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Probing protein interactions 
in living mammalian cells on a 
microtubule bench
Mirela Boca1, Dmitry A. Kretov1,2, Bénédicte Desforges1, Alix Mephon-Gaspard1, 
Patrick A. Curmi1 & David Pastré1

Microtubules are μm-long cylinders of about 25 nm in diameter which are present in the cytoplasm 
of eukaryotic cells. Here, we have developed a new method which uses these cylindrical structures 
as platforms to detect protein interactions in cells. The principle is simple: a protein of interest used 
as bait is brought to microtubules by fusing it to Tau, a microtubule-associated protein. The presence 
of a protein prey on microtubules then reveals an interaction between bait and prey. This method 
requires only a conventional optical microscope and straightforward fluorescence image analysis 
for detection and quantification of protein interactions. To test the reliability of this detection 
scheme, we used it to probe the interactions among three mRNA-binding proteins in both fixed 
and living cells and compared the results to those obtained by pull-down assays. We also tested 
whether the molecular interactions of Cx43, a membrane protein, can be investigated with this 
system. Altogether, the results indicate that microtubules can be used as platforms to detect protein 
interactions in mammalian cells, which should provide a basis for investigating pathogenic protein 
interactions involved in human diseases.

Deciphering the complex interaction network of proteins in cells remains a challenging issue to under-
stand the cell metabolism and function. To probe whether a protein of interest interacts with putative 
partners, high-throughput methods like yeast two-hybrid system1,2 or combination of affinity purification 
with mass spectrometry analysis2,3 are commonly used. Although these methods are essential to explore 
protein interactions at large scale, it is necessary to control the relevance of the proposed interactions in 
a context closer to native conditions, such as in living mammalian cells.

Different methods are then currently used to control the results of large-scale screening. For example, 
the colocalization between two proteins detected by fluorescence microscopy may indicate a putative 
interaction in mammalian cells. However, the use of colocalization assays is restricted to proteins con-
fined to specific compartments like vesicles4. Other techniques like proximity ligation5, split-GFP6 and 
fluorescent resonance energy transfer (FRET,7) have also been developed to probe protein interactions in 
cells. These approaches present both strengths and limitations. Proximity ligation assays can reveal direct 
interactions between endogenous proteins but only in fixed cells. In addition, a rolling circle amplifica-
tion procedure is required for detection and can bias the results. FRET uses short-range energy transfer 
to detect interactions between specifically modified proteins expressed in cells. A dedicated equipment is 
however required for analyzing the FRET signal. Furthermore, the FRET signal strongly depends on the 
distance and orientation between the donor and acceptor molecules, which has to be taken into account. 
In split-GFP experiments, the detection scheme is simple as the association between complementary 
GFP fragments attached to both bait and prey proteins leads to fluorescence but their intrinsic affinity 
also induces an inherent background.
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Here, we present a new method which uses the microtubule network as an intracellular platform to 
detect protein interactions in living cells. The principle is as follows: a bait protein is brought to micro-
tubules so that it can still interact and attract its putative preys onto microtubules. The presence of a prey 
on microtubules then reveals an effective interaction. This method can work with various prey molecules 
including nucleic acids and proteins and can detect both direct and indirect interactions. Microtubules 
are ideal platforms to probe protein interactions at the level of single cell for two reasons. (i) The surface 
area offered by microtubules is potentially enormous which should prevent saturation by bait proteins in 
most cases. Indeed, if we consider the number of microtubules per cell8, simple math indicates that the 
surface area of microtubules is larger than about 70 μ m2 in typical mammalian cells like HeLa cells. If the 
bait protein requires an interacting surface area of 10 nm2, virtually, more than 7 ×  106 bait copies per cell 
can be anchored to microtubules. (ii) The microtubule network has a characteristic filamentous structure, 
which is a major advantage. An interaction between bait and prey indeed leads to the appearance of 
this characteristic structure in the fluorescence image of the prey. Protein interaction on a microtubule 
bench can then be easily distinguished in the cell cytoplasm and should allow a highly sensitive detection 
scheme by using numerical tools.

To explore the validity of this method, we first considered whether Tau, a microtubule-associated 
protein, can help to bring a bait protein onto microtubules, which is a prerequisite for the present detec-
tion scheme. We then examined if interactions among mRNA-binding proteins can be detected by using 
microtubules as platforms. We also developed a protocol to analyze the interactions between bait and 
prey from fluorescence images of cells. We finally tested whether the present method can be used to 
probe the interaction of other proteins like membrane proteins.

Results and Discussion
Tau brings bait proteins onto microtubules and preserves the accessibility of baits to molecu-
lar partners. Various strategies can be considered to bring a protein onto microtubules and to use it as 
bait. Fusing the bait protein directly to tubulin, the building block of microtubules, may not be relevant 
since the concentration of free tubulin exceeds 10 μ M in mammalian cells. Only a small fraction of bait 
proteins would thus be brought to microtubules9. Alternatively, microtubule-associated proteins (MAPs) 
like Tau can be used for this purpose (Fig.  1). Tau has a higher affinity for microtubules than for free 
tubulin10. Moreover, the bait protein can be fused to the unstructured N-terminal domain of Tau (11) 
which should keep the bait protein away from the microtubule surface. Increasing the spacing between 
the bait protein and the microtubule surface is indeed critical to preserve putative bait:prey interaction 
(Supplementary Figure S1A). We tested the efficiency of Tau fusion with two established mRNA-binding 
proteins, YB-111 and G3BP112, used as baits. Importantly, these two proteins have a diffuse distribution 
throughout the cytoplasm and were not found enriched on microtubules in HeLa cells (Supplementary 
Figure S1C). After their fusion to the N-terminal end of Tau with an additional fluorescent label, the 
two constructs, YB-1-RFP-Tau and G3BP1-RFP-Tau, were clearly brought to microtubules (Fig. 2A). To 
explore whether YB-1-RFP-Tau and G3BP1-RFP-Tau can still interact with their physiological substrate, 
mRNA, we probed the presence of poly(A) mRNAs on microtubules via in situ hybridization (Fig. 2A). 
The results indicate that the two bait proteins are able to bring large molecules such as mRNA on micro-
tubules. As YB-1 interacts mostly with mRNA in cells13, we also explored whether mRNA preferential 
colocalizes with YB-1-RFP-Tau by comparison with ribosomal RNAs (Supplementary Figure S2A). To 
that end, we used the spearman coefficient14,15 , which reflects the colocalization level between bait and 
prey. It is closely-related to the Pearson coefficient16 but includes nonlinear relationship. As the fluores-
cence intensity on microtubules does not necessarily increase linearly with the number of fluorescent 
bait or prey, the spearman coefficient is therefore more adapted to the present analysis than the Pearson 
coefficient. The value of the spearman coefficient should normally range from 0 to 1, which reflects no 

Figure 1. Schematic representation of the method used to detect protein interactions. 
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apparent or perfect colocalization, respectively. A negative value indicates that the prey protein may 
be excluded from the microtubule vicinity. The measurements of the spearman coefficient reveal that 
YB-1-RFP-Tau significantly colocalizes with poly(A) mRNA but to a lesser extent with ribosomal RNAs 
(Supplementary Figure S2B). As expected, YB-1-RFP-Tau thus preferentially interacts with mRNA rather 
than with ribosomal RNAs on microtubules.

The microtubule surface is not saturated by bait proteins even when expressed at high levels.  
A major advantage of using microtubules as platforms lies on the large surface area that they offer, which 
should theoretically preclude saturation by the bait protein. If saturation takes place, any bait protein in 
excess could capture a putative prey in the bulk cytoplasm. The chances of detecting bait:prey interac-
tions on microtubules would therefore be reduced and in turn the sensitivity of the detection scheme 
would be impaired. However the surface area truly available on microtubules has not been reported so 
far. Microtubules interact with many other proteins like MAPs and molecular motors which can compete 
with the bait proteins for the binding to microtubules. To estimate the space available for bait proteins on 
microtubules, we measured the spearman coefficient reflecting the colocalization score between mRNA 
and YB-1-RFP-Tau for different expression levels of YB-1-RFP-Tau. If saturation arises above a critical 
expression level of YB-1-RFP-Tau, the correlation coefficient should no longer increase. However the 
spearman coefficient rather increases steadily with the expression level of YB-1-RFP-Tau which indicates 
that more mRNAs were brought to microtubules. The surface of microtubules was thus not saturated 
under the conditions tested (Fig. 2B).

Microtubules can be used as platforms for detecting the interactions among mRNA-binding 
proteins. To further document the method, we then probed in fixed and living cells the interactions 
of YB-1-RFP-Tau, used as bait, with protein partners belonging to cytoplasmic mRNA-binding proteins 
(Fig.  3A, videos 1 and 2). In this case, the detected interaction may result from a direct interaction 
between mRNA-binding proteins or from a significant overlap in their mRNA targets. Considering these 
parameters, we chose three different prey proteins: YB-1, G3BP1 and Lin28.

Figure 2. mRNA-binding proteins fused to Tau bring mRNAs onto microtubules in cells. (A) The 
micrographs show that two mRNA-binding proteins, YB-1 and G3BP1, when fused to Tau, brought 
mRNA onto microtubules. A fluorescent Poly(T) probe was used to detect Poly(A) mRNA. Tau-RFP is 
used as a control. Scale bar: 15 μ m. In the presence of mRNA-binding proteins fused to Tau, representative 
line profiles reveal the binding of mRNA to microtubules. (B) Upper panel: fluorescence images of cells 
expressing YB-1-RFP-Tau at different levels reveal that the relocation of mRNA on microtubules is clearer at 
higher than lower bait expression level. Poly(A) mRNA was detected by using a fluorescent Poly(T) probe. 
Scale bar: 15 μ m. Lower panel: the spearman coefficient, which reflects the degree of colocalization between 
mRNA and YB-1-RFP-Tau, used as bait, increases with the bait’s fluorescence intensity.
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i)  YB-1 is known to interact with itself17 and to bind to mRNA cooperatively18. As many copies of this 
protein should be interacting with the same mRNA due to its cooperative binding, we thus expect 
a strong colocalization between YB-1-RFP-Tau and YB-1-GFP on microtubules.

ii)  G3BP1 has no known interaction with YB-1. In addition, none of the top 25 mRNA targets of 
G3BP119 were found among the top 100 mRNA targets of YB-120. G3BP1 may thus poorly colocal-
ize with YB-1-RFP-Tau on microtubules.

ii)  Lin28 (Lin28a) is a regulator of development timing. Lin28, like YB-1, binds to RNA cooperatively 
via its cold-shock domain21,22. In addition to these similarities with YB-1, about 25% of the top 
100 mRNA targets of YB-120 display at least one binding site for Lin2823. Lin28 may thus colocalize 
with YB-1-RFP-Tau on microtubules.

The results indicate that, as expected, YB-1-GFP is clearly brought to microtubules in cells express-
ing YB-1-RFP-Tau (Fig. 3A, Video 1). In contrast, G3BP1-GFP scarcely colocalizes with YB-1-RFP-Tau 
under the same conditions (Fig.  3A, Video 2). Lin28-GFP is also observed on microtubules of cells 
expressing YB-1-RFP-Tau but to a lesser extent than YB-1-GFP. The measured colocalizations are there-
fore specific to the prey proteins. Interestingly, while G3BP1-RFP-Tau also brings mRNA to microtubules 
(Fig.  2A), it fails to do the same with YB-1-GFP, Lin28-GFP and G3BP1-GFP (Supplementary Figure 
S4). The detected colocalization is thus not simply governed by the presence of mRNAs on microtubules. 
In order to compare these results with those obtained with a more conventional method, we performed 

Figure 3. Detection of protein colocalization among mRNA-binding proteins and comparison to results 
obtained via conventional pull downs. (A) The micrographs of fixed cells show the level of colocalization 
of indicated baits and preys, RFP and GFP-labeled respectively. Tau-RFP is used as a control. Results are 
mean ±  SD (n =  20 cells). **P <  0.01, two-tailed t test. Scale bar: 15 μ m. See Videos 1 and 2 for living cells. 
(B) Analysis of the interactions between YB-1, G3BP-1 and Lin28 via pull down assays. Upper, left panel: 
western blots showing the amounts of endogenous YB-1, G3BP1 and YB-1-GFP in pull-down assays of 
whole cell lysate (WCL) of HeLa cells expressing YB-1-GFP. Anti-GFP antibody was used to bring YB-1-
GFP to the beads. Upper, right panel: as a control, neither YB-1 nor G3BP1 were detected in pull-down 
assays using whole cell lysate of GFP-transfected cells. Endogenous YB-1 and G3BP1 were detected using 
anti-YB-1 and anti-G3BP1 antibodies. HeLa cells do not express endogenous Lin28. Lower, left panel: pull 
down assays in HeLa cells expressing Lin28-GFP. Lower right panel: western blots showing the amount of 
endogenous YB-1 and YB-1-GFP in pull-down assays of WCL of HeLa cells expressing YB-1-GFP with or 
without RNAse treatment. RNAse disrupts the interaction between YB-1-GFP and endogenous YB-1, in line 
with a colocalization resulting from a cooperative binding to mRNA18. (C) Videomicroscopy images of living 
cells. Two point mutations in the cold-shock domain disrupt YB-1-GFP colocalization with YB-1-RFP-Tau 
on microtubules. Scale bar: 15 μ m.
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pull-down assays. The results show that YB-1 indeed co-precipitates with itself and with Lin28 but poorly 
with G3BP1. In addition, we found that YB-1:YB-1 co-precipitation is RNA-dependent (Fig.  3B), in 
agreement with YB-1:YB-1 interactions resulting from a cooperative binding to RNA.

If we consider that the strong colocalization between YB-1-GFP and YB-1-RFP-Tau is due to the coop-
erative binding of YB-1 to mRNA18, the same results should be observed for Lin28 which was also reported 
to bind to RNA cooperatively in vitro21. We thus tested this hypothesis by using Lin28-RFP-Tau as bait and 
Lin28-GFP as prey. The results clearly reveal the presence of Lin28-GFP on microtubules in Lin28-RFP-Tau 
expressing cells (Supplementary Figure S4). In contrast, G3BP1, which does not bind to mRNA coopera-
tively18, poorly colocalizes with G3BP1-RFP-Tau on microtubules (Supplementary Figure S4).

The consequences of point mutations on protein interactions can be probed on a microtubule 
bench. One possible application of this method is to detect the consequences of point mutations on 
protein interactions, which could pave the way for future structural biology investigations in cells. To that 
end, we probed the consequence of two point mutations in the cold-shock domain of YB-124. These two 
mutations might play a critical role in YB-1:YB-1 interactions as shown by pull-down assays (Figure S3).  
We thus examined the interactions between YB-1-RFP-Tau, used as bait protein, and YB-1-GFP with or 
without the two mutations in the cold-shock domain24, (Fig. 3C). In contrast with wild type YB-1, the 
results show that mutated YB-1-GFP fails to colocalize with YB-1-RFP-Tau on microtubules.

A protocol to analyze protein interactions on a microtubule bench. In order to design a pro-
tocol for measuring bait:prey interactions on microtubules, we considered that high expression levels of 
the bait protein may lead to false positive colocalizations. Indeed, a significant fraction of mRNA is then 
brought to microtubules, including non-specific mRNA targets of the bait protein. As a result, other 
RNA-binding proteins which do not colocalize with the bait protein under physiological conditions may 
be brought to microtubules artificially. To quantify such bias and discard false positive colocalizations, 
the spearman coefficient was measured in cells expressing both bait and prey proteins at varying levels 
(Fig.  4A,B). For both YB-1-RFP-Tau, Lin28-RFP-Tau and G3BP-RFP-Tau, the results indicate that the 
spearman coefficient increases gradually with the bait expression levels. At the highest expression levels 
of YB-1-RFP-Tau, the differences in the measured spearman coefficients between the three prey proteins 
are less marked than at low bait expression levels (Fig. 4B). This was expected on the basis of the mas-
sive binding of mRNA on microtubules after expressing YB-1-RFP-Tau at high levels (Fig. 2B). In line 
with this, when RFP-Tau alone was used as a control, which thus does not bring mRNA to microtubules 
(Fig. 4A), colocalization between YB-1-GFP and Tau-RFP remains insignificant whatever the expression 
level of RFP-Tau (Fig. 4B).

To avoid the bias induced by expressing the bait protein at high levels, we decided to estimate the 
spearman coefficient when the expression level of the bait protein is virtually zero, which corresponds 
to conditions found in unperturbed cells. The value of the spearman coefficients in the virtual absence 
of bait protein were then extrapolated from the plots of the spearman coefficient versus bait expression 
level (Fig. 4B). This analysis shows that, in unperturbed cells, YB-1-RFP-Tau significantly interacts with 
YB-1-GFP, moderately with Lin28-GFP and poorly with G3BP1-GFP.

Protein interactions can be detected during microtubule regrowth after nocodazole washout.  
So far the series of experiments show that the preys, whatever they are mRNA or mRNA-binding proteins, 
can be brought onto the microtubule surface when a bait protein is intentionally located on microtubules. 
However, even by using the N-terminal domain of Tau as spacer, the vicinity of the microtubule surface 
may hinder native interactions between bait and prey. To overcome this possible bias, we monitored 
microtubule disassembly/assembly by using reversible microtubule-destabilizing drugs like nocodazole 
or through cold treatment. Indeed, inducing microtubule disassembly/assembly opens the opportunity to 
let the bait-prey partner interact freely in the cytoplasm for a chosen time interval. The bait-prey couple 
can then be again attracted to nascent microtubules when conditions for microtubule assembly are again 
favorable. As a proof of concept, microtubules were first depolymerized in the presence of nocodazole 
and microtubule regrowth was then triggered after nocodazole washout. Using YB-1-RFP-Tau as bait 
and YB-1-GFP as prey, we then detected the presence of both bait and prey proteins on growing micro-
tubules (Fig. 5A). Time-lapse images and videos (Fig. 5B and video 3) do not reveal any delay between 
the appearance of YB-1-RFP-Tau and that of YB-1-GFP on microtubules.

Cx43 interacts on microtubules with a truncated form of Cx43, used as bait. We also tested 
whether the domain of application of the present method can be extended to proteins other than 
RNA-binding proteins. Cx43, a membrane protein and a member of the connexin family, was chosen 
because it can oligomerize into hexamers at the cell membrane to form gap junctions. Here we used as 
bait protein a truncated form of Cx43, DeltaCx43, in which part of the N-terminal domain has been 
removed (amino acids 1-146). This truncated form contains two transmembrane helices but doesn’t form 
gap junctions25 and thus was easily brought to microtubules after fusing it to Tau (Fig.  6A). We then 
probed whether DeltaCx43-Tau, used as bait, interacts with the full length Cx43-GFP on microtubules. 
In epithelial NRK cells, Cx43-GFP was located at the cell membrane and formed gap junctions (Fig. 6A). 
Interestingly, when NRK cells expressed the bait protein, DeltaCx43-Tau, Cx43-GFP was also found on 
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microtubules (Fig. 6B). The presence of CX43-GFP on microtubules should thus result from an interac-
tion between DeltaCx43 and Cx43-GFP, probably through their transmembrane helices26. As a negative 
control, we used Claudin-10 (CLDN10), a member of the Claudin family27, which forms tight junction at 
the interface between cells. CLDN10 is not known to interact with Cx43. In line with this, CLDN10-GFP 
was found at the cell membrane and failed to colocalize with DeltaCx43-Tau on microtubules.

Altogether, the results show that the present method is particularly suitable to screen putative part-
ners of proteins having a diffuse cytoplasmic distribution. Albeit it may also apply to proteins having a 
non-diffuse cytoplasmic distribution and to non-cytoplasmic proteins, careful attention should be paid 
to avoid false positives induced by changing the natural location of proteins. In addition, only cells 
expressing bait protein at low level should be taken into account to avoid considering nonspecific inter-
actions as stressed by statistical approach (Fig. 4). Further developments may concern the combination 
of this method with fluorescence energy transfer FRET28 or split-GFP6 in order to determine whether the 
interactions taking place on the microtubule platform are direct. High throughput data can be possibly 
collected using this method but requires optimal lateral resolution with oil-immersed lenses to clearly 
distinguish microtubules in both fixed and living cells.

Figure 4. Statistical analysis of the colocalization events detected on microtubules. (A) 2D plot 
representing the spearman coefficient versus bait and prey expression levels. Each data point represents the 
mean value obtained on three different areas in the same cell. The color scale bar indicates the value of the 
spearman coefficient for each data point in the 2D plot. (B) 2D plot representing the spearman coefficient 
versus bait expression level. The value of the spearman coefficient when the bait expression level is virtually 
zero was then extrapolated using linear curve fitting. The bar plot represents the spearman coefficients 
extrapolated at the zero bait expression level. Results are means ±  SD and were obtained from least square 
interpolation of the experimental data points (n ≥  19 cells). **P <  0.01, *P <  0.05, two-tailed t test.
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Materials and Methods
Cell culture. HeLa and NRK cells (Normal Rat Kidney cells) were obtained from the American Type 
Culture Collections (ATCC) and cultured at 37 °C in a humidified atmosphere with 5% CO2 in DMEM 
(Life Technologies) supplemented with 5% FBS (Life Technologies). Cells were grown on 12 mm round 
coverslips inside 24-well plates and were transfected with 2 μ g of indicated DNA plasmids by using 
Lipofectamine 2000 (Invitrogen). For videomicroscopy, cells were cultured on glass bottom dishes 
(MatKek Corporation). The efficiency of transfection and the integrity of the encoded proteins were 
controlled by immunoblotting experiments (Supplementary Figure S1B).

Molecular biology and plasmid preparation. The bait protein was fused to the longest isoform of 
the human Tau protein (Accession number: NP_005901.2) which has the longest N-terminal projection 
domain. The projection domain can possibly favor bait accessibility to preys. To explore this hypothesis, 
a truncated form of Tau was generated by removing the first 170 amino acids of the N-terminal tail of 
Tau. The Tau cDNA containing at its 5′ end the PacI, AscI and SphI restriction sites was amplified by 
PCR and inserted into the Gateway pCR8/GW/TOPO entry plasmid (Invitrogen™ ). The resulting plas-
mid will be mentioned hereafter as the “backbone entry plasmid”. Human YB-1, G3BP1, Lin28 (Lin28a) 
and DeltaCx43 cDNAs were amplified by PCR using primers containing the PacI and AscI restriction 
sites and then inserted into the pCR-Blunt II-TOPO plasmid (Invitrogen™ ). GFP or RFP cDNAs were 
amplified by PCR using primers containing the AscI and SphI restriction sites and then inserted into the 
pCR-Blunt II-TOPO plasmid (Invitrogen™ ) using standard protocols. The plasmids containing all the 
above mentioned cDNAs were propagated and purified by Thermo Scientific Mini Kit (reference K0503) 
and the inserted cDNAs were verified by sequencing. Human YB-1, G3BP1, Lin28 and DeltaCx43 cDNAs 

Figure 5. Detection of protein interaction in growing microtubules. (A) Upper panel: Re-growth of 
microtubules after nocodazole wash-out leads to the appearance of microtubule structures in both bait 
and prey time-lapse images. Scale bar: 15 μ m. Lower panel: the line profile represents the fluorescence 
intensity along the dashed line (see upper panel) at two different times. Arrows indicate the position of 
five microtubules in the line profile at t =  6′ . (B) Time-lapse imaging of the reforming microtubules after 
nocodazole wash-out. We noticed the simultaneous presence of YB-1-GFP and YB-1-RFP-Tau on dynamical 
microtubules. See also video 3.
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inserted into the pCR-Blunt II-TOPO plasmid were digested with PacI and AscI. GFP and RFP cDNAs 
inserted into pCRBlunt II-TOPO plasmid were digested with AscI and SphI. Ligation was performed 
in order to insert the above mentioned cDNA sequences into the backbone entry plasmid, previously 
digested with the same restriction enzymes (PacI, AscI and SphI).

The following entry plasmids were then generated:
RFP-Tau-pCR8/GW/TOPO, YB-1-RFP-Tau-pCR8/GW/TOPO, G3BP1-RFP-Tau-pCR8/GW/TOPO, 

Lin28-RFP-Tau-pCR8/GW/TOPO, DeltaCx43-Tau-pCR8/GW/TOPO.
The LR recombination reactions (Invitrogen™ ) were performed according to the manufacturer’s pro-

tocol in order to transfer the cDNAs of interest from the backbone entry plasmids into the Gateway®  

Figure 6. Interactions between membrane proteins on a microtubule bench. (A) Spatial distribution of 
Cx43-GFP, CLDN10-GFP (Claudin-10) and DeltaCx43-Tau (amino acids 147–382 of Cx43) in NRK cells. 
Both Cx43-GFP and CLDN10-GFP are located at the cell membrane interface. We also noticed that Cx43-
GFP forms large gap junction plaques between cells. DeltaCx43-Tau was located on microtubules and can 
thus be used as bait protein. Anti-Tau was used to detect DeltaCx43-tau. Scale bar: 30 μ m. (B) Fluorescence 
imaging of NRK cells expressing DeltaCx43-Tau, the truncated form of Cx43, and either Cx43-GFP or 
CLDN10-GFP. DeltaCx43-Tau, used as bait, is clearly brought to microtubules. Higher magnification images 
reveal the presence of Cx43-GFP on microtubules. In contrast, CLDN10-GFP does not colocalize with 
DeltaCx43-Tau on microtubules under similar conditions. NRK cells were stained with anti-Tau antibody 
to reveal the presence of DeltaCx43-Tau. Scale bar: 30 μ m. (C) Representative line profiles reveal the spatial 
correlation between Cx43-GFP and DeltaCx43-Tau on microtubules. However, no spatial correlation was 
observed between CLDN10-GFP and DeltaCx43-Tau.
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pEF-Dest51 plasmid (Invitrogen™ ) suitable for protein expression in eukaryotic cells. Finally, the follow-
ing expression plasmids were also generated:

RFP-Tau-pEF-Dest51, YB-1-RFP-Tau-pEF-Dest51, Lin28-RFP-Tau-pEF-Dest51, G3BP1-RFP-Tau- 
pEF-Dest51. DeltaCx43-Tau-pEF-Dest51.

For the preparation of the GFP-constructs, human YB-1, G3BP1, Lin28 (Lin28a), Cx43 and CLDN10 
(isoform B) cDNAs were amplified by PCR and inserted into the pEGFP-N1 plasmid (Clontech). The 
inserted cDNAs were verified by sequencing. The double Y72A/F74A YB-1 mutant was obtained via 
site-directed mutagenesis.

Fixed cell preparation. Cells growing on glass coverslips were washed with PBS, fixed with ice-cold 
methanol for 30 min at −20 °C, washed with PBS and then further fixed with 4% paraformaldehyde 
(PFA) in PBS for 45 min at 37 °C. This double Methanol/PFA fixation was preferred as it best reveals 
microtubule structures and colocalization events (Supplementary Figure S5). After final washes with PBS, 
samples were prepared for fluorescence microscopy imaging.

Videomicroscopy of living cells. Cells were transiently transfected with the indicated expression 
plasmids and then cultured for 24 h before real-time monitoring of microtubule dynamics. Fluorescence 
videomicroscopy was implemented on an inverted microscope (Axiovert 220; Carl Zeiss 5 MicroImaging, 
Inc). GFP and (or) RFP emission was detected with a 63×/1.4 NA objective. Time-lapse images were cap-
tured at indicated time intervals using a cooled CCD camera (Zeiss).

Image analysis and Statistics. Cells were co-transfected and analyzed after 36 h when expressing 
both bait and prey tagged with two different fluorescent labels, RFP and GFP, respectively. Only cells with 
a healthy appearance were selected for the statistics. In the case of cells expressing G3BP1-GFP, cells dis-
playing stress granules were discarded. This occurs at high expression level of G3BP1-GFP. We also paid 
attention to obtain optimal resolution conditions and to select cells in which microtubules were clearly 
distinguished using the bait’s fluorescence as the signal. For the same series of experiment, we used the 
same objective lens (100 ×  /1.4 NA or 65 ×  /1.4 NA for fixed and living cells respectively). At this stage, 
we analyzed whether, although using achromatic lenses, the red and green images were not shifted with 
respect to each other. Such shift, if any, can be corrected using the ImageJ’s Plug-In, “Align RGB planes” 
(Supplementary Figure S6). To quantify the colocalization level between a protein bait fused to Tau and 
putative protein preys, we adapted a method previously described16. Both images were then filtered using 
a FFT high pass filter to remove spatial frequencies which are not relevant to microtubule structures 
(larger structures than 2 μ m). Images of the bait and the prey were then merged into a single green-red 
image. Then, the ImageJ’s plug-in, “PSC Colocalization”, was used to measure the spearman’s coefficient, 
in three different regions of interest (ROI) for the same cell where microtubules were clearly observed 
in the bait image (Supplementary Figure S6). The area of the ROI was fixed to avoid any bias due to the 
surface considered to measure the correlation coefficient. We controlled that all the experimental results 
presented in this article were reproducible by performing each experiment in triplicate. To extrapolate 
the value of the spearman coefficient at the zero expression level of the protein bait, we used the least 
square method and a linear curve fitting.

Microtubule regrowth assay. Cells were placed on ice for 30 min to totally dissociate microtu-
bules into tubulin heterodimers and then warmed-up at 37 °C in the presence of 300 nM nocodazole. 
Nocodazole was then washed out from the culture medium. After nocodazole removal, de novo micro-
tubule elongation started from the centrosomal area.

RNA hybridization in situ. In situ hybridization was performed to reveal Poly(A) mRNA 
and the 40S or 80S ribosomal subunits in HeLa cells as follows. Cells were fixed with cold metha-
nol and then with PFA at 37 °C. Cells were incubated with 100% ice-cold methanol for 15 min-
utes at −20 °C, after that in ice-cold 70% ethanol for 10 minutes at −20 °C, and then 1 M Tris pH 
8 for 5 minutes, before addition of a Cy2-conjugated oligonucleotides (Sigma) at 1 μ g/μ L in the 
hybridization buffer (0.005% BSA, 1 mg/mL yeast RNA, 10% dextran sulphate, 25% formamide 
in 2XSSC). 40 nucleotides Poly(T), 5′-AAGGATTTAA-AGTGGACTCATTCCAATTAC and 
5′GGAT-TCTGACTTAGAGGCGTTCAGTCATAA probes, were used to detect mRNA and the 18S 
(40S subunit) and 28S (80S subunit) rRNA in cells respectively. Slides were then placed in a humidity 
chamber for 1 h at 37 °C with gentle shaking. Following hybridization, cells were washed twice with 4X 
SSC and once with 2XSSC.

Pull down assays. The co-immunoprecipitation assays were performed using Dynabeads®  Protein G 
Kit (Invitrogen, cat n° 10007D). HeLa cells were transiently transfected with YB-1-GFP, Lin28-GFP and 
GFP as a control. After 24h the cells were rinsed with ice-cold PBS, incubated on ice in cell lysis buffer 
(25mM Tris, 150mM NaCl, 1mM EDTA, complete Protease Inhibitor Cocktail and 1% Triton-X, pH 7.4) 
for 15 minutes, then scraped off the plates and centrifuged for 20 minutes at 15,000 ×  g, 4 °C. Aliquots of 
25 μ L of the whole cell lysate (WCL) of YB-1-GFP, Lin28-GFP and GFP were analyzed by Western blot-
ting. 200 μ L of cell lysate (1mg/ml proteins content), 2 μ g mouse antiGFP primary antibody (ROCHE,  
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11814460001) and 50 μ L Dynabeads®  Protein G were mixed and incubated with gentle rocking overnight 
at 4 °C. The next day, the Dynabeads-Ab-Ag complexes were washed once with 200 μ L lysis buffer, twice 
with 200 μ L washing buffer (Citrate-Phosphate buffer, pH 5.0), then resuspended in 100 μ L washing 
buffer and transferred to clean tubes in order to avoid co-elution of proteins bound to the tube wall. The 
Target Antigens (YB-1-GFP, Lin28-GFP and GFP) were eluted in 20 μ L of elution buffer (0.1 M citrate, 
pH 2-3) and the pH of the eluates was adjusted by adding 1 M Tris, pH 7.5.

Endogenous YB-1 and G3BP1 were detected using anti-YB-1 and anti-G3BP1 (Sigma-Aldrich, G6046) 
antibodies. Anti-GFP (Thermo Scientific, PA1-980A) was used to detect YB-1-GFP and Lin28-GFP. 
Lin28 is not expressed endogenously in HeLa cells. The Precision Plus Protein Kaleidoscope standards 
(Bio-Rad, 161-0375) was used to determine the molecular weights of the following proteins: endogenous 
YB-1 and G3BP1, YB-1-GFP and Lin28-GFP.
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