
HAL Id: hal-02398161
https://univ-evry.hal.science/hal-02398161

Submitted on 4 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Inverse modelling methods for identifying unknown
releases in emergency scenarios: an overview

S.K. Singh, M. Sharan, J.P. Issartel

To cite this version:
S.K. Singh, M. Sharan, J.P. Issartel. Inverse modelling methods for identifying unknown releases
in emergency scenarios: an overview. International Journal of Environment and Pollution, 2015, 57
(1-2), �10.1504/IJEP.2015.072121�. �hal-02398161�

https://univ-evry.hal.science/hal-02398161
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1 Introduction 

1.1 Motivation 

The rapid industrial developments and urbanisation lead to an important concern towards 
risk assessment, security and public safety issues. An attention in these directions 
increases due to accidental hazards, such as the Bhopal gas leak (1984, India); Chernobyl 
nuclear disaster (1986, Ukraine), Fukushima nuclear explosion (2011, Japan), etc. The 
releases are unexpected, highly poisonous and impossible to observe or measure directly 
on-site. For an effective emergency preparedness program, fast identification of these 
unknown releases is required. This is treated as an inverse problem (Enting, 1985). The 
limited available information is site description, meteorology, a priori information about 
releases and remotely measured concentrations. Therefore, it is essential to develop a 
methodology for identifying the unknown releases using limited concentration 
measurements and available a priori information (Figure 1). These methods are called 
‘inverse modelling techniques’ (Rao, 2007; Redwood, 2011). 

Figure 1 Correspondence between sources and receptors. ‘S’ and ‘R’ denote source and receptor 
respectively 
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The identification of unknown releases requires an assimilation of concentration 
measurements, given a suitable atmospheric transport and dispersion model (ATDM) and 
an error criterion, in such a way that subsequent errors are minimised for the estimated 
source. The measured concentrations are discrete, limited and obtained as averages in 
general. The source identification is addressed in a finite dimensional discretised model 
space; and only a discrete version of the source can be retrieved limited to the resolution 
of the model space. The discretised model space refers to the discretisation in space as 
well as in time. Primarily, the source retrieval refers to estimation of origin, strength and 
release time in the discretised model space irrespective of a priori assumption about 
nature of the releases. As a priori, the nature of the release is categorised as point, area 
and volume type. In case of area and volume sources, the emission is assumed to be 
originated from a large area or volume. On the contrary, a point emission is assumed to 
originate only from a discrete cell and it is desired to retrieve only that cell along with the 
mass and time of release. In case of area and volume sources, the patches (regions) with 
maximum source information are considered as origin; and average flux of emissions 
estimated over these patches at the time of release can be considered as strength estimate 
for the area and volume sources. The retrieval of area and volume sources is often termed 
non-parametric estimations whereas point source retrieval is called a parametric 
estimation problem subjected to the estimation of location coordinates, height, strength 
and time of release. 

The accuracy of the source retrieval is limited by the resolution and information 
retrieved in the discretised model space. The major limitations are ill-posedness (caused 
by imbalance between the number of measurements and degree of freedom in model 
space), lack of a priori information, model errors, limited and sparse set of concentration 
measurements, etc. The ill-posedness leads to non-uniqueness (infinite sources can be 
chosen compatible to the measurements) and instability in the inverse solution. The 
instability is referred as sensitivity of the retrieved sources towards the random 
measurement errors. The model errors arise due to representativeness errors, lack of 
process understanding and turbulence uncertainties. The measurement averaging process 
causes a loss of high frequency information which is responsible for deviations in the 
source retrieval. In addition, the loss of information occurs due to unknown structure of 
random errors from measurement and model during the source retrieval process. Their 
quantification is important in minimising the uncertainties in the source retrieval and to 
establish an optimal design of monitoring network (Singh et al., 2015). 

1.2 Source-receptor sensitivity 

As a first step of inverse modelling, a functional relationship is required between 
measured concentrations and the unknown source. This is expressed by utilising an 
ATDM (e.g., advection-diffusion equation or Lagrangian particle dispersion model) 
governing the transport of pollutant in space and time. The dispersion models provide 
prediction of concentrations (simulation will often be hindcasts). The source-receptor 
sensitivity is described in two ways: 

1 forward (source-oriented) (e.g., Robertson and Langner, 1998; Krysta et al., 2006) 

2 backward (receptor-oriented) (e.g., Issartel and Baverel, 2003). 
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The source-oriented sensitivity describes the forward transport of pollutants in which the 
concentrations are simulated from the dispersion model, forward in space and time, under 
various choices of the source parameters, and later compared with the corresponding 
receptor measured concentrations (e.g., Thomson et al., 2007, etc.). The parameters, 
which provide the best fitted concentration measurements, are considered as optimised 
source parameters. The receptor-oriented relationship is based on the backward 
propagation of information in the system from the receptors. This is derived from the 
adjoint of the ATDM and describes the potential sensitivity of the sources with respect to 
the measured concentrations (e.g., Marchuk, 1995; Pudykiewicz, 1998; Hourdin and 
Talagrand, 2006; Issartel et al., 2007). Robertson (2004) showed the similarity between 
back trajectories and adjoint technique using influence functions and examined four 
different cases as Chernobyl accident, the ETEX-I exercise, the Algeciras accident and an 
event with heavy smoke noticed in Scandinavia. Back trajectory models estimate 
back-trajectories using the wind speed and direction data from one or more sites. Back 
trajectories indicate past paths of infinitesimally small particles of air as they move 
through time and space (Stohl, 1998). These are obtained by integrating the advection of 
pollutant backward in time, taking the wind field in the reverse direction. These models 
are simple and benefit from the time symmetry of tracer transport whereas Eulerian 
models suffer from numerical diffusion, grid resolution problem near point source 
emissions and instantaneous mixing of point source emission in the grid. Therefore, this 
is also known as one of simplest adjoint models for tracing of important source regions 
attributed to measured tracers (Seibert, 2001). Back trajectory models are quite simple 
but limited in applications as back-trajectories suffer from over-simplification of the 
transport-diffusion processes by entirely omitting diffusion and are therefore less useful 
for long time-integrations (Seibert, 2001). 

The model predicted concentration is expressed as a function of input release 
parameters, such as, c = M ( ) where c is the modelled concentration vector of dimension 
N  1, M is the model operator,  is the discretised source term of dimension N  1. Here, 
the bold symbol represents vector and italic symbol represents scalar/constants. The 
concentration measurement vector  (dimension m  1) is related to the model predicted 
concentration c using an observation operator H, such as,  = H(c). Therefore, the 
measured concentrations can be related to the source as 

( ) ( )H M L (1)

where the operator L is described as, L(.) = H(M(.)), includes both observation and 
model operators. In the present study, the expressions will be written for a linear case. 
However, in nonlinear case, the formulations will still hold for each stepwise linearisation 
necessary. 

1.3 Cost function 

Equation (1) describes a relationship between source and receptors, given a perfect 
ATDM and no measurement error. In reality, this relationship is associated with model 
errors, turbulence uncertainties and measurement errors. Therefore, the source estimation 
is addressed by minimising a cost function (or objective/error function) measuring the 
residuals between measured concentrations and corresponding model predictions. These 
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cost functions are commonly defined in terms of least square error (LSE), least absolute 
error (LAE), maximum likelihood estimation (MLE), etc. 

The estimation of source is not trivial since the degree of freedom in model space (N) 
is imbalanced with the number of available concentration measurements (m). This leads 
to an ill-posed problem [under-determined (m < N) or over-determined (m > N)] which 
further affects the existence, uniqueness, and stability of the computed solution  
(Figure 2). In case of an under-determined system, additional constraints (like positivity, 
boundedness, etc.) and a priori information are required to maintain the stability of the 
solution, whereas in an over-determined system (m > N), solution can be obtained 
without imposing regularisation/constraints. In addition, model errors, turbulence 
uncertainties, limited concentration measurements and lack of a priori information affect 
the accuracy and resolution of the source estimation. 

Figure 2 A categorisation of estimation problems (see online version for colours) 

 

The present study addresses an overview of the inverse modelling technique utilised 
mainly for the emergency purposes. However, the inversion of large scale emissions and 
green house gases (GHG) are also discussed briefly. The details of the inversion 
techniques are included in Section 2 along with their applications carried out in real 
scenarios. Section 3 gives highlights on identification of multiple point releases. The 
advantages and limitations of these techniques are discussed in Section 4. Finally, the 
summary of review and future scope of the inverse modelling are highlighted in  
Section 5. 

2 Inverse modelling techniques 

The source information is estimated by minimising a cost function or functional that 
quantifies the difference between observed and predicted concentrations. Inverse 
modelling techniques have been categorised within the frameworks of statistical  
(or Bayesian) inference and optimisation techniques. Statistical methods provide source 
estimation along with the probability distribution function (pdf) under some confidence 
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levels and posterior statistics. Comparatively, optimisation techniques can give the 
simulation results which maximally match the measurement information. The inversion 
techniques, under these frameworks, are detailed in this section. 

2.1 Bayesian inference method 

Bayesian probabilistic inferential framework provides a natural means for incorporating 
both errors (model and observational) and prior (additional) information about the source. 
The prior information about source is improved to a posteriori when successive sets of 
concentration measurements are assimilated (e.g., Rodgers, 2000; Tarantola, 2005). The 
complete state of information available in the system is summarised by a suitably chosen 
likelihood function. The solution is derived in terms of posterior pdf (e.g., Tarantola, 
2005) based on available concentration measurements and a priori information. 
Following the Bayes theorem, the posterior pdf is written in terms of prior, concentration 
measurements and likelihood pdf as, 

| ,
P v P

P
P P

b b b
b

b b

, | I | I | , I
, I

| I | I
 (2) 

where Ib is background information about concentration measurements and source,  
v(  | Ib) is prior pdf, P( | , Ib) is likelihood function used to quantify the probability of 
the discrepancy between the concentration measurements and corresponding model 
predictions. The posterior probability P( | , Ib) describes the source information. The 
denominator term P(  | Ib) is pdf of measurements  and does not depend on , and thus, 
can be considered a constant factor in the inverse problem. The sampling algorithms 
[e.g., Markov chain Monte Carlo (MCMC), Metropolis-Hastings, etc.] are utilised to 
approximate the source (or release parameters) from the posterior pdf by drawing random 
samples (Gilks et al., 1996). The retrieved source is said to be well resolved if the 
posterior pdf is significantly different from the prior pdf (Tarantola, 2005). The theory is 
traditionally formulated in a discrete form (Cohn, 1997). 

Let b be a background emission vector, obtained from a short range forecast or 
assumed as constant and  =  – b is the corresponding background error vector. Let 
P( ) be the joint pdf of total error due to measurements and model representativeness and 

b = L b is the background measurement vector. The innovation  =  – b is the 
departure of the concentration measurements from its corresponding predicted value 
(using background estimates). The substitution allows to obtain as  = L  + . The  
and . are assumed to be independent. In case of under-determined problems, a priori 
statistical knowledge of the background error  is introduced with a prior pdf v( ). 
Generally, P(  | ) and P(  | ) are assumed Gaussian with measurement error 
covariance matrix Q (dimension m  m) and background error covariance matrix B 
(dimension N  N) respectively. Now, the posterior pdf is obtained as, 
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where C0 [equation (3)] is a normalising coefficient and the superscript ‘T’ denotes 
transpose. In equation (3), the term TB–1  corresponds to the departure of source 
from its background estimates and (L  – )TQ–1(L  – ) represents the departure 
from measurement innovations to model predicted innovations. The classical estimate 

est can be computed as, 

1 11 1 1 ,est B L Q L L Q BL LBL Q  (4) 

where the matrix K = BLT(LBLT + Q)–1 is often referred as the gain matrix. The solution 
of equation (4) represents a posteriori maximum likelihood (minimum variance) estimate 
of the true state of the source. Observation and background errors are assumed to be 
uncorrelated. 

Khemka et al. (2006), Yee (2007) and his co-workers (Keats et al., 2007a, 2007b) 
implemented Bayesian inference with MCMC sampling for simultaneous determination 
of all source parameters (conservative and non-conservative scalars) in simple 
(unobstructed) and complex (e.g., urban) terrain. Zhao and Nehorai (2007) developed a 
distributed sequential Bayesian estimation method for localising a diffusive source using 
prior defined as linear combination of polynomial Gaussian density functions. This 
provides a faster convergence and requires lesser number of sensors in comparison to the 
Gaussian approximation for the source reconstruction. Source reconstruction in a 
complex terrain, involving disturbed wind fields and spatial inhomogeneity, is shown by 
Yee et al. (2008). Senocak et al. (2008) have extended Bayesian inference with MCMC 
to estimate wind field parameters along with source parameters. Chow et al. (2008) 
performed source identification using Bayesian inference in urban environments using 
building resolving simulations. 

2.1.1 Maximum entropy on mean 

The maximum entropy on mean (MEM) method relies on minimisation of the entropy 
(information) content that separates the posterior pdf of the source and the errors from the 
prior pdf (Bocquet, 2005a, 2005b). A duality principle is utilised in minimisation of the 
entropy function by transforming the problem from infinite dimensional parameter space 
to finite dimensional observation space. 

The total amount of information contained in the source distribution is expressed in 
terms of an entropy function, called as Kullback entropy function, written as (Bocquet, 
2005a), 

| ,
| , ln ,

| ,

b

b

b

P I
P I

I
S  (5) 

where S is a vector in the vector space of maximum of entropy functional. Since all the 
sources compatible with the observations can be written as a linear combination of source 
and adjoint functions, thus a constraint is defined as (Bocquet, 2005a), 

| , .bP I L  (6) 

The Kullback entropy is modified by introducing the Lagrange multipliers i in the 
entropy function as (Bocquet, 2005a), 
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Now using the duality, the problem is reduced in to a function minimising the second 
entropy (Bocquet, 2005a), 

ln ( )     with   ( ) | , exp ,bz z I L (8)

where z( ) is called the partition function. Hence, the source estimate can be obtained by 
estimating  and pdf, P. The estimator of the source is the average source defined as .  

Alternatively, one can also choose the maximum likelihood estimate of the source as 
(Bocquet, 2005a), 

arg min | , arg min ln | , .ML
b bP I I L (9)

The application of the method is performed for retrieving the temporal profile of 
emission with the knowledge of location of emission sources (Bocquet, 2005a, 2005b, 
2005c) in European Tracer Experiments [ETEX]-I. The method was extended by Krysta 
and Bocquet (2007) by adding statistically consistent diagnostic tools, such as convexity, 
etc., for improving the posteriori and quality of the reconstruction. However in case of 
Algeciras incident (southern Spain in May 1998), source reconstruction was not 
successful. The method was then successfully applied to the real data of the ETEX-I 
(Bocquet, 2007; Krysta and Bocquet, 2007) and ETEX-II (Krysta et al., 2008) with a 
view to a high-resolution reconstruction of the source without any assumption about the 
source location. The source was correctly localised in both ETEX-I and ETEX-II. 
However, the total released mass in ETEX-II was under-estimated, which is attributed to 
the model representativeness error. Similarly, the method is evaluated for Chernobyl 
accident (Davoine and Bocquet, 2007). Bocquet (2005c) also explained the origin of the 
singular behaviour of the adjoint functions at measurement time and locations when grid 
resolution increases. In general, the source estimation under Bayesian inference (through 
maximum likelihood or maximum a posteriori) is sensitive to the choice of a priori 
distribution for the release parameters (or discretised source elements). Bocquet (2008) 
compared the source retrieval for the choice of a prior distribution as Gaussian and 
non-Gaussian (semi Gaussian and Bernoulli). Non-Gaussian scheme is meant to handle 
prior information that cannot always translate onto mean and second-order moments, 
such as the positivity of the pollutant source which is always the case in a Gaussian 
framework. 

2.2 Variational minimisation of the cost function 

Variational minimisation of the cost function produces an optimal estimate 
of the unknown source at analysis time through iterative minimisation of the prescribed 
cost function (Lewis et al., 2006). In this section, these are presented by categorising 
into unregularised (for over-determined problems; no constraints of background 
information) and regularised using constraints in terms of background information 
(for under-determined problems). The regularisation transforms an ill-posed problem into 
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a well-posed problem by imposing constraints based on a priori information and thus, 
leads to a stable solution of the inverse problem. 

2.2.1 Unregularised (classical least-squares) 

Classical least-squares estimation is based on minimising sum of squares of the residuals 
between measured and model predicted concentrations (Lewis et al., 2006). The cost 
function J can be written as (in matrix notations) 

1 ,J L Q L (10)

where Q is a symmetric and positive-definite weight matrix of size m  m. The choice of 
weight matrix depends on statistical knowledge of measurement errors. Here, 
measurement errors account for both model representativeness and observation errors. 

The least-squares solution is given as 1 1 1( ) ( ).L Q L L Q  The least-squares 

method is applicable only for an over-determined (m > N, no exact solutions) inverse 
problem. The iterative minimisation of function J [equation (10)] requires an initial guess 
of source term and an incorrect initialisation may lead to an inadequate solution. 

Keller and Herrnberger (1997) estimated source strength of a point source in complex 
dispersion conditions. For a short-range experiment (based on wind tunnel experiment), 
Krysta et al. (2006) implemented least-squares to retrieve the source strength, wind and 
dispersion parameters from the concentration measurements. Roberti et al. (2005); 
Storch et al. (2005, 2007) and Reen and Stauffer (2010) extended applicability of the 
least-squares for estimating the boundary layer parameters from the concentration 
measurements. Matthes et al. (2005) and Lushi and Stockie (2010) applied least-squares 
to estimate the source-strengths of two and four simultaneous releases respectively. 
Sharan et al. (2012b) proposed two-step algorithm, free from initial guess, to retrieve the 
location and strength of a point source at local scale. The algorithm is further extended in 
a least-squares framework to identify the multiple-point releases (Singh et al., 2013). The 
sensitivity of this algorithm to source reconstruction is discussed by Singh and Rani 
(2014). 

2.2.2 Regularised using weights: minimum-norm weighted least-squares  
(also called ‘renormalisation’, Issartel et al., 2007) 

The technique is a strategy for linear assimilation of concentration measurements to 
identify the unknown releases (Issartel, 2003; 2005). The method exploits the natural 
statistics provided by the geometry of the monitoring network. These statistics are 
expressed in the form of a weight function derived by using a minimum entropy criterion. 
This criterion prevents the over-estimation of the available information that would lead to 
the artefacts especially close to the detectors. These weight functions also serve as a 
priori information about release apparent to the monitoring network and provide 
regularisation. The theory utilises the adjoint source-receptor relationship and constructs 
a source estimate, among vector space of acceptable sources, which describes the 
possible distribution of the emission sources (Issartel et al., 2007). The method is 
applicable for both over-determined as well as under-determined problems. 
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Equation (1) is modified by introducing a weight matrix W of dimension N  N, such 
that  = LwW  where [ / ]jj jjwwL  is the modified sensitivity matrix. The weight 

matrix is purely diagonal and satisfy following properties: 

1 wjj > 0 

2 
1

N

j j

j

w m  

3 1( ) 1,diag w w wL H L  where w w wH L W L  is the Gram matrix of the weighted 

sensitivity functions. 

The weight functions are computed iteratively using algorithm proposed by Issartel 
(2005). A minimum norm weighted solution is obtained as 

1
w wL H  (11) 

Equation (11) provides an estimate for the distributed emissions and is seen as a 
generalised inverse solution to the under-determined class of linear inverse problems 
(Turbelin et al., 2014). 

The technique is utilised by Issartel (2003) to reconstruct the source in case of ETEX-
I experiment. Further, this technique is extended and evaluated by Issartel et al. (2007) 
for identifying the a real sources over Indian region using synthetic satellite 
measurements. Sharan et al. (2009) extended this technique for identification of a point 
release using the fact that maximum of the source estimate  will coincide with the 

location of the release. An evaluation is shown using real concentration measurements 
from IIT diffusion experiment in convective conditions. Later, Sharan et al. (2012a) 
proposed an extension of the renormalisation technique for identification of an elevated 
release with an inversion error estimate. The equivalence of renormalisation technique to 
optimally weighted least-squares is shown by Issartel et al. (2012). Turbelin et al. (2014) 
and Singh et al. (2014, 2015) discussed the optimal localisation properties for the 
retrieved source. 

2.2.3 Regularised using constraints 

This section addresses the transformation of an under-determined inverse problem to 
well-posed by adding a priori information, in terms of constraints, to the cost function. 
Accordingly, the function J [equation (10)] is modified as 

1( ) ( ) ( ),J L Q L  (12) 

where ( ) is the penalty term, which can protect the model from being overly fitted or 
is useful for sparse data fitting. ( ) is the regularisation functional. The regularisation 
parameter  imposes a relative weight between the residual and constraint. The choices of 
both  and ( ) are subjective. Commonly, the value of  is chosen between 0 and 1. 

Seibert (2000) and Seibert and Stohl (2000) used a regularisation functional, of the 
form ( ) = || ||2 (which imposes an upper bound on the energy of the source distribution 

), to reconstruct the distribution of emission rates for a CTBT radionuclide monitoring 
system (Hourdin and Issartel, 2000). Using Tikhonov regularisation and the properties of 
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L-curve (Hansen and O’Leary, 1993), Kathirgamanathan et al. (2004) estimated emission 
rate of a non-steady point source. Akecelik et al. (2003) mentioned that Tikhonov 
regularisation method works well for smooth sources whereas for discontinuous or point 
sources, a poor solution is obtained leading to oscillations in the vicinity of the sources. 

Chen and Li (2008) presented a p-regularised least-squares method to estimate the 

location and release rate of single as well as multiple-point sources of instantaneous type 
or continuous release. Source characterisation by combining the stochastic search and 
regularised gradient optimisation is addressed by Addepalli et al. (2011). 

When background estimate or information is available, the cost function can be 
formulated as weighted sum of squares of residuals to the observations and background 
estimates (LeDimet and Talagrand, 1986). In this framework, variational minimisation 
has two variants: 

1 three-dimensional variational assimilation (3D-Var) 

2 four-dimensional variational assimilation (4D-Var). 

3D-Var performs the analysis within the assimilation window for fixed time and varying 
spatial dimensions and 4D-Var is an extension of 3D-Var in which observations at times 
before and after the analysis time are included at varying space and time. 

2.2.3.1 3D-Var 

The cost function formulated in 3D-Var is similar to equation (3) shown in Bayesian 
inference (Section 2.1). Using the preconditioning of background error covariance matrix 
(B = UUT) such that  = Uv, equation (3) can be written as (Courtier, 1997) 

11 1
( )

2 2
J v v v L Uv Q L Uv  (13) 

In 3D-VAR, the minimisation of the cost function [equation (13)] using optimisation 
algorithms (steepest descent, conjugate gradient, etc.) requires derivative information 
with respect to the control variable. The derivative of J with respect to v is obtained as 

1 1( ) ( ) .J I LU Q LU v U L Q  (14) 

2.2.3.2 4D-Var 

4D-VAR is applicable when the observations are distributed over a time interval [t0, tn]  
(t0 is the initial time and tn is the final time) and the source is varying with respect to the 
time. Therefore, the cost function [equation (13)] is modified by including time 
dimension as (Elbern et al., 2007) 

1

1

1

1

2

1
  

2

i

n

i i

i

n

i i i i i i i ii

i

J t

t t

t t t t t t t t

v

v v

H M Uv Q H M Uv

 (15) 

10



 

 
The operator L is decomposed into observation (H) and model operator (M) as  
L  = HM . The model operator is defined as 

1 0k kt t tk 1 k 1 k 1M M M ...M  (16) 

The derivative of equation (15) is written as 

1
1

0

n

i i i i i iii
i i

J
t t t t t t

t
v U M H Q H M Uv

v
 (17) 

in which 1iM  is called an adjoint model. Using adjoint model, the model state is 

adjusted towards the observations in an iterative process, starting with an initial guess. J 
is determined by running the forward model first, and then running the linearised adjoint 
model backward in time with forcing by the model misfit. All the intermediate values in 
the forward run have to be stored for their use in the adjoint run (Rao, 2007). 

At regional scale, Robertson and Persson (1993) applied four dimensional data 
assimilation of radiological data for estimating the source intensity using the adjoint 
technique. Later, source estimation was evaluated with ETEX experiment (Robertson and 
Langner, 1998). Penenko et al. (2002) discussed methods of sensitivity theory and 
inverse modelling for estimation of source parameters based on variational principles and 
adjoint equations. A fast 4D-Var scheme was developed by Bocquet (2012) to retrieve 
the large parameter fields that are nonlinearly related to concentrations and its application 
was investigated to Chernobyl accident. The 3D-Var and 4D-Var have been extensively 
applied for estimating large scale emissions and sources and sinks of GHG using surface 
and satellite measurements. Several studies are performed for the estimation of emission 
rates of the trace gases such as CH4 (Meirink et al., 2008; Bergamaschi et al., 2010), CO2 
(Bousquet et al., 1999; Houweling et al. 1999, 2004), O3 (Elbern and Schmidt, 2001; 
Elbern et al. 2007), NOx (Quelo et al. 2005; Muller and Stavrakou, 2005), etc. using their 
satellite measurements in the atmosphere. 

2.3 Search algorithms for minimising cost function: GA 

Genetic algorithm (GA) is a random search-based optimisation technique, built on a 
process of natural evolution (e.g., Goldberg, 1989; Haupt et al., 2006). In GA, a set of 
random population is assumed for the unknowns, which correspond to a set of possible 
solutions of the cost function (regularised or unregularised). The initial choice of 
population evolves towards better solutions iteratively. During iterations, every 
individual of the population is numerically assessed through the objective function and 
multiple individuals are stochastically selected from the current population (based on 
their closeness to the measurements). Repeated iterations minimise the value of cost 
function and provide an estimate for the source term that best accounts for the measured 
concentrations. 

The source identification using GA was investigated by Cartwright and Harris (1993). 
Haupt et al. (2006) estimated the source emission rate using synthetic data and computed 
error bounds for the resulting estimates of the calibration factors using a Monte Carlo 
technique. Thomson et al. (2007) investigated the effect of three different regularisation 
functionals on source retrieval using a simulated annealing optimisation. Allen et al. 
(2007a) estimated simultaneously the surface wind direction and the pollutant source 
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characteristics. Allen et al. (2007b) performed the identification of multiple-point releases 
by estimating their time of release, source locations, and strengths. Haupt et al. (2009) 
attempted to improve the wind field in a meandering situation using GA. In an industrial 
application, Khlaifi et al. (2009) evaluated source identification for three industrial 
sources using hourly measured SO2 concentration measurements. Recently, Long et al. 
(2010) estimated the meteorological parameters (surface wind direction, surface wind 
speed) in addition to release parameters (location, height, emission rate and time) using 
concentration measurements. A concept is also proposed for quantifying minimum 
number of required sensors in source identification. A Lagrangian entity backtracking 
approach is discussed by Annunzio et al. (2012a) to determine the contaminant source 
information. 

2.4 Kalman filter 

The Kalman filter (KF) is a recursive parametric estimation technique for time dependent 
problems and provides best linear unbiased estimate (minimum variance) of the unknown 
state. The assimilation process in KF utilises the model predicted and measured 
concentrations at various times to produce a linear unbiased optimal (minimum variance) 
estimate t  (Kalman, 1960; Kalman and Bucy, 1961). The formulations of the KF 

(including analysis and update steps) are given as (Hartley and Prinn, 1993; Cohn, 1997) 

 analysis step: 

,f fa
t t tt t tK L  (18a) 

 update step: 

1
1

where  .

f f a
t t t t t t tt t t

fa
t tt t

K B L L B L Q B L Q

B I K L B
 (18b) 

The subscript ‘t’ denotes the time, superscripts ‘a’ and ‘f’ denote analysis and forecast 
respectively. The matrix K is called Kalman gain and Ba is the analysis (or posteriori) 
error covariance matrix. 

At urban scale, Mulholland and Seinfeld (1995) obtained emission adjustment factors 
for CO emissions in the South Coast Air Basin of California. Haas-Laursen et al. (1996) 
used KF to deduce regional emission for chlorofluoro carbon (CFC-11) in a global 
chemical transport model (Hartley and Prinn, 1993). For estimating halocarbon or 
methane sources, Hartley and Prinn (1993) and Chen and Prinn (2006) used a global 
chemistry transport model and KF. Drews et al. (2004, 2005) utilised KF for source term 
estimation in case of short-range atmospheric dispersion of radioactive materials using 
off-site radiation monitoring data. Jorquera and Castro (2010) performed an inverse 
modelling to analyse the urban pollution episodes. 

3 Identification of multiple-point releases at urban scales 

This refers to a particular context when several point releases have occurred at various 
locations simultaneously or at different times. The tracers released from several point 
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sources could be the same or different. This is also considered as important due to 
security applications [e.g., FFT07 trials (Storwald, 2007)]. Such releases raise the issue of 
determining 

1 number of unknown releases occurred 

2 their parameters (locations, height, strengths, release times in case of point sources). 

The ambiguity persists as a small source close to the measurement location may give the 
same concentration as a large source further away. When same tracer is released from 
various sources, the sampled concentrations will be obtained as merged concentrations. 
In addition, the sources may be located at the same angle from the receptor but at 
different distances. The geometry of monitoring network, meteorological conditions, 
limited concentration measurements, model errors, chemistry involved, etc., are the other 
factors which limit the release identification. 

Yee (2007) proposed a Bayesian approach for identifying the multiple-point releases. 
Allen et al. (2007b) performed the simultaneous estimation of multiple sources using 
measurements from a dipole pride (DP) 26 field experiments. Aerodyne Research Inc, 
Massachusetts, USA, developed an inverse modelling system (based on search 
algorithm), aerodyne inverse modelling system (AIMS) (Albo et al., 2011) and shown an 
evaluation by estimating the source term parameters of multiple pollutant sources in 
FFT07 experiments. Lushi and Stockie (2010) described an inverse Gaussian plume 
approach for estimating the emission rates of four-point sources in a large lead-zinc 
smelting operation in Trail, British Columbia. Sharan et al. (2012b) have proposed a 
two-step least-squares approach for identifying multiple releases using pseudo-real data. 
Singh et al. (2013) have proposed a weighted least-squares method for multiple-point 
release identification. 

In the above mentioned studies, the multiple-point source estimation is based on the 
fact that number of releases is known. First, Yee (2008) relaxed this assumption by 
proposing a reversible jump Markov process method and successfully performed 
identification of multiple-point sources using noisy synthetic data. Later Yee (2012) 
proposed a new Bayesian inference technique for the general source reconstruction. 
Annunzio et al. (2012b) introduced the multi-entity field approximation (MEFA) method 
for cases involving one or more ground-level point sources. Wade and Senocak (2013) 
proposed a composite ranking system, based on error (scatter), bias and correlation 
component, to estimate the number of sources. 

4 Issues/limitations in inversion 

The inverse problem posed for identifying unknown releases is ill-posed. The estimation 
process is sensitive for measurement noise, model errors, number of concentration 
measurements, a priori information, grid discretisation, etc. In under-determined systems, 
poor conditioning of the matrices cause instabilities in the solution. In particular, 
representation of point sources poses a big challenge and strong gradient often leads to 
model representativeness errors (Bocquet, 2005a). In case of multiple-point releases, the 
complexity of the source retrieval increases with increasing number of releases. 

In Bayesian inference, the choice of a priori information is not unique and this, 
further affects the accuracy of the retrieval. The determination of background and 
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measurement statistics (or error covariance matrices) is difficult to determine since only 
limited and averaged concentrations are measured discretely and a history of tracer 
concentrations may not be available. The use of sampling algorithms can also be tedious 
and time consuming. In statistical inference methods, there are two important and 
sensitive parameters in the reconstruction, 

1 prior mass scale 

2 prior error variance (Bocquet, 2005a). 

The prior information in inverse modelling cannot always translate into mean and 
second-order moments, especially, when specific prior hypotheses on the sources are 
taken into account such as positivity or boundedness, etc. This leads to non-quadratic cost 
functions because the underlying assumptions are not Gaussian. However, the 
minimisation techniques require an initial guess of the releases and their final solution 
depends on the choice of initial guess. Also, derivative information is required for the use 
of gradient-based minimisation techniques. GA is associated with a drawback that the 
estimated solution may not be globally optimal. The KF is associated with limitations in 
its practical implementation due to sampling errors, spurious correlations, filter 
divergence, inflation and covariance localisation issues. 

The measured concentrations are sampled at distinct point locations for a fixed 
amount of time and their time average is considered as measured average concentrations. 
The adjoint models are utilised to describe the potential sensitivity of the discrete cells 
(unknown emission) with respect to the measurements in the discretised space and time. 
Since the atmospheric transport is diffusive, strong numerical gradients arise around the 
discrete cells containing receptors and this leads to the local peaks in the sensitivity 
matrix (Houweling et al., 2004; Bocquet, 2005c; Issartel et al., 2007). Due to these peaks 
at measurement cells, the inverse solution is forced to have a maximum only the 
measurement cells and thus, the source retrieval is not adequate. Also, limited 
information is provided by the discretely measured concentrations, and thus, the 
resolution of the retrieved source is limited and relatively lower for a remote region. The 
measurement errors are assumed commonly as uncorrelated, which certainly may be 
prevailing with complex correlations in representativeness errors (Issartel et al., 2007). 

The choice of a cost function (measuring goodness of a fit), regularisation functional 
and suitable ATDM also plays an important role in accuracy of the source estimation. 
The choice of an ATDM depends on the site description, terrain features, nature of 
release, chemical properties of tracer, availability of meteorological information and 
turbulence parameters, distance travelled by plume, etc. This affects the computational 
time associated with the inversion. The arrangement and distribution of monitoring 
network stations to monitor the unknown releases is also an emerging problem which is 
responsible for a fast identification and minimising the computational requirements 
(Korsakissok et al., 2010). This includes both the number of samplers required to identify 
the releases as well as the design criteria under which the major characteristics of the 
plume can be captured (Issartel and Gamel, 2010). Furthermore, the availability of 
dispersion datasets is desired to assess the capability and shortcomings of the inversion 
algorithms. 
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5 Summary 

The importance of fast and accurate source identification is considered in security and 
emergency assessment programs. Owing to ill-posedness, limited networking of 
receptors, limited concentration measurements, model errors, nonlinearity, lack of a priori 
information, etc., it is difficult to retrieve the source information accurately even if the 
meteorological information and concentration measurements are provided as error free. 
These limitations also affect the resolution of the source retrieval. In this review, 
inversion techniques are discussed based on Bayesian, optimisation and KF framework. 
These techniques are followed by some advantages and disadvantages and thus, cannot 
be considered as optimal in all the scenarios without analysing further evaluations and 
comparisons. 

Bayesian inference methods allows to assess (and also incorporate) a priori 
information about the release and the error statistics. Also, the posterior uncertainty in the 
source retrieval can be analysed. When first and second moment of the errors and prior 
information such as positivity, boundedness, etc. are known, the MEM approach can 
perform significantly better than the optimisation approaches based on minimising a cost 
function built on a quadratic criterion (Gaussian prior laws for the source and the 
modelled errors). The method ignores higher order moments and thus, is not believed to 
perform significantly better than a variational inversion, where first and second moments 
are already used. 

The inversion techniques under optimisation framework provide a source term which 
is best fitted to the concentration measurements. The minimum norm weighted inversion 
technique overcomes the requirement of derivative information and background statistics, 
but requires adjoint source-receptor sensitivities. A key point of this technique is to utilise 
the natural statistics of the adjoint functions in the form of weight functions and to use 
them for regularising the inverse problem (Issartel et al., 2007). The proposed Gram 
matrix provides optimal discrimination to the measurements and thus, can also be 
considered as measurement covariance matrix in the absence of error statistics (Issartel  
et al., 2012). The use of search algorithm is advantageous in order to overcome the 
derivative and covariance statistics requirements and, can deal with large set of 
parameters. Several other variations of the GA or coupled hybrid GA are proposed like 
simulated annealing (Thomson et al., 2007), particle swarm optimisation, ant colony 
optimisation, etc. These algorithms require a further investigation on source retrieval 
applications (Zheng and Chen, 2010). KF methods are most suited for linear systems with 
well-conditioned covariance matrices and strong observable relations between the 
internal state variables and the model outputs (Rao, 2007). There exists several  
variations of KF called as ensemble KF (EnKF) (Evensen, 2003), ensemble transform  
KF (ETKF) (Bishop et al., 2001), extended KF (EKF) and unscented KF (UKF) 
(Redwood, 2011). 
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Table 1 Advantages and limitations of the inversion methods 
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To facilitate the inverse modelling of unknown releases, various sensor-based monitoring 
networks are deployed by the government agencies, for instance, Defense Threat 
Reduction Agency (DTRA), US Environmental Protection Agency (USEPA), National 
Atmospheric Release Advisory Center (NARA), Air Resources Laboratory (ARL), 
Comprehensive Test Ban Treaty (CTBT), etc. The inverse modelling is sensitive with 
respect to the observational network (Villani et al., 2010) which needs to be explored. 
This highlights the need for designing of an optimum network in order to persuade fast 
identification as well as reduction in the setup cost involved (Korsakissok et al., 2010). 
Few contributions in this direction are made by Abida et al. (2008) (addressing spatial 
design of monitoring network in France), Saunier et al. (2009) (principal component 
analysis-based optimal design of monitoring network), Wu et al. (2010) (network 
reductions), Wu and Bocquet (2011) (optimal redistribution of ozone monitoring stations 
over France), Koohkan et al. (2012) (potential of the international monitoring system 
radionuclide network), etc. 

The applicability of inverse modelling requires a further assessment in complex 
terrain or complex meteorological situations observed in coastal or mountain/hill regions. 
Data fusion techniques are required to utilise information from multiple sensors and 
multiple dispersion models in order to evaluate the specific inferences. Advancement in 
the inversion is needed to minimise the dependence on a priori information about the 
release. The estimation of prior error and model error statistics is also helpful in  
making the inversion more efficient and accurate (Winiarek et al., 2012; Koohkan and  
Bocquet, 2012; Winiarek, 2014). The inverse modelling of moving sources (varying in 
space or time) is also not yet addressed and requires attention. Similarly, efforts are 
required to obtain and utilise the concentration measurements from mobile sampling 
(varying in space and time) for the inverse modelling studies. The availability of 
dispersion datasets (e.g., ETEX-I, II, 1994; Fusion Field Trials, 2007; Michelstadt, 2013) 
also helps in analysing and comparing the inversion techniques built on different 
frameworks. Therefore, real measurements from dispersion experiments are desired to 
assess the strength and weakness of inversion techniques. 
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