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Abstract A numerical approach combining the Monte

Carlo (MC) and the finite element method (FEM) is devel-

oped and applied to investigate the mechanical performance

of layered composites. We consider a simplified two-

dimensional layered composite model and mainly focus on

the stress response with the effects of the grain orientation,

grain boundary properties, and the laminated topological

structure. The stress distribution in the materials is heteroge-

neous in each individual layer because of grain orientation.

The stress level in the hard layers is higher than that in

the soft layers from the point of view of global stress dis-

tribution. The average stress changes with the inner layer

thickness and the number of layers. The average stress

increases almost linearly with the modulus ratio for the

homogeneous materials, whereas it is nonlinear for the

heterogeneous polycrystalline layered materials.
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1 Introduction

Layered composites, especially layered ceramics, are con-

sidered to be a very promising material for different engi-

neering applications because of their excellent mechanical

properties such as high hardness, high strength, and high

fracture toughness, instead of a catastrophic fracture behav-

ior like monolithic ceramics. Therefore, many experimental

studies have focused on manufacturing materials with opti-

mal properties by designing different compositions and

alternative geometry parameters including the number of

layers and the layer thickness ratios [1–5]. Usually, the lay-

ered ceramics can be prepared by several methods: tape

casting, slip casting, rolling, and extrusion, followed by

sintering. Generally speaking, the obtained materials are

homogeneous in each individual layer in a macroscale but

are polycrystalline in a microscale. As we know, the grain

structure is an important microstructural feature of a mate-

rial, which will greatly affect the mechanical properties such

as strength and toughness. During the last few decades,

many researchers have made great efforts in the study of

microstructure evolution by numerical simulation methods

such as cellular automaton [6, 7], phase field [8], and Monte

Carlo (MC) [9] methods.

At present, the MC method is one of the most pop-

ular methods owing to its simplicity and flexibility and

has been applied to obtain the microstructure evolution

[10–14]. Anderson and Srolovitz [15, 16] first applied the

Potts model to simulate the two-dimensional grain growth.

Currently, the MC method and the modified MC method
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Fig. 1 A section illustration of typical multilayered composite

materials

have been widely used in the simulation of solid-state sinter-

ing process for ceramic tool materials [17–19]. In addition,

Guan et al. [20] built a geometrical tricrystal model with one

cavity at the point where three crystal boundaries intersect

and analyzed the stress distribution of the polycrystalline

material by using the finite element method (FEM) soft-

ware ABAQUS. Vedula et al. [21] predicted the residual

stresses in polycrystalline alumina samples using experi-

mentally determined grain orientations and object-oriented

finite element analysis. A micro-macro method based on

MC and FEM was proposed by Mori et al. [22] to simulate a

sintering process of ceramic powder compacts. How-

ever, the underlying microstructure morphology is often

neglected in simulation of layered composites. In our pre-

vious work [23], the numerical simulation was success-

fully applied by combining MC and FEM to perform the

stress analysis of the polycrystalline materials during the

microstructure evolution, and we found that the average

stress and the grain size agree well with the Hall-Petch rela-

tion when the properties of the grain boundaries are taken

into account.

The present study aims to investigate the mechanical

performance of layered composites, together with polycrys-

talline microstructures and alternative geometry parameters.

After a brief description of the computational methods about

MC techniques and finite element method in Section 2, we

show the calculated results including microstructure evolu-

tion of grain growth and the stress distribution of layered

materials in Section 3. The main conclusions are presented

in Section 4.

2 Simulation Methods

In this paper, we consider a layered composite consisting

of N layers that are alternatively designed and perfectly

bonded at the interfaces. For the sake of simplicity, a 2D

problem is involved here, and the schematic of layered

materials is shown in Fig. 1.

Fig. 2 Flow chart of MC

simulation for microstructure

evolution
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Fig. 3 Grain orientation [23]

2.1 Monte Carlo Simulation

In the MC approach for microstructure evolution simulation,

a 2D continuum microstructure is mapped onto a discretized

domain that composes a set of N1 × N2 square lattice grids.

The state of the lattice grid is represented by a random orien-

tation number q between 1 and the total orientation number

Q. In this paper, the value of Q is 48, so the orientation

angle between two grains above 7.5◦ can be distinguished.

There are eight neighbors including the second nearest ones

at most for each lattice grid. The adjacent lattice grid with

the same state will form a grain. The grain area, A, is the

number of lattice grids within one grain. The grain size (R)

and the mean grain size (〈R〉) are defined by R =
√

A and

〈R〉 =
√

N
Ngrain

[24], respectively, where, N is the total num-

ber of lattice grids, and Ngrain is the number of grains of the

microstructure.

During the microstructure evolution, the grain boundary

migration is driven by the local interaction energy variation

�E with a probability of reorientation P , which is defined

as

P =
{

1, �E ≤ 0

exp (−�E/kBT ) , �E > 0
, (1)

where kB is the Boltzmann constant, and T is the tempera-

ture. The local interaction energy, Eloc, as a function of the

grain misorientation across the boundary is calculated using

Fig. 4 A GUI of PCLab/GrainStress software package
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Fig. 5 Flow diagram of the software

the Hamiltonian, which sums the interfacial energy of the

neighbor grids:

Eloc =
n

∑

j=1

V (1 − δqiqj
), (2)

where δ is the Kronecker’s delta function, qi and qj denotes

the orientation number of the neighboring grids i and j , and

n is the total number of the nearest neighbor grids. The grain

boundary energy V , derived by Read and Shockley [25], is

specified by defining an interaction between nearest neigh-

bor grids, and it depends on the misorientation parameter,

θ∗, above which grain boundaries are considered to be high

angle and a positive constant, J , which sets the scales of the

grain boundary energy. V (θ) is given as follows:

V (θ) =
{

J θ ′

θ∗ [1 − ln( θ ′

θ∗ )], θ ′ < θ∗

J, θ ′ ≥ θ∗ (3)

where θ ′ =
{

|θ | , 0 ≤ |θ | ≤ π

2π − |θ | , π ≤ |θ | ≤ 2π
, θ = 2π(qi −

qj )/Q

More details on MC technique can be found in our previ-

ous paper [23]. The energy gradient due to the mismatches

in Young’s modulus and thermal gradients would also affect

the grain size distribution. In order to simplify the assump-

tions, these contributions are not to be included in the MC

model.

Figure 2 shows the flow chart of MC simulation for

microstructure evolution. The simulation time is measured

in terms of a Monte Carlo step (MCS). Each MCS repeats

the procedure to judge the reorientation attempts for all the

N1 × N2 lattice grids.

2.2 Finite Element Analysis

For the sake of simplicity, a cross section of a linearly elastic

material is taken into account. The fundamental equations

of elasticity theory including equilibrium equations, kine-

matics equations, and constitutive equations, which have

been described in detail in Ref. [23], are applied for the

numerical computation of mechanical behaviors of layered

composites. A plane strain problem neglecting body forces

is considered here. The 2D finite element model corre-

sponding to the microstructure is utilized for the numerical

mechanical analysis. The four-node linear element is used in

the analysis, and the nodes correspond to the grids obtained

by the MC technique. The finite element equation is shown

as follows:

Ku = P, (4)

where u is the unknown vector of global nodal displace-

ment, K is the global stiffness matrix assembled by the

element stiffness matrix Ke, and P is the global load vector.

The element stiffness matrix Ke is given by

Ke =
∫

Ve

BTDBdV, (5)

where B is the strain matrix, and D is the elasticity matrix,

which will be transformed by taking into account the grain

orientation. Supposing D and D′ represent elastic tensors in

the global coordinate system and the local coordinate sys-

tem, respectively, the following can be obtained D=QT D′Q,

where Q is the transformation matrix written as [26]

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

l2
1 m2

1 n2
1 2l1m1 2m1n1 2n1l1

l2
2 m2

2 n2
2 2l2m2 2m2n2 2n2l2

l2
3 m2

3 n2
3 2l3m3 2m3n3 2n3l3

l1l2 m1m2 n1n2 l1m2 + l2m1 m1n2 + m2n1 n1l2 + n2l1

l2l3 m2m3 n2n3 l2m3 + l3m2 m2n3 + m3n2 n2l3 + n3l2

l3l1 m3m1 n3n1 l3m1 + l1m3 m3n1 + m1n3 n3l1 + n1l3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

Fig. 6 Mesh of a three-layered composite with layer thickness ratio

of 1:1:1
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Fig. 7 Overview of the layered

structures: a homogeneous—

without boundary and b

heterogeneous—with

boundaries between grains

with li , mi , ni being directional cosines of three axes of the

local coordinate system with respect to the global coordinate

system. In the manuscript, let oxy be a global coordinate

system and o12 be a local coordinate system, and the grain

orientation θ is shown in Fig. 3 in two dimensions, and the

transformation matrix for the 2D finite element model is

[23]:

Q =

⎡

⎣

cos2 θ sin2 θ 2 sin θ cos θ

sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ

⎤

⎦ . (7)

with θ being the orientation angle.

The mechanical properties of microheterogeneous mate-

rials are characterized by a spatially variable elasticity ten-

sor C. Typically, to characterize the homogenized effective

macroscopic response of such materials, a relation between

averages is given by

〈σ 〉 = C∗ : 〈ε〉, (8)

where the quantity C∗ is the elasticity tensor defined within

the domain �. The average stress 〈σ 〉 and the average strain

〈ε〉 are defined by

〈σ 〉 =
1

|�|

∫

�

σd�, 〈ε〉 =
1

|�|

∫

�

εd�. (9)

3 Numerical Results and Discussion

The algorithms mentioned previously have been imple-

mented into an in-house software platform OMT (Objected

and Methodological Technology), and a software named

PCLab/GrainStress (Particle Cloud Laboratory/Grain

Stress) is especially developed to simulate the grain growth

process using MC method and to perform stress analysis

of the microstructure with FEM (Fig. 4). This software is

written using the object-oriented programming language

C++, and the flow diagram is shown in Fig. 5. There are

mainly two procedures, namely the Monte Carlo simula-

tion module and the finite element stress analysis module.

After each MC step, the microstructure and the analysis

data including grid orientations, mean grain size, number

of grains, and simulation time (MCS) are recorded in files.

The microstructure distributions are different at each MC

step, and the grains grow larger as the simulation time as a

whole. The structures with different microstructure distri-

butions will exhibit different mechanical performance. So

we investigated the stress distribution after finishing all the

MC steps simulation. Several numerical tests are carried

out to investigate the effects of the microstructure and the

geometry parameters on the mechanical performance of

layered materials. Part of the results is displayed by the

postprocessing software FERView [27].

Fig. 8 The microstructure

evolution of a three-layer

material obtained by MC: a

100 MCS, b 500 MCS and c

900 MCS
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Fig. 9 The TEM (transmission electron microscope) micrograph of

Si3N4 layered material

3.1 The Layered Material Structure

For the multilayer composite materials (Fig. 1), the total

thickness of specimen of rectangular cross section is H =
0.01 m, its total width is L = 0.01 m, and the total number

of layers is N . The model is applied with a given displace-

ment u = 0.002 L on the right boundary. Ei and νi are

the Young’s modulus and Poisson ratio of the ith layer in

macroscopic scale, respectively. In this work, the material

to be considered consists of N layers with alternative layers

of A and B; Ei = EA, νi = νA for odd layer, and Ei = EB,

νi = νB for even layer. For numerical tests, we assume that

EA = 300 GPa, EB = 150 GPa, and νA = νB = 0.2.

The four-node element, whose nodes are associated with the

microstructure grids obtained by MC simulation, is applied

in the stress analysis. Generally, the layered composites can

be designed with different number of layers, different layer

thickness ratio, and different layer thickness. Figure 6 shows

the mesh of a three-layered composite with identical layer

thickness.

Usually, there are relatively thin boundaries between

grains in the materials. Thus, the overview of the layered

material structure is shown in Fig. 7. Actually, the effects

of grain boundary, such as strengthen or weaken effects,

play important roles in the mechanical performance of the

microstructure. In the finite element analysis, as proposed

in the previous work [23], we considered a grain boundary

between two grains and assigned it to be another material.

The grain boundaries are composed of the elements whose

nodes have different orientations. That is to say, if the orien-

tations of the four nodes of an element are not the same, the

element belongs to a grain boundary. It is easy to assign the

properties of the grain boundary, such as Young’s modulus

and Poisson’s ratio, to study the effects of the grain bound-

aries. In this paper, we mainly focus on the stress response

of a layered material with grain boundary (Fig. 7b), com-

paring that of a layered material with homogeneous layer

(Fig. 7a). To view the simulation results quantitatively, the

mean grain size and the average stress are calculated in the

following subsections.

3.2 Microstructure Evolution of Grain Growth

For layered composites, it is assumed that the grains

grow up independently in each individual layer, and the

microstructure can be obtained layer by layer using MC

simulation. The “pinning” of the grain boundaries to the
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Fig. 11 Stress distribution

along the x direction of a three-

layer material: a heterogeneous,

MCS = 500, and b homogeneous

underlying lattice is an inherent feature common to all

curvature driven, Q-state Monte Carlo methods. Since the

effect is nonphysical, in practice, it has prompted the devel-

opment of two primary mitigation strategies. The first

method involves the augmentation of nearest neighbor inter-

actions to include second-order interactions, and the second

method involves an increase in the simulation temperature

(kBT ) in order to activate thermal fluctuations that serve to

provide numerical asperities along grain boundaries [28].

During the MC simulation in this study, a grid with second

nearest neighbors is taken into account. A sintering temper-

ature 1773 K is selected to the simulation temperature; the

positive constant J is set to be 1 and 2 for the outer and

inner layers, respectively; and θ∗ is set to 0.3π and 0.4π for

the outer and inner layers, respectively.

Microstructure evolution of grain growth of a three-

layer material for different simulation times is shown in

Fig. 8, where different color regions indicate the grains with

different orientations. Figure 9 shows the micrograph of as-

received Si3N4 layered material and numerous grains are

easy to be recognized. The grain rotation coalescence can be

found from the results, which was indicated in the previous

work [23]. During the evolution, some grains significantly

shrink, and some grains grow at the same time.

Figure 10 is the relationship between mean grain size 〈R〉
and simulation time tMCS, which shows that the mean grain

size increases from about 3.0 at 100 MCS to about 9.0 at

3000 MCS.

3.3 Stress Distribution of Microstructure-based

Multilayer Composite Materials

Figure 11a shows the corresponding stress distribution

along the x direction of a three-layer material, taking

account of microstructure effects (see Fig. 8 obtained

by MC techniques described in Subsection 2.1), whereas

Fig. 11b shows that of a homogeneous material. It is obvi-

ous that the stress distribution in Fig. 11a is heterogeneous

in each individual layer because of grain orientation, but it

is homogeneous in Fig. 11b without considering the grain

orientation. In addition, the material is formed with alter-

native layers of the hard layer (with high modulus EA)

and the soft one (with low modulus EB). It can be seen

that from the global stress distribution point of view, the

stress level in the hard layers is higher than that in the soft

layers.

Figure 12 shows the average stress along the x direction

versus the mean grain size of a layered material with grain

boundary. The average stress linearly increases to the minus

square root of the mean grain size when the modulus ratios

are smaller than 2, and it coincides with the conclusion of

polycrystalline materials with weaken boundary effect in

the previous work [23]. The average stress decreases with

the minus square root of the mean grain size, indicating

with strengthen boundary effect when the modulus ratios

are larger than 2.
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of a three-layer material with grain boundary for different modulus

ratios

7



Fig. 13 Stress distribution

along the x direction of a

three-layer material with

different thickness ratios: a

1:2:1 and b 2:1:2

3.4 The Effects of the Geometry Parameters on the

Mechanical Performance

3.4.1 The Effects of Different Layer Thickness Ratio

Two different kinds of layer thickness ratios of a three-

layer material, 1:2:1 and 2:1:2, are considered here.

Figure 13 shows the corresponding stress distribution along

the x direction with the above-specified layer thickness

ratios. The stress distributions are both heterogeneous in

these two materials, and the magnitudes are different with

each other. For the former case, the maximum and mini-

mum stresses are about 1.15 GPa and 140 MPa, respectively.

For the latter case, the maximum and minimum stresses are

about 1.25 GPa and 172 MPa, respectively.

The average stress along the x direction versus four kinds

of layer thickness ratios (2:1:2, 1:1:1, 1:2:1, and 1:3:1) for

the materials with different modulus ratios (EB : EA =
1
5
, 1

2
, 1, 2, 3, 4) is shown in Fig. 14. Notice that the aver-

age stress increases with the inner layer thickness when

the modulus ratios are above 2, whereas the average stress

decreases with the inner layer thickness when the modulus

ratios are below 1. This is the result of the volumetric effect

of the hard layer(s) in the composite materials.

3.4.2 The Effects of the Different Number of Layers

Four kinds of layer number, 3, 5, 7, and 9, are consid-

ered here. The corresponding stress distributions along the x

direction with two kinds of layer number, 5 and 7, are shown

in Fig. 15. The microstructure distributions are different at

each MC step, and the grains grow larger as the simulation

time as a whole. The structures with different microstructure

distributions will exhibit different mechanical performance.

After finishing all the MC steps simulation, we investigated

the stress distribution. We imported the input data for the

FEM model from the files which are built in MC procedures,

calculated the stress distribution for each output MCS, and

obtained the average stress along the x direction. Then, we

plot the results, and the relation between the average stress

versus simulation time is obtained. Figure 16 with two sub-

figures shows the average stress along the x direction versus

the simulation time for the materials with four different

layers. These two subfigures represent the two cases of dif-

ferent stacking sequence. It can be indicated that the average

stress decreases with simulation time, no matter what the

stacking sequence is. For the case of the outer hard layer,

the stress decreases with the number of layers (Fig. 16a),

whereas it increases for the case of the outer soft layer (Fig.

16b).

3.4.3 The Effects of Different Modulus Ratios

The modulus ratios of inner layer to outer layer, nine case

studies in total, are set, that is, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1,

3:1, 4:1, and 5:1 for each test, whereas other features remain

unchanged. The results of the simulation are presented in

Fig. 17, where the average stress-modulus ratio curves of
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2
, 1, 2, 3, 4)
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Fig. 15 Stress distribution

along the x direction of a

layered material with different

number of layers (considering

grain boundaries): a five layers

and b seven layers

homogeneous and heterogeneous layered materials are plot-

ted in Figs. 17a, b, respectively. From these figures, it

is clear that the average stress increases almost linearly
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composite materials are lower than those of the homoge-

neous ones in some cases. For example, the average stress

of the homogeneous composite material with the layer ratio

of 1:1:1 and the modulus ratio of 5 is more than 1400 MPa,

while the average stress of the heterogeneous one with the

same layer thickness is about 1000 MPa. That is mainly

caused by the grain boundaries and the grain orientation.

4 Conclusions

A grain growth simulation with MC and a microstructure-

based FEM approaches have been presented for two-

dimensional mechanical analysis of layered composites.

The microstructure evolution and the stress distribution have

been analyzed in terms of the mean grain size and the aver-

age stress of layered materials. The grains nonlinearly grow

with the MCS. The stress distribution in the materials is

heterogeneous in each individual layer because of grain ori-

entation, and the stress level in the hard layers is higher

than that in the soft layers from the global stress distribu-

tion point of view. The average stress increases with the

inner layer thickness when the modulus ratios are above 2,

whereas it decreases when the modulus ratios are below 1.

For the case of the outer hard layer, the stress decreases

with the number of layers, whereas it increases for the case

of the outer soft layer. The average stress increases almost

linearly as modulus ratios for the homogeneous material,

whereas it is nonlinear to the modulus ratios for the mate-

rials with heterogeneous microstructures. It is therefore

possible to tune the stress distribution by varying the grain

size, the layer thickness ratio, the number of layers, and the

modulus ratios. A software package, PCLab/GrainStress,

for the grain growth process and stress analysis will

provide an efficient tool for faster material design and

application.
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