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Abstract: Patients surviving sepsis demonstrate sustained inflammation, which has been associated
with long-term complications. One of the main mechanisms behind sustained inflammation is
a metabolic switch in parenchymal and immune cells, thus understanding metabolic alterations
after sepsis may provide important insights to the pathophysiology of sepsis recovery. In this
study, we explored metabolomics in a novel Drosophila melanogaster model of surviving sepsis
using Nuclear Magnetic Resonance (NMR), to determine metabolite profiles. We used a model
of percutaneous infection in Drosophila melanogaster to mimic sepsis. We had three experimental
groups: sepsis survivors (infected with Staphylococcus aureus and treated with oral linezolid), sham
(pricked with an aseptic needle), and unmanipulated (positive control). We performed metabolic
measurements seven days after sepsis. We then implemented metabolites detected in NMR spectra
into the MetExplore web server in order to identify the metabolic pathway alterations in sepsis
surviving Drosophila. Our NMR metabolomic approach in a Drosophila model of recovery from sepsis
clearly distinguished between all three groups and showed two different metabolomic signatures
of inflammation. Sham flies had decreased levels of maltose, alanine, and glutamine, while their
level of choline was increased. Sepsis survivors had a metabolic signature characterized by decreased
glucose, maltose, tyrosine, beta-alanine, acetate, glutamine, and succinate.

Keywords: NMR; sepsis; survival; metabolomics

1. Introduction

Long-term outcomes in sepsis survivors are associated with increased mortality as well as
morbidity, such as late cardiovascular events, neuro-cognitive decline, cancer, and metabolic
disturbances, yet the mechanisms are not well understood [1]. Sepsis survivors show that sustained
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inflammation, despite the lack of clinical findings and sustained inflammation, has been associated
in clinical studies to unfavorable outcomes [1,2]. A switch of metabolic flux in immune cells from
oxidative phosphorylation to aerobic glycolysis (Warburg effect) is a likely mechanism behind the
sustained inflammation [3,4].

Inflammatory response is involved in several pathological mechanisms and it is highly integrated
into metabolic pathways [5,6]. The single metabolite or pathway-driven approach towards metabolic
reprogramming however, carries the risk of not capturing the various parallel processes occurring
in organisms surviving sepsis. Recent studies show the importance of using metabolomics in
an integrated approach to better understand pathophysiology of sepsis [4,7,8]. Among the analytical
techniques used in metabolomics, NMR spectroscopy does not necessitate highly sophisticated sample
preparation and allows the use of only a single and unique type of experiment for all metabolites
explored. NMR metabolomics have been widely applied in biofluids, cells, tissues or extracts of
biological samples, highlighting the metabolic pathways in pathologies such as cirrhosis [9,10], cancer [11],
or cardiovascular disease [12]. Metabolic alterations during sepsis control the inflammatory response and
can be detected by metabolomics for early diagnosis and outcome prediction in sepsis patients [13].

Drosophila has emerged as an ideal model for studying immune response to sepsis. The fruit fly
gives us the advantage of exploring long-term outcomes in an intact organism with only an innate
immune system over a relatively short time [14,15]. Hence, Drosophila provides important insight and
is relevant to human innate immune response [16]. In this study, we explored metabolite profiles and
metabolic pathways in a novel Drosophila melanogaster model of surviving sepsis using NMR [10,11].
We had three experimental groups, unmanipulated, sham and sepsis survivor flies, and metabolites
were extracted to perform NMR spectra. This NMR metabolomic study produced metabolomic profiles
characterizing each fly group and demonstrating the metabolic adaptation of Drosophila melanogaster in
response to sepsis.

2. Results

Typical spectra obtained from the three groups of flies are shown in the Figure 1. The spectra is
dominated by the resonances of carbohydrates from 3.05 to 4.0 ppm and the metabolomic differences
are not obvious without the spectra scaling and normalization used for multivariate analysis.
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Figure 1. 1H NMR spectral region between 0.5 and 6 ppm of Drosophila samples from the umanipulated
(bottom), sham (middle), and sepsis survivor (top) groups. The main resonances are labeled according
to metabolite assignments of the Table 1.
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The principal component analysis (PCA) did not show any outlier samples, however it was not
able to separate the sample spectra according to the groups, neither to any technical confounding
factors such as the phase correction or the day of spectral acquisition.

The partial least squares (PLS) model computed with all samples aimed to separate the three
groups, unmanipulated, sham, and sepsis survivors. The model is shown in the supplemental Figure S1.
The score plot demonstrates a good separation between unmanipulated, sham, and sepsis survivor
groups as confirmed by the R2Y and Q2 values (0.959 and 0.694, respectively) and the p-value of the
CV ANOVA test is 0.045. In the PLS model, the first component (horizontal) clearly separates the
unmanipulated group from the sepsis survivor group and the second component, the sham group,
is separated from the two other groups (Figure S1). The loading plot shows that along the first
component, several metabolites are changed in a decreasing order from unmanipulated to sham and to
sepsis survivors. The same trend holds true for maltose and glucose, and amino acids such as alanine,
beta-alanine, and glutamine.

We compared NMR-acquired data of sham flies to the unmanipulated flies using an orthogonal
projection on latent structures (OPLS) model. Figure 2 shows that the sterile pricking in sham
flies directly affects the flies’ metabolome, as the model quality parameters were R2Y = 0.982 and
Q2Y = 0.863. The model was obtained with two components. The Q2Y value was higher than the 99th
percentile (0.44) of the Q2Y values obtained by the validation test with 999 permutations. The loading
plot shows that maltose was decreased in the sham group compared to unmanipulated flies but
not glucose. The level of choline increased, whereas glutamine and alanine decreased in sham flies
compared to unmanipulated flies.
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concentrations in the sham group. Conversely, negative signals correspond to metabolites present at 
increased concentrations in the unmanipulated group. 

Figure 2. OPLS model comparing unmanipulated (blue) and sham (red) groups. The score plot
(A) shows the variability of each sample according to their groups with Tpred axis representing the
predictive axis and Torth, the orthogonal axis. Each dot corresponds to a spectrum; The loading plot
(B) shows the covariance of the spectral bins colored according to the R values between the model and
the belonging group. Positive signals correspond to metabolites present at increased concentrations
in the sham group. Conversely, negative signals correspond to metabolites present at increased
concentrations in the unmanipulated group.
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Using NMR-acquired data, we compared changes in the metabolome of sham and sepsis survivors
using an OPLS computed model. The score plot and the loading plot are presented in Figure 3.
The statistical parameters demonstrate a good discrimination between the sham and the sepsis
survivors as well as good correlation and predictability with the R2Y = 0.968 and Q2Y = 0.568.
The model was obtained with three components. The Q2Y value was higher than the 99th percentile
(0.49) of the Q2Y values obtained by validation test with 999 permutations. The loading plot shows
that several metabolites are decreased in sepsis survivors compared to the sham group, including
glucose, maltose, beta-alanine, and acetate (Table 1).
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Figure 3. OPLS model comparing sham (blue) and sepsis survivors (red) groups. The score plot
(A) shows the variability of each sample according to their groups with Tpred axis representing the
predictive axis and Torth, the orthogonal axis. Each dot corresponds to a spectrum. The loading
plot (B) shows the covariance of the spectral bins colored according to the R values between the
model and the corresponding group. Positive signals correspond to metabolites present at increased
concentrations in sepsis survivors group; negative signals correspond to metabolites present at
increased concentrations in the sham group.

Table 1. Main metabolites detected in 1H-NMR spectra with their chemical shift and labels presented
in Figure 1. The correlation coefficient R between the OPLS model and the signal intensity is given for
the model computed between sham and sepsis survivors.

Peak Labels in Figure 1 Chemical Shift Assignment |R| > 0.5 Sham vs. Sepsis Survivors

1 0.9; 1.28 Fatty acid methyl and methylene moieties
2 0.98–1.05 Leucine, Isoleucine, Valine
3 1.33 Lactate
4 1.48 Alanine
5 1.92 Acetate −0.525
6 2.03; 2.16; 2.34 Glutamine + Glutamate −0.542
7 2.41 Succinate −0.708
8 2.56 Beta-alanine −0.676
9 2.75 Dimethylamine (DMA)
10 3.01 Lysine
11 3.22 Choline
12 3.23–4.0; 4.62; 5.23 Glucose −0.725
13 3.5–4.0; 4.45; 5.42 Maltose −0.701
14 4.1; 4.15 Glycerol

not shown 7.12 Methyl-histidine
not shown 7.94 Histidine
not shown 6.89; 7.20 Tyrosine −0.667
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Table 1 summarizes the metabolites identified in the NMR spectra of the three groups and
those with higher correlation to the OPLS model, discriminating sham from sepsis survivor groups.
Those metabolites were also the metabolites used to construct the Metexplore metabolic pathways.

The metabolites detected as discriminant between sham and sepsis survivor flies were used to
generate metabolic pathways in Metexplore [17] mapping with two lists of nodes, one only containing
the discriminant metabolites (corresponding to |R| > 0.5) and a second one with all the metabolites of
Table 1. In both cases, the main metabolic pathway containing the highest number of discriminant
metabolites includes the reactions of glycolysis and a part of tricarboxylic acid (TCA) cycle (Figure 4).

Figure 4. Summary of the metabolic pathways in Drosophila melanogaster involved in the metabolic
adaptation in sepsis survivors compared to sham. (A) is the Metexplore extracted sub-pathway with
metabolites down-regulated are colored in yellow and those detected and not modulated are colored
in blue; (B) shows the metabolites detected not modulated in the metabolomic profile in blue while the
metabolites down-modulated are colored in red.

3. Discussion

In this study, we showed different metabolomics profiles detected by NMR spectroscopy that
clearly distinguish between unmanipulated, sham, and sepsis survivor flies. The metabolic pathways
differentiating these three groups are mainly those of glycolysis and carbohydrate consumption
in relation to tricarboxylic acid (TCA) cycle and amino acid utilization. The involvement of these
metabolic pathways was visualized and confirmed their enzymatic and genetic possibility by the
Metexplore metabolic networks using the Drosophila melanogaster genome-based method.

The cellular and molecular mechanisms and signaling pathways involved in Drosophila wound
repair and infection are widely described [18]. While the biochemistry and metabolic descriptions were
performed earlier, the NMR metabolomic investigation provides new insight into metabolic pathways
modulation in response to stress. With the benefit of this multiparametric and non-targeted method,
several pathways were explored in a single experiment.

As a first step, the metabolomic OPLS model discriminating between unmanipulated and sham
flies demonstrated that the needle pricking may be responsible for sterile inflammation and trigger
changes in the metabolic pathways including a decrease of maltose content, but not glucose, and also
a decrease in amino acids, including glutamine and alanine, and an increase of choline. Consequently,
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to investigate metabolic changes following sepsis, we did undertake a comparison of metabolomic
profiles of sham and sepsis surviving Drosophila. The OPLS model demonstrates that sepsis survivor
flies are undergoing a metabolomic response distinctive from the sterile inflammation observed in
sham flies. Maltose is significantly decreased in sepsis survivors when compared to the sham group.
Moreover, low glucose level suggests the involvement of carbohydrates in the metabolic changes
during the inflammatory response in sepsis survivors. The amino acids involved in the discrimination
are glutamine/glutamate, beta-alanine, and tyrosine, while alanine was not a discriminant metabolite.

In Drosophila, maltose is the product of starch hydrolysis. This disaccharide can be hydrolyzed
into glucose, thus it may be considered as a glucose stock. Activated immune cells demonstrate the
Warburg effect characterized as a metabolic switch towards aerobic glycolysis and increased glucose
consumption [19]. In our previous work [14], we showed sustained inflammation and decreased
glucose storage in sepsis survivors supporting carbohydrate metabolomics profiles. Increased
bioenergetic demand during the inflammatory response can explain decreased maltose storage in
sham as well as in sepsis survivors. Higher inflammatory response in sepsis survivors, in addition to
decreased maltose storage, could contribute to increased glucose consumption.

In sepsis survivors and sham groups, the reduction of glutamine/glutamate could be explained by
the high glucose consumption as these amino acids are direct energy suppliers through de-amination
to produce alpha-keto-glutarate (αKG), a TCA cycle metabolite [20]. This process is often observed in
the setting of high glucose demand.

In addition, the sham group had decreased alanine levels compared to unmanipulated flies,
however, alanine is not a discriminate metabolite in sepsis survivors when compared to sham group,
suggesting that the level of alanine utilization remains high after septic injury and thus, participates in
the energy supply.

Interestingly, lactate level did not participate in the group discrimination, whereas it was
previously reported to be high in sepsis surviving flies using colorimetric assay method [14]. Lactate
does not discriminate sham from unmanipulated, nor sepsis survivors from sham flies, while lactate
and LDH activity were increased in sepsis survivors in our previous study [14]. It is noticeable that
NMR spectroscopy used here is only sensitive to free lactate and not to lactate bound to proteins or
macromolecules, the latter is detected by biochemistry methods [21].

The amino acid profile was also different in all three groups. Tyrosine, a precursor of DOPA,
Dopamine, and other amines, was lower in sepsis survivors. Melanization plays an important role in
Drosophila immune defense, and during this process L-DOPA synthesized from tyrosine is catalyzed
by phenoloxidase in order to produce melanin [22]. Decrease of tyrosine in sepsis survivors and the
sham group could be explained by consumption during the melanization process.

Sterile injury provoked by pricking in sham flies contributes to the phospholipids destruction of
the cell membrane, subsequent synthesis phosphatidylcholine in order to repair the cell membrane can
explain changes in choline level [23,24]. The resonance at 2.75 ppm was attributed to dimethylamine
as corresponding to the chemical shift and coherent with no correlation found in the 2DTOCSY
(2-dimensional total correlation spectroscopy) spectra acquired. Dimethylamine is decreased in the
profile of sham flies when compared to the unmanipulated group and it remains low and was not
a discriminant metabolite in sepsis survivors. Dimethylamine, an osmotic amine found in the kidney
of human and fish, could protect from dehydration susceptibility after the wound formation.

In Drosophila, beta-alanine is part of carcinine dipeptide (beta-alanine-histamine), is mainly
localized in the head and thorax [25] and plays an important role in cuticule melanization [26] and
signaling in photoreceptor synapse [27]. Similarly to tyrosine, decrease of beta-alanine could be
explained by its consumption during the melanization process.

Acetate and succinate are discriminant metabolites and decreased in sepsis survivors compared
to the sham group. Acetate is directly related to energy metabolism as two sources for this NMR
resonance may be evoked. First, acetate resonance may be produced by the free ketone body derived
from lipid beta-oxidation. Lipid consumption takes place when carbohydrate stocks are low. In the
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sham flies, the acetate content is higher than in sepsis survivors, the latter containing less carbohydrate
(maltose and glucose). This profile did let us hypothesize that lipid oxidation could be higher in sham
flies than in sepsis survivors in which the carbohydrate pathway is favored. The second origin of
acetate peaks in NMR spectra is the acetyl moiety of acetyl-CoA, which is also directly involved in
energy metabolism as the first entry in TCA after glycolysis. Consequently, decrease of acetate in
sepsis survivors may be related to a decrease of carbohydrate content.

Sepsis surviving flies had decreased succinate concentration compared to the sham group.
Succinate is a TCA cycle metabolite and plays an important role in the production of ATP; in addition,
succinate contributes to the stabilization of transcription factor hypoxia-inducible factor-1α (HIF-1α)
with subsequent transcription of proinflammatory cytokines [28,29]. Recent works also suggest
a signaling role for succinate (both paracrine as well as autocrine fashion) in inflammation [30,31].
In cancer cells, as well as in LPS stimulated macrophages demonstrating Warburg effect, increased
succinate oxidation promotes a proinflammatory state, and thus contributes to tumor growth or
inflammation. Once oxidized, succinate is converted to fumarate, thus decreasing its concentrations.

Our work has some limitations. First of all, due to the small body size and difficulty in isolation of
a sufficient amount of hemolymph or specific tissue in Drosophila, measurement of metabolites in the
whole body is the most practical approach. While this is a limitation of our study, metabolomic profiles
of the whole body provide important information about metabolic processes in the body. In addition,
we used an orally available antibiotic (linezolid) to achieve survival from sepsis. Although, linezolid
protects flies from S. aureus infection without evident toxicity [32], in humans is known to impair
mitochondrial protein synthesis [33,34] and produce hyperlactatemia with chronic use [35,36]. In order
to eliminate the possible contribution of linezolid to the metabolic profile, all three groups were treated
identically for 24 h only. In addition, in order to collect flies for metabolomic analysis we used CO2

anesthesia. Although seven minutes of CO2 anesthesia can cause metabolic changes [37], we used less
than one minute of CO2 anesthesia and all groups were exposed to same conditions.

4. Materials and Methods

4.1. Experimental Design

We used a model of percutaneous infection in Drosophila melanogaster to mimic sepsis and treated
with orally available linezolid [14]. We followed immune and metabolic outcomes over a seven-day
course. We had three experimental groups: (a) unmanipulated; (b) sham; and (c) infected followed by
antibiotic treatment (sepsis survivors).

4.2. Drosophila Melanogaster Strains and Maintenance

We raised the flies at 23 ◦C, 60% humidity, and 12-h light/dark cycle on standard cornmeal-yeast
medium, changed every three to five days. We used two or three day old male flies. Wild-type (WT)
Canton S were obtained from Bloomington stock.

4.3. Fly Infection and Treatment

We separated flies in 10 vials of 50 flies for each group. One group was infected with
Staphylococcus aureus and treated with oral linezolid (sepsis survivors), the second group was
pricked with an aseptic needle (sham), and the last group was left as a control (unmanipulated) [14].
To eliminate possible side effects of linezolid, we treated sham and unmanipulated files with antibiotic
for 24 h similarly to the sepsis survivors group.

4.4. Nuclear Magnetic Resonance Spectroscopy

We performed metabolomic measurements one week after infection. Each sample of 50 flies was
homogenized on ice in 1.5 mL tubes using plastic pestles in 400 µL 50% acetonitrile, then centrifuged
at 17,000 rpm, at +4 ◦C for 10 min and 350 µL of the supernatant was snap frozen in liquid nitrogen
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and then lyophilized (Thermo-Savant SPD1010) and stored at −80 ◦C until NMR experiments. Ready
samples were transferred on dry ice to the NMR laboratory.

For NMR spectroscopy, the samples were solubilized in 60 µL deuterium oxide (D2O) and
introduced into 1.7 mm capillary tubes further placed in capillary holder containing D2O. The proton
spectra were acquired at 600 MHz and 295 K with a Bruker Avance spectrometer (Wissembourg, France)
using a cryoprobe. The acquisition sequence was a NOESY1D (Nuclear Over-Hauser Spectroscopy
One Dimension) sequence including the water suppression, a 60 ms spin-lock, 90◦ pulse, and 3 s
relaxation delay. The number of transient was 64 on 32 K data points. The spectra were obtained
during two consecutive days and samples were randomly ordered. The free induction decay (FID)
was processed in the NMR pipe using an in-house script for automation of Fourier transform with
a 0.3 Hz line broadening, baseline correction, and calibration using acetate signal at 1.92 ppm while
spectra were phased manually. The 30 spectra were binned into 0.001 ppm bins with elimination
of the water region between 4.6 and 5 ppm to produce the X matrix, which is used for multivariate
statistical analysis.

The NMR spectra attribution were performed according to our prior works [9], the Human
Metabolome Database (HMDB) [38], and previous reports on NMR metabolomics with Drosophila [39,40].

4.5. Statistical Analysis

For multivariate analysis, NMR data collected in the X matrix are normalized along the
spectral variables using the probabilistic quotient method and the variables are centered normalized.
The principal component analysis (PCA), projection on latent structure (PLS), and orthogonal projection
on latent structure (OPLS) analyses were performed using an in-house MATLAB (2011b) code
(Mathworks, Natick, MA, USA) based on the Trygg and Wold method [41] as previously described [11].
The PCA was used in order to detect any confounding factors (spectroscopy acquisition day, phase)
and any outlier samples. The PLS method using the three groups as supervising factors was applied
in order to detect the possible discrimination of the three conditions. Finally, OPLS models were
used to compare the groups two by two. The quality of the model is assessed by the correlation
coefficient (R2Y), the predictive coefficient (Q2Y), R2Y = 1 indicates perfect description of the data
by the model, whereas Q2Y = 1 indicates perfect predictability. The Q2Y was computed with the
“leave-one-out” cross-validation method [42]. As another mean for internal validation of the O-PLS
models, a permutation test (999 permutations) was performed [43]. This evaluated whether the O-PLS
models, built with the samples, were significantly better than any other O-PLS model obtained by
randomly permuting the original samples attributes.

The results are presented as a score plot showing the discrimination between groups and as
a loading plot colored according to the correlation of each bucket to the model. Each point in the
score-plot represents the projection of the NMR spectrum (and thus a fly sample) on the two first
components of OPLS model, on the predictive (Tpred, horizontal axis), and the first orthogonal
component of the model (Torth, vertical axis). The loading plot represents the covariance between
the Y-response matrix and the signal intensity of the various spectral domains. Colors were also used
in the loading plot depending on the correlation between the corresponding bucket intensity and Y
variable. The metabolites were considered as discriminating metabolites when corresponding to the
buckets with a correlation over or equal to 0.5.

4.6. Metabolic Pathways Analysis

The metabolites detected in NMR spectra and discriminant metabolites were implemented into
the MetExplore web server [44] in order to identify the metabolic pathways modified in the sepsis
surviving Drosophilae. The metabolic network of Drosophila melanogaster is based on 85 metabolic
pathways including 185 reactions. The representation of the metabolic pathways involved in the
metabolic process detected in sham and sepsis survivors was produced by the MetExplore system and
included in classical pathway representation after identification.
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5. Conclusions

Our NMR metabolomic approach in a Drosophila model of recovery from sepsis showed
two different metabolomic signatures of inflammation. The first signature is in the sham group,
which seems to be related to non-septic inflammation and the second one in the sepsis survivors
associated with a septic inflammation triggered by septic injury. Sepsis survivors had a metabolic
signature characterized with decreased glucose, tyrosine, beta-alanine, and succinate. Further studies
investigating differences between non-surviving and surviving flies at different time-lapse and
tissue specific metabolomic profiling would be of a high importance for better understanding the
pathophysiology of sepsis recovery and designing future therapeutics for patients surviving sepsis.

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/6/4/47/s1,
Figure S1. PLS model computed with the three groups of Drosophila melanogaster; Figure S2. MetExplore extracted
sub-pathways relating the highest number of metabolites from the Table 1.
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