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This paper is devoted to study the non-associated constitutive law of soil materials and to construct a bi-potential for the classical Drucker-Prager (D-P) plastic model. It can be proved that the bi-potential not only satisfies the constitutive relationship of the D-P model, but also conforms to the non-associated flow rule. We present the relevant algorithms for the integration of soil constitutive equations. Two simple numerical examples illustrate the rationality of the bi-potential theory and the feasibility of its algorithm.

Introduction

Material nonlinearity plays an important role in solid mechanics. The rationality and accuracy of material nonlinearity theory are the basis of theoretical analysis and simulation of materials and structures. For classical materials such as metal, the yield potential is associated with the flow potential. Its theory is relatively well established. But for the non-associated materials such as soils, the yield potential is different from the flow one. Conventional model uses two independent functions to express the potentials [START_REF] Zienkiewicz | The Finite Element Method[END_REF]. Nowadays, the theory on associated materials is relatively well established and its simulation becomes mature. The return-mapping algorithm is a widely accepted and applied method to integrate constitutive laws of associated materials [START_REF] Simo | Computational Inelasticity[END_REF]. For non-associated materials, the yield potential is different from the flow one. De Saxcé uses Legendre transformation to deal with this kind of laws [START_REF] De Saxcé | A generalization of Fenchel's inequality and its applications to the constitutive law[END_REF]. The bi-potential theory is put forward in [START_REF] Hanafi | Construction of a bipotential representing a linear non-associated constitutive law[END_REF] and the theory is applied to the non-associated material successfully. In [START_REF] Berga | Mathematical and numerical modeling of the non-associated plasticity of soils-Part 1: The boundary value problem[END_REF] and [START_REF] Bouby | A comparison between analytical calculations of the shakedown load by the bipotential approach and step-by-step computations for elastoplastic materials with nonlinear kinematic hardening[END_REF], the bi-potential function has been proved to be able to express the flow rule of soils more clearly. The bi-potential theory is suitable to solve the set problems and can be used to build the constitutive laws of non-associate materials. Material like soils is a kind of non-associated materials, whose mechanical behavior is very complex. This paper summarizes previous relevant works, choosing the classical three-parameter soil D-P model to build its constitutive relationship under within the bi-potential framework. This theory leads to a simple and efficient algorithm for the numerical integration of non-associated constitutive laws.

II. D-P model

The D-P model is given in [START_REF] Drucker | Soil mechanics and plasticity analysis or limit design[END_REF] and illustrated in Figure 1. In order to simplify the problem, the ideal plastic D-P model is used in this paper. This model is represented by a pair of conjugate tensor During all the process, the stress must be in the stress cone K σ defined by
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where c is the cohesion,  the friction angle, As is known in [START_REF] Drucker | Soil mechanics and plasticity analysis or limit design[END_REF], the D-P model is the implicit standard material. It is clear that the plastic strain rate is not orthogonal to the yield surface, so the conventional orthogonal law is not applicable. Form above, the theory of bi-potential gives the strain rate component of projection, 

2) Plasticity

When D-P model is in plastic state, it can be considered as an implicit standard material. At this time, 
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The flow rule of D-P model under plastic stage could also be verified. 

B. Incremental form

According to the incremental relationships

t     ε ε , 1 0    σ σ σ (18) 
The subscript 0 indicates the initial iteration and the subscript 1 stands for the final iteration. According to relationships above, the incremental bi-potential function of the D-P model can be built.

1) Elasticity

According to ( 6) and ( 18), 
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So, under the condition of elastic constitutive, the incremental elastic bi-potential of D-P model is 
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2) Plasticity

In the period of time t  , the plastic bi-potential must satisfy ( , )
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Thus the ( , )
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So, under the condition of plastic flow, the incremental plastic bi-potential of the D-P model is given by
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3) Elastoplasticity

There exists an incremental elastoplastic relationship 
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IV. Algorithm of the D-P model

A.

Finite element method

According to the bi-potential theory and the equilibrium equation we have
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In this equation, the variable is the node incremental displacement, which can be solved by the finite element method, and then the incremental strain field can be obtained. Furthermore, the increment stress field can be obtained by integrating the constitutive laws.

For the structure in each loading step, the incremental residual force vector should converge to zero, namely 
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So, there are three extremities, which can be shown as follows
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According to the extremisms above and the consistency condition, the third item of (32) can be expressed as following relationships [START_REF] Hjiaj | A family of bi-potentials describing the non-associated flow rule of pressure-dependent plastic models[END_REF] ta n 0 (47) Because of the implicit expression of the incremental stress and incremental strain, the elastoplastic matrix at regular point and apex point can be represented as a unity 
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1) Regular point

Under elastic stage, the elastoplastic matrix is equal to the elastic matrix. ta n ( )
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2) Apex point

Due to the constraints (42), the elastoplastic matrix at the apex point can be inferred as

ep  D0 (52) E. Algorithms 1)

Constitutive integration

The constitutive integration located at one Gauss point is illustrated in Figure 3. The algorithm for a structure in one iteration is shown in Figure 4. We observe from Figure 7 that the limit stress increases with the increase of dilatancy angle. The z u- curve conforms to the ideal plastic. When the dilatancy angle does not equal to the internal friction, softening phenomenon appears at the beginning of the loading in traction case. The greater gap between dilatancy angle and internal friction is, the more obvious softening phenomenon will be.

2) Analytical solution

For this simple example, an analytical limit stress is available and given by [START_REF] Berga | Mathematical and numerical modeling of the non-associated plasticity of soils-Part 2: Finite element analysis[END_REF]   where --‖ stands for compression, -+‖ stands for traction. The accuracy of the simulation is verified by comparing numerical solution and analytical solution in Table 1. 

B. Plane strain problem

The second example is devoted to apply the D-P model to a structure under plane strain conditions. The material characteristics are the same as in the above example. The geometry parameter and the finite element mesh are shown in Figure 8. The mesh involves 128 rectangle elements. The displacement fields (Figure 9) show the continuity of the deformation. Due to the compressibility of the soil, an obvious phenomenon of compression would appear when enlarging the magnification factor. As shown in Figure 11, the plastic zones can be clearly illustrated. In addition, it is only in the places where large shape changes that exists the zones in plastic stage. Other zones are still in elasticity.

Besides, more results under different dilatancy angles can be obtained as indicated in Table 2. According to Table 2, a rule can be summarized: the maximum stress at the loading direction enlarges with the increase of the dilatancy angle. The plastic zones are also expanding with the dilatancy angle. The simulation results almost match with that of ANSYS code. The rationality of the bi-potential theory and the feasibility of its algorithm can thus be proved.

VI. Conclusion

The bi-potential of the D-P model for non-associated soil materials is established. It has been shown that the bi-potential theory allows expressing better the flow rule of non-associated materials. By the finite element discretization, a constitutive integration method for the D-P model is obtained. Numerical solutions are validated as compared with theoretical ones. Through the simulation of the plane strain problem, the rationality of the bi-potential theory and the feasibility of its algorithm are well verified. To conclude, the bi-potential theory in dealing with set problems shows its great potential in future research. Considering large deformation and frictional contact interfaces, this approach can be extended to deal with a rigid wall standing on the ground. The fields of the soils under the influence of the rigid wall could be analyzed. What's more, the simulation of the pile driving, a still complicated problem, could be analyzed when considering dynamic effects.

1

 1 the deviator tensor and 1 the second order unity tensor.

Figure 1

 1 Figure 1 D-P model cones

  can be implied from (20) and (21) the incremental elastoplastic bi-potential,

Figure 2

 2 Figure 2 ( , )   U σ updates Figure 2 shows the solution procedure.

  the trial conditions,  represents ( , )   U σ of the real value. D + realizes the update of incremental stress on a single Gauss point, explaining (30). D -realizes the update of incremental displacement of the global structure, explaining (29). Finally, after numbers of iterations, the incremental stress on every Gauss point should satisfy the D-P model, and the incremental displacement should make the equilibrium equation established. This way of updating ( , ) Extremism conditions Dealing (27) with the Lagrange multiplier method and considering the condition (2), a Lagrange expression is given as

  obtained. The update method can be discussed in two situations: regular point and apex point.

1 )

 1 Regular pointAt elastic stage, plastic strain disappears,  s and , so we can get the plastic yield criterion at regular point of the D-P model point in elastic stage is the same as that at a regular point.When the apex point under the plastic phase, (42) is satisfiedplastic yield criterion at apex point of the D-P model is given by
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Table 1

 1 Numerical solution and analytical solution

		Analytical solution	Numerical solution
	 ( )	(MPa)		(MPa)	
		compression	traction	compression	traction
	40	-128.669	27.97837	-128.669	27.9784
	20	-121.094	27.60294	-121.094	27.6029
	10	-115.046	27.27608	-115.046	27.2761
	0	-108.439	26.88765	-108.439	26.8876

Table 2

 2 Results of different dilatancy angles

	 ( )	Displacement (m) max min	Stress (MPa) max min	Plastic strain max min
	40	5.294e-5	-0.001	1.847	-157.4		≈0
	20	4.936e-5	-0.001	1.902	-155.5	6.131e-4	≈0
	0	4.438e-5	-0.001	1.981	-153.5	8.363e-4	≈0
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