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Pyruvate carboxylase (PC) is a biotin-containingmitochondrial enzyme that catalyzes the conversion of pyruvate
to oxaloacetate, thereby being involved in gluconeogenesis and in energy production through replenishment of
the tricarboxylic acid (TCA) cyclewith oxaloacetate. PC deficiency is a very raremetabolic disorder.We report on
a new patient affected by the moderate form (the American type A). Diagnosis was nearly fortuitous, resulting
from the revision of an initial diagnosis ofmitochondrial complex IV (C IV) defect. The patient presentedwith se-
vere lactic acidosis and pronounced ketonuria, associated with lethargy at age 23 months. Intellectual disability
was noted at this time. Amino acids in plasma and organic acids in urine did not show patterns of interest for the
diagnosticwork-up. In skinfibroblasts PC showednodetectable activitywhereas biotinidase activitywas normal.
Wehad previously reported another patientwith the severe form of PC deficiency andwe show that she also had
secondary C IV deficiency in fibroblasts. Different anaplerotic treatments in vivo and in vitro were tested using
fibroblasts of both patients with 2 different types of PC deficiency, type A (patient 1) and type B (patient 2). Nei-
ther clinical nor biological effects in vivo and in vitro were observed using citrate, aspartate, oxoglutarate and
bezafibrate. In conclusion, this case report suggests that the moderate form of PC deficiency may be
underdiagnosed and illustrates the challenges raised by energetic disorders in terms of diagnostic work-up
and therapeutical strategy even in a moderate form.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Pyruvate carboxylase (PC; EC: 6.4.1.1) is a biotin-containing mi-
tochondrial enzyme composed of four functional domains: the N-
terminal biotin carboxylase (BC) domain, the central carboxyl trans-
ferase (CT) domain, the tetramerization domain (PT) and the C-
terminal biotin carboxyl carrier protein (BCCP). It is organized as a
homotetramer. PC catalyzes the conversion of pyruvate to oxaloace-
tate, and is involved in gluconeogenesis and energy production
through replenishment of the tricarboxylic acid (TCA) cycle with ox-
aloacetate. Adequate energy production via the TCA requires not
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only a constant supply of acetylCoA but also a fairly constant pool
of the catalytic intermediates of the Krebs cycle including oxaloace-
tate, the key intermediate that condenses with acetylCoA to
“initiate” the cycle. As shown in Fig. 1, PC is also closely linked to
the urea cycle, because aspartate, the citrulline cosubstrate of
argininosuccinate synthetase, is produced from oxaloacetate
through transamination.

In striking contrast to genetic defects affecting the mitochondrial
respiratory chain (MRC), PC deficiency (OMIM 266150) is very rare
[1] as its estimated incidence of 1 in 250000 births (http://ghr.nlm.
nih.gov). PC deficiency is an autosomal recessive disorder with
three nosological forms reviewed in 2010 by Marin-Valencia et al.
[2]. These forms differ in the severity of clinical and biochemical
manifestations: the B or “French” phenotype with neonatal onset
and severe outcome, the A form or “North American phenotype”
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Fig. 1. Functions of pyruvate carboxylase (PC), and its close relation to the urea cycle and the Krebs cycle.
Adapted from [2].

Table 1
Clinical, biochemical and genetic findings at diagnosis in patient 1 and patient 2.

Patient 1 Patient 2

Age of onset 18 months Neonatal
Clinical findings Lactic acidosis following gastro-enteritis

Developmental delay
Lactic acidosis
Neurological distress
Hepatic failure

Laboratory investigation pH = 6.98
Lactate: 11.3 mmol/L
Increased plasma L/P ratio
LCR 3-OHB/AcAc ratio in the lower range
Ammonemia: 70 μmol/L

pH = 7.15
Lactate = 17 mmol/L
Increased plasma L/P ratio
Decreased plasma 3-OHB/AcAc ratio
Ammonemia: 268 μmol/L

Plasma amino acids:
Alanine: 298 μmol/L
Proline: 114 μmol/L
Lysine: 136 μmol/L
Glutamine: 327 μmol/L
Citrulline: 6 μmol/L

Plasma amino acids:
Alanine: 958 μmol/L
Proline: 801 μmol/L
Lysine: 713 μmol/L
Glutamine: 264 μmol/L
Citrulline: 158 μmol/L

Urinary organic acids:
Lactic acid: 59 mol/mol creatinine
3-OHB: 45 mol/mol creatinine
Complex IV: 180 nmol/min/mg proteins

Urinary organic acids:
Lactic acid: N75 mol/mol creatinine
3-OHB: 8359 mmol/mol creatinine
Complex IV: 223 nmol/min/mg proteins

Genetics c. 808CNT; p.Arg270Trp
c. 1892GNA; p.Tyr631Gln

c. 1023-1GNT (IVS7-1GNT); p.Asp341GlufsX351
c.911ANG; p.Tyr304Cys

Outcome 8 year-old: needs specialized school Death at 6 months

L: lactate; P: pyruvate; 3-OHB: 3-hydroxybutyrate; AcAc: aceto-acetate; normal range: plasma ammonemia: 15–45 μmol/L; alanine: 174–375 μmol/L; proline: 93–233 μmol/L;
lysine: 85–241 μmol/L; glutamine: 423–545 μmol/L; citrulline: 21–38 μmol/L; lactic acid: b76 mmol/mol creatinine; 3-hydroxybutyrate: b99 mmol/mol creatinine; complex
IV: 308–457 nmol/min/mg of protein.
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with mild to moderate hyperlactacidemia and longer survival, and
the C form with episodic metabolic acidosis and ketoacidosis during
metabolic stresses. PC deficiency can also be part of multicarboxylase
deficiency secondary to deficiency of biotinidase or holocarboxylase.

Here we report on one patient with the A form of PC deficiency and
mitochondrial complex IV (C IV) deficiency in cultured skin fibroblasts,
illustrating the complexity of the diagnostic work-up of energy disor-
ders. In vivo and in vitro therapeutic assayswere devised for this patient
and in fibroblasts of another previously reported patientwith the type B
form of the disease.

2. Patients and methods

2.1. Patients

Patient 1 was the second boy of healthy non-consanguineous
Caucasian parents, born after an uneventful pregnancy and a normal
birth weight. Developmental progress was apparently considered as
normal until the age of 23 months when he presented a severe lactic
acidosis with failure to thrive, vomiting and lethargy. As shown in
Table 1, laboratory investigations found lactic acidosis (pH 6.98,
blood lactate level 11.3 mmol/L, normal range b2 mmol/L) associat-
ed with pronounced ketonuria but normal glucose plasma levels.
Lactate to pyruvate ratio was elevated in cerebrospinal fluid (24,
normal range 6–14) and 3-hydroxybutyrate to acetoacetate ratio
was in the lower range (0.8, normal range 0.8–1). Plasma ammonia
was 70 μmol/L (normal range 15–45 μmol/L). Plasma amino acid
analysis showed normal alanine (298 μmol/L; normal range: 174–
375 μmol/L), glycine (159 μmol/L; normal range: 160–264 μmol/L),
proline (114 μmol/L; normal range: 93–233 μmol/L) and lysine levels
(136 μmol/L; normal range 85–241 μmol/L) in the context of
generalized trend to hypoaminoacidemia, including low citrulline
(6 μmol/L, normal range: 21–38 μmol/L) and glutamine (327 μmol/L,
normal range: 423–545 μmol/L). During follow-up, plasma amino acid
levels were within normal range or showed mildly decreased glycine
and/or mildly increased alanine. Cerebrospinal fluid amino acids at ad-
mission were normal. Urinary organic acid analysis showed very high
lactate and ketone body levels at admission (lactic acid: 59mol/mol cre-
atinine, normal b76 mmol/mol creatinine and 3-hydroxybutyric acid:
45 mol/mol creatinine, normal b99 mmol/mol creatinine). Lactaturia
and ketonuria completely resolved within 48 h and reappeared accom-
panying a decompensation episode during follow-up. Otherwise, only
mildly increased lactate levels (1.5–2 fold ratios to normal upper
values) were intermittently detected in urine. No hypoglycemia was
observed. After the first acute episode, treated with hyperhydratation,
glucose infusion and bicarbonate, the child was evaluated for cognitive
functions: an intellectual disability was found (see below) and re-
educationswere proposed. Triheptanoin is amedium-chain triglyceride
containing fatty acidswith an “odd” number of carbons (seven) produc-
ing acetylCoA and propionylCoA, thereby providing anaplerotic inter-
mediate for the TCA cycle. Although this molecule dramatically
improved the neonatal distress of a previously described patient with
a severe form of PC deficiency [3], it was not available anymore for
our patient. Therefore, several alternativemedical assays aiming to pro-
duce TCA intermediates were performed in vivo and in vitro (see
below).

For in vitro therapeutic trials (see below), fibroblasts of a second pa-
tient (patient 2) were used.

We previously reported patient 2 who had a typical severe pheno-
type of PC deficiency [3]. Briefly, she presented at birth with axial hypo-
tonia but normal vigilance, a severe lactic acidosis associated with
pronounced ketonuria and hyperammonemia, and liver failure. Plasma
amino acid analysis revealed elevated lysine (713 μmol/L), alanine
(958 μmol/L), proline (801 μmol/L) and citrulline (158 μmol/L) and
low glutamine (264 μmol/L). This pattern is highly suggestive of the
French form of PC deficiency. We had obtained a transient but
spectacular clinical and biological improvement under triheptanoin
administration [3]. The patient died at 6months of age after develop-
ing severe infection resulting in fatal acute ketoacidosic distress.

2.2. Biochemical investigations

Lactate and pyruvate levels were determined in plasma by enzymat-
ic methods. Plasma amino acids were assayed by nihydrin colorimetry
(Jeol AminoTac Analyzers) and urinary organic acids by gas chromatog-
raphy–mass spectrometry (Varian Saturn-2000). Samples for organic
acid analysis were, whenever possible, from first morning urine.

2.3. Enzyme assays of PC and mitochondrial respiratory complexes

PCmeasurement in cultured fibroblasts was performed as previous-
ly described [4] as well as polarographic and spectrophotometric assay
of mitochondrial respiratory complexes in cultured fibroblasts [5].

2.4. Molecular investigation of PC gene

Mutations in PC gene had been previously reported for both patients
[1].

2.5. In vivo and in vitro drug assays

In vivo treatments were tested for patient 1, while in vitro assays
were performed on cultured fibroblasts of both patients 1 and 2.

2.5.1. In vivo treatments for patient 1
Fig. 2 shows all the treatments proposed to patient 1. Vitamin

therapy (thiamine, biotin, cobalamine, carnitine and riboflavin)
was initiated prior to any diagnosis. Biotin (10 mg/day) was contin-
ued after the diagnosis of PC deficiency was performed. At 26months
of age, aspartate (sargenor®) at a dose of 0.14 g/kg/day and citrate of
sodium and potassium (foncitril®) at a dose of 0.25 g/kg/day were
started (Fig. 2). Two months later, citrate of sodium and potassium
was replaced by citrate of betaine at a dose of 0.38 g/kg/day during
10months. Aspartate was stopped after 8months, at the time of a se-
vere metabolic distress. Oxoglutarate (cetornan®) was initiated at
age of 34 months (dose 20 g/day) as well as cornstarch at age 40
months (2 g/kg/day at bedtime) to maintain PDH activity during
the night. Citrate of betaine® was stopped (because of poor compli-
ance) at age of 38 months. Bezafibrate 0.2 g/day was introduced at
the age of 5 years and 5 months.

2.5.2. In vitro treatments for patient 1
PC-deficient skin fibroblasts were grown in RPMI 1640 containing

glucose (2 g/L) supplemented with 10% fetal calf serum (FCS) with
different conditions (citrate 1 mM, aspartate 1 mM, biotin 40 μl/mL,
nonanoate 20 mM) during 48 to 72 h. Cells were incubated at 37 °C
under a humidified atmosphere containing 5% CO2. At the end of
incubation, cells were removed by trypsinization and cell pellet was
aliquoted into Eppendorf tubes and directly used for polarographic
test and enzymatic measurements [6]. The supernatant of the different
culture flasks was stored at −20 °C until gas chromatography–mass
spectrometry analysis.

For bezafibrate treatment, patient 1 and control fibroblastswere first
grown in OptiMEM supplemented with Ultroser G and 3% FCS, then in
Ham F10 supplemented with 12% FCS. At 90% confluency, they were
treated with 400 μM bezafibrate during 72 h. Cells were removed by
trypsinization and cell pellets were stored at −80 °C until PC activity
measurement.

2.5.3. In vitro treatment for patient 2
Therapeutic assays for patient 2 fibroblasts were the same as for pa-

tient 1 fibroblasts, except for bezafibrate.

mi:1640


Fig. 2. Treatments and main biochemical data during follow-up in patient 1. Top panel, serum lactate levels (y-axis) against age. Three age intervals are defined, based on different com-
binations of proposed treatments.Mean lactate levels (m1–m3) and the t-test p-values of the comparisons between the corresponding groups are indicated above the panel.Middle panel,
the proposed therapies over different age intervals as indicated by the boxes. Bottom panel, selected organic acid levels (y-axis: millimoles/mole of creatinine).
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3. Results

3.1. Pyruvate carboxylase deficiency

For patient 1, PC assay in cultured fibroblasts was performed as part
of the systematic investigation of lactic acidosis, even though a bio-
chemical diagnosis of MRC deficiency had been proposed initially (see
below). By enzyme assays PC enzyme activity was overtly deficient
(no detectable activity; normal range= 0.10–0.80 nmol/mn/mg of pro-
teins; control = 0.30) with normal propionylCoA carboxylase (0.16
nmol/mn/mg of proteins; normal range = 0.10–0.90; control = 0.20)
and normal biotinidase activities. We concluded to a clinical and bio-
chemical moderate form (group A) of PC deficiency.

By contrast, patient 2 was highly suspected of the disorder because
of characteristic features including a typical plasma amino acid profile
at birth ([3] and seeDiscussion). Enzyme assays infibroblasts confirmed
PC deficiency (type B).

Molecular genetic investigation confirmed primary PC deficiency in
both patients. As described in Table 1, patient 1 was a compound het-
erozygote for two missense mutations, c.808CNT (p.Arg270Trp) and
c.1892GNA (p.Arg631Gln). Patient 2 was a compound heterozygote for
a frameshift mutation leading to a premature codon stop in intron 7 ac-
ceptor splice site c.1023-1GNT (p.Asp341GlufsX351) and to the absence
of functional protein, and for a missense mutation c.911ANG
(p.Tyr304Cys). The missense mutations involved evolutionary con-
served residues. Arg 270 and Tyr 304 are situated in the BC domain.
Arg 270 is within a motif previously involved in bicarbonate binding
[7], and in a region involved in interactions between the BC and the
BCCP domain. Tyr 304 is localized close to the ATP binding site. Arg
631 is localized at the surface of the CT domain, close to the putative al-
losteric binding site [1].

3.2. Secondary mitochondrial respiratory chain defect

Spectrophotometric assay of mitochondrial respiratory com-
plexes was performed for patient 1 because of inconclusive plasma
amino acid chromatography. An isolated partial C IV deficiency was
identified in cultured fibroblasts of both patients (patient's 1 fibro-
blasts: 180 nmol/min/mg of protein; normal control range be-
tween 308 and 457; patient's 2 fibroblasts: 223 nmol/min/mg of
protein). In a subsequent assay, a decreased complex IV (C IV) to
complex II + III (C II + III) ratio was found in both patient
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fibroblasts (respectively 1.8 and 1.75 for patients 1 and 2; normal
range: 2.67–3.14).

3.3. Clinical follow-up

Except for a second episode of metabolic decompensation occurring
at 38months of age, patient 1 remainedmetabolically stable and had in-
tellectual disability (IQ 69, verbal IQ 63 and performance IQ 83). At 5
years of age, he attained high section of preschool and needed some
orthophonist reeducation. We found no regression event and he cur-
rently continues to make progress. At age 7 years, he required special-
ized school. No clinical difference was observed with any medication
and all except biotin have been stopped.

3.4. Biochemical follow-up

The various therapeutic protocols did not led to any change in plas-
ma lactate and amino acid levels and in organic acids in cultured fibro-
blasts whatever the severity of the disease (data not shown).
Concomitant with both acute decompensations of patient 1, mild lactic
acidosis was recurrently noted between 2.2 and 5 mmol/L along with
increased urinary lactate and alpha-oxoglutarate. Fig. 2 shows patient
1 plasma lactate levels and selected urine organic acids during follow-
up, alongwith the tested therapies (see Patients andMethods). Organic
acids (Fig. 1, bottom panel) were significantly altered only during the
single decompensation episode. Lactate levels were significantly (p =
0.032) though moderately reduced under bezafibrate therapy (from
2.75 to 2.14 mM; Fig. 1, top panel), whereas all other drugs alone or in
combination did not show any obvious effect. Fig. 3 shows that patient
1 fibroblast PC activity remained unchanged and very low following
72 h treatment with 400 μM bezafibrate. Nevertheless in control fibro-
blasts, PC activity was induced two-fold by this drug.

4. Discussion

We report on a moderate form (the American type A) of pyruvate
carboxylase (patient 1) in which diagnosis was essentially fortuitous, re-
vising an initial diagnosis of mitochondrial C IV defect. We compare this
patient to a previous case of severe PC deficiency (type B) previously de-
scribed in our unit (patient 2) [3] and we retrospectively reveal second-
ary C IV deficiency in this patient as well, as shown in Table 1. In an
attempt to identify anaplerotic surrogates to triheptanoin, different
drug regimens were carried with patient 1 and several assays were car-
ried in vitro for both patients. Indeed, triheptanoin is a triglyceride con-
taining a 7 carbon fatty acid and was found to be transiently effective
in patient 2, as described previously [3,8]. It was unfortunately no longer
available to us.
Fig. 3. Effect of bezafibrate treatment on PC activity. PC activity wasmeasured in patient 1
fibroblasts under basal conditions (gray bars) or after a 72 h treatment with 400 μM
bezafibrate (black bars). Y-axis: PC activity in nmol/min/mg proteins.
Patient 1 had a non-specific clinical presentation of lactic acidosis
and intellectual disability consistent with either type A of PC deficiency
or a mitochondrial respiratory chain (MRC) defect. The oxidoreduction
markers and amino acids in plasma did not enable us to discriminate be-
tween these diseases. Indeed, oxidoreduction analysis was not informa-
tive (therewas no decrease in the 3-hydroxybutyrate/acetoacetate ratio
associated with increased lactate/pyruvate ratio), and the characteristic
amino acid profile of PC deficiency group B was absent: the patient had
neither hypercitrullinemia nor hyperlysinemia. Conversely, plasma
amino acid profiles were highly suggestive of a neonatal form of PC de-
ficiency in patient 2. Indeed, this patient presentedwith lowplasma glu-
tamine level (related to the impaired anaplerosis of the Krebs cycle)
along with a secondary urea cycle dysfunction biochemical phenotype
including elevated ammonemia and plasma citrulline levels, resulting
from decreased cytosolic aspartate. Similarly, in line with the French
form of PC deficiency, patient 2 presented with signs of “reduced cyto-
sol” and “oxidized mitochondria”. “Reduced cytosol” is due to low oxa-
loacetate level and is associated with an increased NADH/NAD ratio,
accounting for elevated lactate to pyruvate ratio as detected in plasma.
The “oxidized mitochondria” with low NADH/NAD ratio in mitochon-
dria is related to the decreased 3OHbutyrate to acetoacetate ratio [2].

Patient 1 was initially diagnosed with a mitochondrial respirato-
ry C IV defect, which was subsequently recognized as a secondary
consequence of the PC defect. This illustrates the difficulty to estab-
lish a diagnosis of energetic disorders based on the combination of
clinical findings and intermediate activities of the MRC enzyme
complexes. Clinical and biochemical features are diverse and dis-
play mild specificity [6] including the pattern of lactate and associ-
ated amino acid alterations (high alanine and proline) in blood
and CSF as previously reported in the “American form” of PC defi-
ciency [9]. Our results raise the possibility that the moderate
(American) type of PC deficiency may be underdiagnosed and
should be considered for patients with unexplained lactic acidosis.
Intermediate activities of MRC enzymes should be interpreted
with caution and may be seen in a variety of other mitochondrial
disorders [10]. The modified Walker diagnostic criteria suggested
that MRC complex activity should be less than 20% of control citrate
synthase or complex II activity in a tissue in order to be considered a
convincing diagnostic criterion of primary MRC defect [11]. Until
now, PC deficiency has not been described as a possible cause of sec-
ondary MRC deficiency except in one case of holocarboxylase syn-
thetase deficiency [12]. However other diseases with secondary
MRC defect have been described including pyruvate dehydrogenase
(PDHc) deficiency (OMIM 312170), which is themost frequently re-
ported one [12], fatty acid oxidation defects [13–16], neonatal he-
mochromatosis (OMIM 231100) [12,17], pantothenate kinase
deficiency (OMIM 606157) [12], holocarboxylase synthetase defi-
ciency (OMIM 253270) [12], molybdenum cofactor deficiency [9],
spino-cerebellar ataxia type 7 (OMIM 164500) [18,19], Menkes dis-
ease (OMIM 309400) [20,21], Wilson disease (OMIM 277900) [17],
OTC deficiency (OMIM 311250) [17], progressive familial
intrahepatic cholestasis type 2 (OMIM 601847) [22], hereditary
spastic paraparesis type 7 (OMIM 607259) [23], Fanconi–Bickel
syndrome (OMIM 227810) [24], autism spectrum disorder (ASD)
[25,26] and more recently organic acidurias [27,28].

The pathogenic mechanism of secondary MRC deficiency may result
from secondary down-regulation due to redox imbalance and de-
creased entry of substrate to theMRC [12], i.e. low levels of oxaloacetate
in PC deficiency resulting in diminished flux through the TCA cycle and
impaired ability of the TCA cycle to produce adequate reducing power
for electron transport. Accumulation of toxic metabolites in the inner
mitochondrial membrane has also been proposed, which directly in-
hibits MRC enzymes or acts as a “detergent-like” on biomembranes,
such as acyl-CoA metabolites in fatty acid oxidation deficiency [12,13,
29–32]. Because PC is localized within the mitochondria matrix, abnor-
mal import and/or assembly of theMRC complex subunits are possible –
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as described with PDHc, beta-oxidation pathway and TCA cycle en-
zymes –due to the presence ofmacromolecular complexes involvingdi-
rect interactions between these enzymatic components [33]. Finally, PC
deficiency could interfere with MRC regulation [18] as mitochondrial
transcription rates correlate directly with the ability to produce ATP
and ATP levels [34,35]. Inversely, a primary MRC defect can also induce
a secondary TCA cycle defect and/or fatty acid oxidation enzyme inhibi-
tion defects by accumulation of NADH, hence an increased NADH/NAD-
ratio [28,36–38].

In addition to genetic counseling, an efficient diagnostic protocol for
TCA cycle defects could be put forward as it could involve potential ther-
apies. Several trials have been led (see [2] for review). Indeed,
anaplerotic substrates may increase availability of Krebs cycle interme-
diate compounds [39] and replenish the oxaloacetate pool, as observed
albeit only transiently in one patient under triheptanoin [8]. The C5 ke-
tone bodies, which are “odd” carbon number compounds derived from
the oxidation of triheptanoin, provide the anaplerotic propionylCoA
substrate, as well as acetylCoA, and can fuel the TCA cycle. Triheptanoin
was found to be transiently effective in patient 2 as previously de-
scribed; however, a recent report reported that triheptanoin was inef-
fective in two patients with type B PC deficiency [40]. Indeed, these
patients showed persistent hyperlactatemia, episodes of severe
ketoacidosis, renal tubular acidosis and little neurodevelopmental prog-
ress. They died at the age of 7 and 8months respectively. Triheptanoin is
also used in the treatment of other inherited metabolic diseases such as
GLUT1 deficiency syndrome (GLUT1DS; OMIM 606777) or in β-
oxidation defects. In GLUT1DS, the compound was found to decrease
spike-wave seizures and improved neuropsychological performances
[41]. In three patients with VLCAD deficiency (OMIM 201475),
triheptanoin led to clinical improvement with decrease of rhabdomyol-
ysis crises andmuscleweakness. Cardiomyopathy disappeared in one of
them [42]. In seven patients with myopathic CPT2 deficiency (OMIM
255110), triheptanoin reduced muscle pain [43]. However triheptanoin
was impossible to obtain for our patient. Other substrates provide inter-
esting alternatives including dicarboxylic acids such as azelate [44], a
precursor of succinic acid and acetyl-CoA. However, biochemical inves-
tigations performed by incubating the patient fibroblasts with four dif-
ferent compounds (citrate, aspartate, biotin and nonanoate) did not
show any effect (data not shown). Moreover, the clinical evolution
and the biological parameters (plasma lactate) were unmodified except
for a partial, possible effect of bezafibrate in patient 1. In VLCAD and
CPT2 deficient fibroblasts, bezafibratewas shown to increasemRNA ex-
pression and correct deficiency [45,46]. In adipocytes, PC mRNA and
protein levels correlate with PPAR-γ expression, and a PPAR response
element in the PC gene promoter has been identified [47]. A 1.4 fold in-
crease of PC mRNA expression was found in β-cells of rat pancreatic is-
lets after an 8 h treatment by 300 μM bezafibrate and persists after a
48 h treatment [48]. We suggested the possibility that in patient 1,
who showed a slight decrease of lactatemia under bezafibrate, this mol-
ecule may act by increasing PC mRNA expression thereby resulting in
greater residual activity of the mutant PC enzyme. As a consequence,
we decided to test bezafibrate effect on PC activity in patient 1 fibro-
blasts. We found a two-fold increase of PC activity in control fibroblasts
after a 72 h treatment with 400 μM bezafibrate. Unfortunately, this
treatment was unable to increase PC activity in patient 1 (i.e., enzyme
activity did not rise above background despite the moderate type A of
the disease). In patient 1, p.Arg270Trpmay have an impact on bicarbon-
ate binding, biotin binding andmay destabilize the interdomain interac-
tions. p.Arg631Glnmight alter interactions between CT and BC domains
and disturb the transmission of the regulatory signal delivered by
acetyl-coA [1]. The increase in mRNA and protein levels might not com-
pensate for the functional consequences of these mutations. Neverthe-
less, these results raise the possibility that, for some mutations leading
to milder type C of the disease, in the presence of sufficient residual ac-
tivity, bezafibrate might be beneficial. In patient 1, the moderate de-
crease of lactatemia under bezafibrate might be a consequence of
respiratory chain stimulation [49]. Nevertheless, it is important to note
that the liver is the true tissue of interest in PC deficiency, and the fibro-
blasts a surrogate. Also bezafibrate action could vary in the liver and fi-
broblasts in the same patient, and might possibly explain the decrease
of lactate in the patient in spite of unchanged enzyme activity in fibro-
blasts. The parents eventually stopped all medications except biotin.

In summary, we report on one patient with themoderate form of PC
deficiency and a secondary C IV deficiency in fibroblasts. Based on the
non-specific metabolic profile of our patient, we suggest that PC defects
may currently be underdiagnosed. Anaplerotic substrates may repre-
sent a therapeutic option for these severe energetic diseases, but further
investigations are necessary as our in vitro results have been disap-
pointing with several of these compounds. A possibly more effective
anaplerotic drug, triheptanoin, is no longer available. Depending on
the causative mutation and on the severity of the deficit, bezafibrate
might represent an interesting option to increase residual activity.
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