGGT</i>	-	5	INTRON 3 ARHGEF1		
9	chr22:30431446-30431473	GCAagTCACAgCCtCTCCGAGt <i>GTGAGT</i>	+	5	INTRON 8 gene prediction chr22.409		
10	chr22:45207691-45207718	GCAGTgCcCAgCCcCTCgGAGC <i>CCGAGT</i>	-	5	INTRON 2 gene KIAA0930		

Table S3B. Predicted Off-Target Sites of sgRNA 23

	Off-targets						
Off-target number sgRNA 23	position	sequence	strand	N mismatches	location		
11	chr3:82957453-82957480	agCAATAAtTAagGAGGAATGTAAGAAT	-	5	INTRON 1 gene prediction chr3.1029		
12	chr18:77715237-77715264	ccCAATAAATACCaAGGtATaTGAGAGT	+	5	intergenic		
13	chr12:78969291-78969318	ccCAATAgATACtGAGGAATGa <i>CTGAAT</i>	+	5	INTRON 2 gene SYT1		
14	chr7:115785851-115785878	GtCAAcAAATACtGAGGAATtT <i>TAGAGT</i>	+	4	intergenic		
15	chr9:100918144-100918171	GAtgATAAATACCaAGGAcTGT <i>GAGGAT</i>	+	4	INTRON 2 gene prediction chr9.1040		
16	chr9:110613710-110613737	GACA ^t TAAATAC ^t GAGGAAgGg <i>GTGAAT</i>	+	4	intergenic		
17	chr15:39924115-39925142	ttCAATAAATACCtAaGAAaGT <i>TGGAAT</i>	-	5	exon 1 gene RP11-325N19.3		
18	chr2:53213301-53213328	GctAATAAATACaGAGGAATGATAGAAT	-	4	intergenic		
19	chr6:27921664-27921691	actAATAAATACaGAGGAATGg <i>TGGGAT</i>	-	5	intergenic		
20	chr13:96983088-96983115	tAtAATAAAagCaGAGGAATGT <i>TAGAAT</i>	+	5	intron 1 gene LINC00359		

sgRNA	TIDE Indel Frequencies (%)					
N. potential off-target sgRNA 4	DM1- Delta 10	DM1- Delta 3	DM1- Delta 17	DM1- Delta 22	DM1- sgRNA	
1	1.7	1.7	0.7	2.8	2.4	
2	2.3	1.3	1.7	1.2	1.2	
3	1.6	1.0	0.9	2.3	2.9	
4	0.6	0.8	0.6	0.4	0.2	
5	0.8	1.4	0.2	2.4	2.4	
6	0.6	0.2	0.7	2.7	2.0	
7	0.7	0.1	0.1	1.0	0.9	
8	0.6	0.3	0.8	1.3	1.8	
9	1.5	0.5	0.6	1.6	1.0	
10	0.3	1.6	0.3	0.2	0.5	
23						
11	2.9	2.6	1.7	3.8	3.4	
12	0.5	0.4	0.8	0.6	0.8	
13	0.0	1.1	0.8	1.3	1.6	
14	0.1	0.6	0.9	3.3	3.3	
15	1.3	0.7	1.5	2.4	1.4	
16	0.8	0.5	0.2	2.1	0.9	
17	1.0	0.7	0.0	3.0	1.7	
18	1.7	0.4	2.2	0.9	1.2	
19	0.5	1.6	0.8	0.7	0.4	
20	1.8	1.2	0.5	2.5	2.3	

Table S3C. Tide Analysis of Indel Frequencies in Predicted Off-Target Sites

Table S4. List of Primers

Primer Name	Sequence from 5' to 3'	Comment	Reference			
	Cloning					
F-XhoI-MreI-EFS	CGCTCGAGCGCCGGCGTGAGGCTCCGGTGCCCGTCAGTG	PCR EFS	MLS63&MLS64 this			
R-Xmal-NruLEES		promoter for plasmid MI \$43	study			
K-Amar-Wur-Er 5	AACC	plusifild WLD45				
F-AgeI-SaCas9	GCGACCGGTGCCACCATGGCCCCAAAGAAG	PCR SaCas9 for	MLS142&MLS143 this			
R-SalI-SaCas9	CGCGTCGACCTTAAGCGTAATCTGGAACATCGTATGGGT AAGCG	plasmid MLS110	study			
F-PmeI-SaCas9	GCGGTTTAAACGCCACCATGGCCCCAAAGAAG	PCR SaCas9 for	MLS146&MLS147 this			
R-NotI-SaCas9_3xHE	CCGCGGCCGCGCGAGCTCTAGGAATTCTTAAGCGTAATC	plasmid MLS118	study			
F-MCS-before- U6SasgRNA	GGAGGTACCTTAAGCAATTGGACATAGTCGTTTAAACC	PCR insert U6::4-	MLS163&MLS166 this study			
R-PmlI-EndSasgRNA-	CCTCACGTGTCCTGCGGCCGCAAAAATCTCG	sgRNA_DMPK	study			
up		for plasmid MLS123				
	Genomic PCR/Sequencing DMPK 3'-	UTR				
F1-DMPK-3UTR	GTTCGCCGTTGTTCTGTCTCG		MLS14; this study			
R1-DMPK-3UTR	TCCAGAGCTTTGGGCAGATGG		MLS15; this study			
F2-DMPK-3UTR	GTCCCAGGAGCCAATCAGAGG		MLS16; this study			
R2-DMPK-3UTR	CTAGCTCCTCCCAGACCTTCG		MLS17; this study			
RT-PCR alternative splicing						
F-LDB3	GCAAGACCCTGATGAAGAAGCTC	LDB3	MLS172 and MLS173; ²			
R-LDB3	GACAGAAGGCCGGATGCTG	exon 11				
F-SERCA1	ATCTTCAAGCTCCGGGCCCT	ATP2A1	MLS174 and MLS175; 3			
R-SERCA1	CAGCTCTGCCTGAAGATGTG	exon 22				
F-MBNL1	GCTGCCCAATACCAGGTCAAC	MBNL1	MLS170 and MLS171; 2			
R-MBNL1	TGGTGGGAGAAATGCTGTATGC	exon 7				
F-DMD	TTAGAGGAGGTGATGGAGCA	DMD	MLS176 and MLS177; ⁴			
R-DMD	GATACTAAGGACTCCATCGC	exon 78				
F-IR-ex10-12	CCAAAGACAGACTCTCAGAT	IR	MLS178 and MLS179; ⁵			
R-IR-ex10-12	AACATCGCCAAGGGACCTGC	exon 11				
F-BIN1	AGAACCTCAATGATGTGCTGG	BIN1	MLS168 and MLS169; ⁶			
R-BIN1	TCGTGTTGACTCTGATCTCGG	exon 11				

Genomic PCR/Sequencing off-targets					
F-chr11:97774468	CCCTGCCATAACACATACCTAAGTGG	1	MLS207&208; this study		
R-chr11:97774468	GCATGCAATTATAGCCTCTGCATTAGCG				
F-chr21:20427038	GAAGATATATATGCATAGCAATATAATATTGCAATTGC	2	MLS209&210; this study		
R-chr21:20427038	GGGGCATTTGATATTAAGAAGTCAGAAAGAGAGG				
F-chr20: 46065382	GAGAACCTCCCCTGCTAACATCC	3	MLS211&212; this study		
R-chr20:46065382	GTTTGTAAGAGGTAAATGGACTTGCTTAAGC				
F-chr17:2435999	CTCAGCATTCTCTGATGGTTGAGATGG	4	MLS213&214; this study		
R-chr17:2435999	CTAGAATATCAGGGCCCTCACACC				
F-chr15:97366952	GTCAAAGACAGTTAAGCAGTTCAGTTGAGG	5	MLS215&216; this study		
R-chr15:97366952	GGTAAGGGACAGCAGATTTAGAATTCC				
F-chr2: 117323541	CCAGAAGCTTCTCATTGCCTTTCC	6	MLS217&218; this study		
R-chr2: 117323541	GACAAAGAGTAGCAACTATAGGAAGACTGAC				
F-chr19:42201303	GCAGCCAACACTTACAGAGTGC	7	MLS219&220; this study		
R-chr19:42201303	GAGCCACAGCATGAGACATTCC				
F-chr19:41888650	CACGGTCTGTCTCATCCTCTCATC	8	MLS221&222; this study		
R-chr19:41888650	GCACTAGCTCGCTGGTTTAATTCG				
F-chr22:30431446	GACAGCCTCCTGCAGGACTG	9	MLS223&224; this study		
R-chr22:30431446	GCCAATTCTGCTTTGAAGAATGATGTGC				
F-chr22:45207691	GAGACGGGGTTTCACCATGTTGG	10	MLS225&226; this study		
R-chr22:45207691	CTGAGTCCACAGCGCTTTGC				
F-chr3:82957453	CCAGAGCTAATCTGGCTGGTC	11	MLS227&228; this study		
R-chr3:82957453	CTAACACAGAAAGTTCTCAATGCCAGC				
F-chr18:77715237	TGCCTGCAGCAAGTTTCAGC	12	MLS229&230; this study		
R-chr18:77715237	GTAAACCCACCTCATCTTTAGGAAGC				
F-chr12:78969291	CAGTGACCCTTCTGTATCCACAGG	13	MLS231&232; this study		
R-chr12:78969291	CTGCCATGGCCCATAATGGC				
F-chr7:115785851	GCTGTCCATATAAAGGATACTGAGAATGGC	14	MLS233&234; this study		
R-chr7:115785851	GCCATGTAACAATGTATACATATATTGAAACATTACAAC G				
F-chr9: 100918144	CTTTCAGGTGGGACCAGGAG	15	MLS235&236; this study		

R-chr9: 100918144	TACAATAACAAGACCTAAAGCCCTGTTG			
F-chr9:110613710	CACTACATAAAGAAGAGAGCATAAAGGGACC	16	MLS237&238; this study	
R-chr9:110613710	GTGTATTATGCTAATGTTGGGTGGTGTATTC			
F-chr15:39925115	GATCTTGGGACTTGTCAGCCTCC	17	MLS239&240; this study	
R-chr15:39925115	TCTCAGCATGCTGCTGCTTG			
F-chr2: 53213301	GACTTCTTTCTTGCAGTAACTATATACGAAAGGA	18	MLS241&242; this study	
R-chr2: 53213301	ACCAACATGGCACACACATACC			
F-chr6:27921664	CTTCTCATTCATCATATTAAGAGGCATCTGATG	19	MLS243&244; this study	
R-chr6:27921664	CCTTCTCCACTGAAAGAAATTAGGGC			
F-chr13: 96983088	CTCTGTTAATCTCCTCCTCATGAGG	20	MLS245&246; this study	
R-chr13: 96983088	GAACACTAATTCACCTAGGAAGGTGC			
F-DMPK-ex4-start	GACGTGTTGGTGAATGGGGA			
R-DMPK-ex5-start	CCGCCCACGTAATACTCCAT	Human DMPK ex	MLS249&250; this study	
F-DMPK-ex15-104	GCCAACTCACCGCAGTCT	4-ex 5 Human DMPK ex	ML\$252&253: this study	
R-DMPK-ex15-203	GGGCACTCAGTCTTCCAACG	- 15		
F-GAPDH	ACCAGGGCTGCTTTTAACTCTG	Human GAPDH	MLS258&259: this study	
R-GAPDH	ATGGAATTTGCCATGGGTGGAA	ex 3-ex 4		
F-HPRT1-ex2	TGCTGAGGATTTGGAAAGGGT	Human <i>HPRT1</i> ex	MLS264&265: this study	
R-HPRT1-ex3	GGGCTACAATGTGATGGCCT	2-ex 3		
F-Gapdh	AATGCATCCTGCACCACCAAC			
R-Gapdh	GTGGCAGTGATGGCATGGAC	Murin <i>Gapdh</i> ex	MLS272&273; this study	
F-Hprt1-ex8	TGTTGTTGGATATGCCCTTGACT	4-ex 5		
R-Hprt1-ex9	TGCAGATTCAACTTGCGCTCA	Murin <i>Hprt1</i> ex 8-	MLS274&275; this study	
F-Tbp	CCTTGTACCCTTCACCAATGACT	CX 9		
R-Tbp	CAGCCAAGATTCACGGTAGATACA	Murin <i>Tbp</i> ex 3-ex 4	MLS276&277; this study	
	Deep Sequencing	1		
R-DMPK bef CTG	GCTACAAGGACCCTTCGAGC	Nested PCR 1 for target sgRNA 4 in couple with F1- DMPK-3UTR	MLS278; this study	
F-DMPK-149up- sgRNA23	CTCCTCACTTGCGCTGCTCTC	Nested PCR 1 for target sgRNA 23 in couple with R2- DMPK-3UTR	MLS290; this study	
F-nested-DMPK-116- sgRNA4	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCCGCG CTCCCTGAACCCTAGAACTGTCTTCG	Nested PCR 2 for amplicon with	ML\$286&287: this study	
R-nested-DMPK-116- sgRNA23	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACAAC GCAAACCGCGGACACTGTGGAGTCC	CTG deletion		
R-nested-DMPK-113- sgRNA4	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTAC AAGGACCCTTCGAGCCCCGTTCGCCG	Nested PCR 2 for target sgRNA 4 in couple with F- nested-DMPK- 116-sgRNA4	MLS288; this study	
F-nested-DMPK-115- sgRNA23	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCTCCG CCCGCTTCGGCGGTTTGGATATTTATTGACC	Nested PCR 2 for target sgRNA 23 in couple with R- nested-DMPK- 116-sgRNA23	MLS289; this study	

Supplementary References

- 1. Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., *et al.* (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature *520*, 186-191.
- 2. Lin, X., Miller, J.W., Mankodi, A., Kanadia, R.N., Yuan, Y., Moxley, R.T., *et al.* (2006). Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum. Mol. Genet. *15*, 2087-2097.
- 3. Kimura, T., Nakamori, M., Lueck, J.D., Pouliquin, P., Aoike, F., Fujimura, H., *et al.* (2005). Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum. Mol. Genet. *14*, 2189-2200.
- 4. Rau, F., Laine, J., Ramanoudjame, L., Ferry, A., Arandel, L., Delalande, O., *et al.* (2015). Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy. Nat. Commun. *6*, 7205.
- 5. Savkur, R.S., Philips, A.V. and Cooper, T.A. (2001). Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet. 29, 40-47.
- 6. Fugier, C., Klein, A.F., Hammer, C., Vassilopoulos, S., Ivarsson, Y., Toussaint, A., *et al.* (2011). Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat. Med. *17*, 720-725.