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Non-associated Constitutive Law of Soils and its 

Simulation Based on the Bi-potential Theory* 
Y-J. Zhou 

a
, Z-Q. Feng 

a,b
, W-Y. Xu 

a
 

Abstract—This paper is devoted to study the non-associated

constitutive law of soil materials and to construct a bi-potential for 

the classical Drucker-Prager (D-P) plastic model. It can be proved 

that the bi-potential not only satisfies the constitutive relationship of 

the D-P model, but also conforms to the non-associated flow rule. 

We present the relevant algorithms for the integration of soil 

constitutive equations. Two simple numerical examples illustrate 

the rationality of the bi-potential theory and the feasibility of its 

algorithm. 

Keywords—Bi-potential, D-P model, Algorithm ,Simulation

I. Introduction 
Material nonlinearity plays an important role in solid 

mechanics. The rationality and accuracy of material 
nonlinearity theory are the basis of theoretical analysis and 
simulation of materials and structures. For classical materials 
such as metal, the yield potential is associated with the flow 
potential. Its theory is relatively well established. But for the 
non-associated materials such as soils, the yield potential is 
different from the flow one. Conventional model uses two 
independent functions to express the potentials [1]. Nowadays, 
the theory on associated materials is relatively well established 
and its simulation becomes mature. The return-mapping 
algorithm is a widely accepted and applied method to integrate 
constitutive laws of associated materials [2]. For 
non-associated materials, the yield potential is different from 
the flow one. De Saxcé uses Legendre transformation to deal 
with this kind of laws [3]. The bi-potential theory is put 
forward in [4] and the theory is applied to the non-associated 
material successfully. In [5] and [6], the bi-potential function 
has been proved to be able to express the flow rule of soils 
more clearly. The bi-potential theory is suitable to solve the set 
problems and can be used to build the constitutive laws of 
non-associate materials. Material like soils is a kind of 
non-associated materials, whose mechanical behavior is very 
complex. This paper summarizes previous relevant works, 
choosing the classical three-parameter soil D-P model to build 
its constitutive relationship under within the bi-potential 
framework. This theory leads to a simple and efficient 
algorithm for the numerical integration of non-associated 
constitutive laws. 
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II. D-P model
The D-P model is given in [7] and illustrated in Figure 1. 

In order to simplify the problem, the ideal plastic D-P model is 
used in this paper. This model is represented by a pair of 

conjugate tensor ( , )
m

sσ s  and ( , )
p

m
ep p

eε , in which 

1 / 3 ( )
m

T rs   σ is the mean stress, 
m

s  1s σ the stress

deviator tensor, ( )
p

m
T re  p

m
ε the trace of the plastic strain rate 

tensor, 1 / 3
p

m
e  p p

e ε 1  the deviator tensor and 1 the second 

order unity tensor. 

During all the process, the stress must be in the stress cone 

K
σ
defined by 

 ( , )  / tan
m d m

s k s cK   
σ

s s (1) 

where c is the cohesion,   the friction angle, 
d

k  a constant, 

the Euclidean norm. 

The flow rule of D-P model is limited in the plastic strain 

rate cone K

, which can be represented by two parts: the 

regular set 
r

K  and the apex set 
a

K .  

 ( , )  ta n
p p

r m m d
e e kK  p p

e e (2) 

 ( , )  ta n
p p

a m m d
e e kK  p p

e e (3) 

Figure 1  D-P model cones 

As is known in [7], the D-P model is the implicit standard 
material. It is clear that the plastic strain rate is not orthogonal 
to the yield surface, so the conventional orthogonal law is not 
applicable. Form above, the theory of bi-potential gives the 
strain rate component of projection,  

( ,  ( tan tan ) )
p

m d
e k    p p pε e e  (4) 
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Equation (4) can be written as a differential collection set 
form to express the flow rules of D-P model. The detailed 
proofs are given in [9]. 

( , ( ta n ta n ) ) ( )
p

m K
e k d     

σ

p p

e e σ (5) 

III. Bi-potential for soils
In [3], the bi-potential for both explicit and implicit 

standard material is introduced in detail. So, the rate form and 
increment form bi-potential for D-P model can be obtained.  

A. Rate form 
1) Elasticity

When D-P model is in elastic state, it can be considered as 
an explicit standard material. At this time 

*

( , ) ( ) ( )
e e e

e e e
b     ε σ ε σ ε σ (6) 

Moreover, the model satisfies the elastic constitutive laws 

2
2

( ) [ ] / 2 ( ) / 2
e e e e e e

e c m
K e   ε ε D ε e   (7) 

2* 1 2

( ) [ ] / 2 ( ) / 2 / 4
e

e m c
s K   σ σ D σ s   (8) 

The bi-potential function can be obtained under the elastic 
state,  

2 22 2

( , ) ( ) / 2 ( ) / 2 / 4
e e e

e c m m c
b K e s K    ε σ e s   (9) 

Where Kc and  are respectively the bulk and shear
modulus. Equation (9) can be easily verified to meet the 
orthogonal law 

*

( ) ( , )
e e

e e
b   
σ

ε σ ε σ  and ( ) ( , )e

e e

e e
b   

ε
σ ε ε σ (10) 

2) Plasticity

When D-P model is in plastic state, it can be considered as 
an implicit standard material. At this time,  

( , )
p p

p
b  ε σ ε σ (11) 

p ε σ  can be decomposed as,

p p p

m m
s e    σ ε s e (12) 

The first item of (12) can be rewritten as follow, 

 / ta n / ta n
p p p

m m m m m
s e c e s c e       (13) 

Equation (1) and (2) give, 

 / ta n ta n / ta n
p p

m m m d m
s e c e k s c      p

e (14) 

For the second item of (12), considering the 
Cauchy-Schwarz inequality and the relationship (1), another 
inequality is given by  

 ta n / ta n
d m

s e s e k s c e      p p p   (15) 

So, in the case of plastic flow, the plastic bi-potential can 
be obtained by combining (11), (12), (13) and (14). 

 ( , ) / ta n ( ta n ta n ) / ta n
p p p

p m d m
b c e k s c      ε σ e

(16) 

The flow rule of D-P model under plastic stage could also 
be verified.  

( , )
p p

p
b 
σ

ε ε σ (17) 

B. Incremental form 
According to the incremental relationships 

t   ε ε , 
1 0

  σ σ σ (18) 

The subscript 0 indicates the initial iteration and the 
subscript 1 stands for the final iteration. According to 
relationships above, the incremental bi-potential function of 
the D-P model can be built. 

1) Elasticity

According to (6) and (18), ( , )
e

e
b  ε σ  is defined as 

*

( , ) ( ) ( )
e e e

e e e
b              ε σ ε σ σ ε (19) 

So, under the condition of elastic constitutive, the 
incremental elastic bi-potential of D-P model is 

2 2
2 2

1 1
( , ) ( ) ( )

2 2 4

e e ec

e m m

c

K
b e s

K



          ε σ e s (20) 

2) Plasticity

In the period of time t , the plastic bi-potential must 

satisfy 

( , )
p p

p
b      ε σ ε σ (21) 

Furthermore, 

0
( , )

p p

p
b     
σ

ε ε σ σ (22) 

0 0
( , )p

p

p
b


      

ε
σ ε σ σ σ (23) 

Thus the ( , )
p

p
b  ε σ  can be expressed as 

0 0
( , ) ( , )

p p p

p p
b b         ε σ ε σ σ σ ε (24) 

So, under the condition of plastic flow, the incremental 
plastic bi-potential of the D-P model is given by 

0

0 0

( , ) / ta n ( ta n ta n ) (

/ ta n )

p p

p m d m m

p p p

m m

b c e k s s

c s e s

  



       

     

ε σ

e e

(25) 

3) Elastoplasticity
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There exists an incremental elastoplastic relationship 

e p    ε ε ε (26) 

It can be implied from (20) and (21) the incremental 
elastoplastic bi-potential,  





2

0
ta n

0 0

2
2

( , ) in f ( ) / 2

/ ta n ( ta n ta n )(

/ ta n ) / 4 ( ) / 2

p

m d

p p p

c m m m m
e k

p p

m d m m

p

m c

b K e e s e

c e k s s

c s K




  

 

  
            

       

     

p

e

ε σ e e

s e

e s

(27) 

IV. Algorithm of the D-P model

A. Finite element method 
According to the bi-potential theory and the equilibrium 

equation we have  

[ ( ) , ]
T T T

V V S

b
d V d V d S

   
    

  
ε u σ

B N f N T 0
ε

(28) 

In this equation, the variable is the node incremental 
displacement, which can be solved by the finite element 
method, and then the incremental strain field can be obtained. 
Furthermore, the increment stress field can be obtained by 
integrating the constitutive laws. 

For the structure in each loading step, the incremental 
residual force vector should converge to zero, namely 

T

r


     F B σ F 0 (29) 

For a single Gauss point, the incremental residual stress 
tensor should converges to zero too 

( , ) / 0
r

b        σ ε σ ε σ (30) 

Figure 2  ( , ) U σ  updates 

Figure 2 shows the solution procedure. 
d

A is the 

( , ) U σ  in the trial conditions,   represents ( , ) U σ  of 

the real value. D
+
 realizes the update of incremental stress on a 

single Gauss point, explaining (30). D
- 
realizes the update of 

incremental displacement of the global structure, explaining 
(29). Finally, after numbers of iterations, the incremental stress 
on every Gauss point should satisfy the D-P model, and the 
incremental displacement should make the equilibrium 

equation established. This way of updating ( , ) U σ  is called 

LATIN method [8]. 

B. Extremism conditions 
Dealing (27) with the Lagrange multiplier method and 

considering the condition (2), a Lagrange expression is given 
as 

2

2

0 0 0

( , , ) ta n ( ) / 2

/ ta n ( ta n ta n )

( / ta n )

p p

d m c m m

p p

m d

p p p

m m m m

L k e K e e

c e k

s s c s e

  

   



           

       

        

pε σ e

e e

e s e

(31) 

So, there are three extremities, which can be shown as 
follows 

/ 0
p

L  e , / 0
p

m
L e   , / 0L      (32) 

According to the extremisms above and the consistency 
condition, the third item of (32) can be expressed as following 
relationships [9] 

tan 0
p

d m
k e    p

e   and  0  (33) 

or tan 0
p

d m
k e    p

e   and  0  (34) 

C. Update ( , ) pε σ

According to (33) and (34), the ( , ) pε σ  updating 

method is obtained. The update method can be discussed in 
two situations: regular point and apex point. 

1) Regular point

At elastic stage, plastic strain disappears,  s  and 
m

s

can be explicitly calculated by 

2  s e  and 
m c m

s K e   (35) 

Under the plastic phase, (33) is satisfied, then 

 0 0

2 2

ta n ( ) ta n ( )

1 ta n

d m m m c m

c d

c s s s K e

k

  

 

         
 



p
η e

e  (36) 

  p p

e e n and ta n
p

m d
e k    p

e (37) 

where 
2

d

d

k



 , 

2

c

c

K



 , 0

0

2 


s
η , 0

0

 


 

η e
n

η e

As we known,  s  and 
m

s are expressed as 

2 ( )
p    s e e and ( )

p

m c m m
s K e e     (38) 

According to (36), (38) and the implicit expressions of  s

and 
m

s , the residual stress 
r

 s  and 
m r

s should finally 

tend to 0 and 0 by implicit iterations 

0 0
2 ( ) ( )

p

r
         s e η e n s s 0 (39) 
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( ) 0
p

m r c m m m
s K e e s        (40) 

Because  p

e  must be nonnegative, so we can get the 

plastic yield criterion at regular point of the D-P model 

 
0 0

tan ( ) tan ( ) 0
d m m m c m

c s s s K e            η e (41) 

2) Apex point

An apex point has the following characteristics 

/ tan
m

s c   and s 0 (42) 

Updating ( , ) pε σ  at an apex point in elastic stage is the 

same as that at a regular point. 
When the apex point under the plastic phase, (42) is 

satisfied, then 

0 0
2 / 2

p        e η e s e  (43) 

So, ( , ) pε σ  can be explicitly expressed, 

0
a n d  ( / ta n ) /

p

m m c m c
e s K e c K       p p

e e n (44) 

2 ( )
p    s e e and ( )

p

m c m m
s K e e     (45) 

Because / 0
p

m
L e   , the plastic yield criterion at apex 

point of the D-P model is given by 

0 0
ta n ( / ta n ) / 0

d m c m c
k s K e c K       η e   (46) 

D. Elastoplastic matrix 
According to the definition of elastoplastic matrix 

/
ep
  D σ ε (47) 

Because of the implicit expression of the incremental stress 
and incremental strain, the elastoplastic matrix at regular point 
and apex point can be represented as a unity 

1

1

( )
i

r r r

ep c i

r



    
     
    

σ σ σσ
D I D D

σ ε σ ε
(48) 

1) Regular point

Under elastic stage, the elastoplastic matrix is equal to the 
elastic matrix. 

ep e
D D   (49) 

Under plastic stage, the elastoplastic matrix can be 
calculated by (48) and  

/ ( / 3)

tan ( )

i d
k I  

 

      

   

D 1 1 1 1 n n

1 n n 1
(50) 

( (tan tan ) ) / 3
c c

K    D n 1
(51) 

with
0

2 1 ,

p

 
 

  
   

e

e η 2 2

1
 ,

1 ta n
c d
k


 




2

tan
d

k   .

2) Apex point

Due to the constraints (42), the elastoplastic matrix at the 
apex point can be inferred as  

ep
D 0 (52) 

E. Algorithms 
1) Constitutive integration

The constitutive integration located at one Gauss point is 
illustrated in Figure 3. 

Figure 3  Constitutive integration algorithm 

2) Structure

The algorithm for a structure in one iteration is shown in 
Figure 4. 

Figure 4  Algorithm for structure in one step 
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V. Simulation examples 

A. Compression/traction test 
1) Numerical solution

Let us take a 4-node unit as an example under a uniform 
compression and traction condition. The aim of this example is 
to check the correctness of integrating constitutive equations 
on one stress point, i.e., Gauss point. The characteristics are: 

5

0.5 10E   MPa, 0.33  , 30c  MPa, 1 .0 1 5 6 6
d

k  , 

4 0  , 40  . Because the D-P model is an ideal plastic 

model, displacement boundary conditions are applied to make 
the results converge. The model is shown in Figure 5.  

Figure 5  Compression/traction unit 

On the coordinate of 
m

- ss , the D-P model constitutive 

curve is obtained and plotted in Figure 6 . 

Figure 6  D-P model 
m

- ss curve 

As compared with Figure 1, an excellent match of D-P 
model constitutive curve can be seen by simulation and 

analysis. With different dilatancy angles, i.e. 4 0   , 

/ 2 20   , / 4 10   and 0  , we can simulate four 

curves under compression and traction respectively as follows, 

Figure 7  
z

u -   curve of compression/ traction 

We observe from Figure 7 that the limit stress increases 
with the increase of dilatancy angle. The 

z
u -   curve 

conforms to the ideal plastic. When the dilatancy angle does 
not equal to the internal friction, softening phenomenon 
appears at the beginning of the loading in traction case. The 
greater gap between dilatancy angle and internal friction is, the 
more obvious softening phenomenon will be.  

2) Analytical solution

For this simple example, an analytical limit stress is 
available and given by [10] 

 2

2

ta n 1 2 / 3 ( 2 )

c


    


  
(53) 

with tan / tan    and 2 2

1 / 3 tan
d

k     (54) 

where ―-‖ stands for compression, ―+‖ stands for traction.
The accuracy of the simulation is verified by comparing 
numerical solution and analytical solution in Table 1. 

Table 1 Numerical solution and analytical solution 

 （ ） 

Analytical solution 

(MPa) 

Numerical solution 

(MPa) 

compression traction compression traction 

40 -128.669 27.97837 -128.669 27.9784 

20 -121.094 27.60294 -121.094 27.6029 

10 -115.046 27.27608 -115.046 27.2761 

0 -108.439 26.88765 -108.439 26.8876 

B. Plane strain problem 
The second example is devoted to apply the D-P model to 

a structure under plane strain conditions. The material 
characteristics are the same as in the above example. The 
geometry parameter and the finite element mesh are shown in 
Figure 8. The mesh involves 128 rectangle elements. 

Figure 8  Geometry parameter and mesh 

Assuming that the soil is weightless, given a displacement 
of 0 .001

z
u m   on the right upper corner, we can simulate 

z
u , 

z
σ and p

z
ε  for 4 0   . The result is displayed by the 

in-house post-processing software FERView. 

Figure 9  Displacement field 
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The displacement fields (Figure 9) show the continuity of 
the deformation. Due to the compressibility of the soil, an 
obvious phenomenon of compression would appear when 
enlarging the magnification factor. 

Figure 10  Stress fields 

The maximum stress in Figure 10 is greater than the limit 
stress in the first example. The reason can be explained by the 
ferruling phenomenon under the three-side fixed constraints. 
The compressive stress is mainly concentrated in the areas of 
displacement constraints. 

Figure 11  Plastic strain fields 

As shown in Figure 11, the plastic zones can be clearly 
illustrated. In addition, it is only in the places where large 
shape changes that exists the zones in plastic stage. Other 
zones are still in elasticity.  

Besides, more results under different dilatancy angles can 
be obtained as indicated in Table 2.  

Table 2  Results of different dilatancy angles 

 （ ） 
Displacement (m) Stress (MPa) Plastic strain 

max min max min max min 

40 5.294e-5 -0.001 1.847 -157.4 4.533e-4 ≈0 

20 4.936e-5 -0.001 1.902 -155.5 6.131e-4 ≈0 

0 4.438e-5 -0.001 1.981 -153.5 8.363e-4 ≈0 

According to Table 2, a rule can be summarized: the 
maximum stress at the loading direction enlarges with the 
increase of the dilatancy angle. The plastic zones are also 
expanding with the dilatancy angle. The simulation results 
almost match with that of ANSYS code. The rationality of the 
bi-potential theory and the feasibility of its algorithm can thus 
be proved. 

VI. Conclusion
The bi-potential of the D-P model for non-associated soil 

materials is established. It has been shown that the bi-potential 
theory allows expressing better the flow rule of non-associated 
materials. By the finite element discretization, a constitutive 
integration method for the D-P model is obtained. Numerical 
solutions are validated as compared with theoretical ones. 
Through the simulation of the plane strain problem, the 

rationality of the bi-potential theory and the feasibility of its 
algorithm are well verified. To conclude, the bi-potential 
theory in dealing with set problems shows its great potential in 
future research. Considering large deformation and frictional 
contact interfaces, this approach can be extended to deal with a 
rigid wall standing on the ground. The fields of the soils under 
the influence of the rigid wall could be analyzed. What’s more,
the simulation of the pile driving, a still complicated problem, 
could be analyzed when considering dynamic effects. 
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