A. Clark and N. Mach, Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes, J. Int. Soc. Sports Nutr, vol.13, p.43, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01606853

A. Clark and N. Mach, The Crosstalk between the Gut Microbiota and Mitochondria during Exercise, Front. Physiol, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604194

N. Mach and D. Fuster-botella, Endurance exercise and gut microbiota: A review, J. Sport Heal. Sci, vol.6, p.179, 2017.

N. Mach, Understanding the response to endurance exercise using a systems biology approach: combining blood metabolomics, transcriptomics and miRNomics in horses, BMC Genomics, vol.18, p.187, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602618

N. Mach, Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse, Sci. Rep, vol.6, p.22932, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02489989

P. Knuiman, M. T. Hopman, and M. Mensink, Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise, Nutr. Metab, vol.12, pp.1-11, 2015.

Z. Radak, H. Y. Chung, E. Koltai, A. W. Taylor, and S. Goto, Exercise, oxidative stress and hormesis, Ageing Res. Rev, vol.7, pp.34-42, 2008.

K. Mukherjee, Whole blood transcriptomics and urinary metabolomics to define adaptive biochemical pathways of highintensity exercise in 50-60 year old masters athletes, PLoS One, vol.9, 2014.

W. Barton, The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level, Gut, vol.67, p.625, 2017.

E. Denou, K. Marcinko, M. G. Surette, G. R. Steinberg, and J. D. Schertzer, High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity, Am. J. Physiol. -Endocrinol. Metab, vol.310, pp.982-993, 2016.

M. Estaki, Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions, vol.4, pp.1-13, 2016.

M. Matsumoto, Voluntary Running Exercise Alters Microbiota Composition and Increases n-Butyrate Concentration in the Rat Cecum, Biosci. Biotechnol. Biochem, vol.72, pp.572-576, 2008.


J. M. Allen, Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice, J. Appl. Physiol, vol.118, pp.1059-1066, 2015.

R. I. Mackie and C. A. Wilkins, Enumeration of anaerobic bacterial microflora of the equine gastrointestinal tract, Appl. Environ. Microbiol, vol.54, pp.2155-2160, 1988.

S. M. Steelman, B. P. Chowdhary, S. Dowd, J. Suchodolski, and J. E. Jane?ka, Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis, BMC Vet. Res, vol.8, p.231, 2012.

E. B. Venable, Effects of Feeding Management on the Equine Cecal Microbiota, J. Equine Vet. Sci, vol.49, pp.113-121, 2017.

N. Mach, The effects of weaning methods on gut microbiota composition and horse physiology, Front. Physiol, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578843

M. C. Costa, Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16s rRNA gene, PLoS One, vol.7, 2012.

M. L. Shepherd, W. S. Swecker, R. V. Jensen, and M. A. Ponder, Characterization of the fecal bacteria communities of forage-fed horses by pyrosequencing of 16S rRNA V4 gene amplicons, FEMS Microbiol. Lett, vol.326, pp.62-68, 2012.

M. C. Costa, Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments in horses, Vet. J, vol.205, pp.74-80, 2015.

J. S. Weese, Changes in the faecal microbiota of mares precede the development of post partum colic, Equine Vet. J, vol.47, pp.641-649, 2015.

S. E. Salem, Variation in faecal microbiota in a group of horses managed at pasture over a 12-month period, Sci. Rep, vol.8, pp.1-10, 2018.

V. Julliand and P. Grimm, The Impact of Diet on the Hindgut Microbiome, J. Equine Vet. Sci, vol.52, pp.23-28, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01513594

K. Daly, Alterations in microbiota and fermentation products in equine large intestine in response to dietary variation and intestinal disease, Br. J. Nutr, vol.107, pp.989-995, 2012.

N. Hansen, High nutrient availability reduces the diversity and stability of the equine caecal microbiota, Microb. Ecol. Health Dis, vol.1, pp.1-8, 2015.

K. Dougal, Characterisation of the faecal bacterial community in adult and elderly horses fed a high fibre, high oil or high starch diet using 454 pyrosequencing, PLoS One, vol.9, 2014.

K. A. Fernandes, Faecal microbiota of forage-fed horses in New Zealand and the population dynamics of microbial communities following dietary change, PLoS One, vol.9, p.112846, 2014.

B. Willing, Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training, Equine Vet. J, vol.41, pp.908-914, 2009.

B. E. Harlow, T. M. Donley, L. M. Lawrence, and M. D. Flythe, Effect of starch source (corn, oats or wheat) and concentration on fermentation by equine faecal microbiota in vitro, J. Appl. Microbiol, vol.119, pp.1234-1244, 2015.

K. Daly, C. S. Stewart, H. J. Flint, and S. P. Shirazy-beechey, Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes, FEMS Microbiol. Ecol, vol.38, pp.141-151, 2001.

K. Dougal, Identification of a Core Bacterial Community within the Large Intestine of the Horse, PLoS One, vol.8, 2013.

A. Destrez, P. Grimm, and V. Julliand, Dietary-induced modulation of the hindgut microbiota is related to behavioral responses during stressful events in horses, Physiol. Behav, vol.202, pp.94-100, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02067208

R. E. Antwis, J. M. Lea, B. Unwin, and S. Shultz, Gut microbiome composition is associated with spatial structuring and social interactions in semi-feral Welsh Mountain ponies, vol.6, p.207, 2018.

A. S. Biddle, J. Tomb, and Z. Fan, Microbiome and Blood Analyte Differences Point to Community and Metabolic Signatures in Lean and Obese Horses, Front. Vet. Sci, vol.5, pp.12-14, 2018.

A. H. Janabi, A. S. Biddle, D. Klein, and K. H. Mckeever, Exercise training-induced changes in the gut microbiota of Standardbred racehorses, Comp. Exerc. Physiol, vol.12, pp.119-130, 2016.

S. Rasmussen, Richness of human gut microbiome correlates with metabolic markers, Nature, vol.500, pp.541-546, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190602

A. Jansson and J. E. Lindberg, A forage-only diet alters the metabolic response of horses in training Animal, 1939.

D. Donohoe, The warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation, Mol. Cell, vol.48, p.612, 2012.

A. Biddle, L. Stewart, J. Blanchard, and S. Leschine, Untangling the genetic basis of fibrolytic specialization by lachnospiraceae and ruminococcaceae in diverse gut communities, Diversity, vol.5, pp.627-640, 2013.

A. Clark, Strongyle infection and gut microbiota: Profiling of resistant and susceptible horses over a grazing season, Front. Physiol, vol.9, 2018.

J. H. Pan, Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties, Biosci. Biotechnol. Biochem, vol.79, pp.1535-1541, 2015.

D. Kim, S. Kim, W. Jeong, and H. Lee, Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances, J. Exerc. Nutr. Biochem, vol.17, pp.169-180, 2015.

T. W. Whon, Data Descriptor: The effects of sequencing platforms on phylogenetic resolution in 16S rRNA gene profiling of human feces, Sci. Data, vol.5, pp.1-15, 2018.

J. Jovel, Characterization of the gut microbiome using 16S or shotgun metagenomics, Front. Microbiol, vol.7, pp.1-17, 2016.

C. Lozupone, J. Stomabaugh, J. Gordon, J. Jansson, and R. Knight, Diversity, stability and resilience of the human gut microbiota, Nature, vol.489, pp.220-230, 2012.

R. M. Cawthon, Telomere measurement by quantitative PCR, Nucleic Acids Res, vol.30, pp.47-47, 2002.

F. Dieterle, A. Ross, G. Schlotterbeck, and H. Senn, Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics, Anal. Chem, vol.78, pp.4281-4290, 2006.

L. Moyec and L. , Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses, PLoS One, vol.9, pp.1-10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00973735

C. Zheng, S. Zhang, S. Ragg, D. Raftery, and O. Vitek, Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection, Bioinformatics, vol.27, pp.1637-1644, 2011.

J. G. Caporaso, correspondence QIIME allows analysis of high-throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing, Nat. Publ. Gr, vol.7, pp.335-336, 2010.

J. R. Rideout, Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences, PeerJ, vol.2, p.545, 2014.

J. A. Navas-molina, Advancing our understanding of the human microbiome using QIIME, Methods Enzymol, vol.531, p.371, 2013.

T. Z. Desantis, Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB, Appl. Environ. Microbiol, vol.72, pp.5069-5072, 2006.

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.26, pp.2460-2461, 2010.

R. C. Edgar, B. J. Haas, J. C. Clemente, C. Quince, and R. Knight, UCHIME improves sensitivity and speed of chimera detection, Bioinformatics, vol.27, pp.2194-2200, 2011.

M. N. Price, P. S. Dehal, and A. P. Arkin, FastTree 2 -Approximately maximum-likelihood trees for large alignments, PLoS One, vol.5, 2010.

J. R. Cole, The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis, Nucleic Acids Res, vol.37, pp.141-145, 2009.

J. De-la-cuesta-zuluaga and J. S. Escobar, Considerations For Optimizing Microbiome Analysis Using a Marker Gene, Front. Nutr, vol.3, pp.1-12, 2016.

P. J. Mcmurdie and S. Holmes, Phyloseq: a bioconductor package for handling and Analysis of High-Throughput Phylogenetic Sequence Data, Pac. Symp. Biocomput, vol.1, pp.235-246, 2012.

P. Dixon, VEGAN, a package of R functions for community ecology, J. Veg. Sci, vol.14, p.927, 2003.

C. De-filippo, Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa, Proc. Natl. Acad. Sci, vol.107, pp.14691-14696, 2010.

J. Fernandes, W. Su, T. M. Wolever, and E. M. Comelli, Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans, Nutr. Diabetes, vol.4, p.121, 2014.

W. Martin-rosset, Equine Nutrition: INRA nutrient requirements, recommended allowances and feed tables, p.696, 2015.

W. Martin-rosset, M. Vermorel, M. Doreau, J. L. Tisserand, and J. Andrieu, The French horse feed evaluation systems and recommended allowances for energy and protein, Livest. Prod. Sci, vol.40, pp.37-56, 1994.

M. Arumugam, Enterotypes of the human gut microbiome, Nature, vol.473, pp.174-180, 2013.
URL : https://hal.archives-ouvertes.fr/cea-00903625

T. Ding and P. D. Schloss, Dynamics and associations of microbial community types across the human body, Nature, vol.509, pp.357-60, 2014.

L. Kaufman and P. J. Rousseuw, Finding Groups in Data: An Introduction to Cluster Analysis, Biometrics, vol.47, p.788, 1991.

P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math, vol.20, pp.53-65, 1987.

T. Calinski and J. Harabasz, A dendrite method for cluster analysis, Commun. Stat. -Theory Methods, vol.3, pp.1-27, 1974.

J. P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov, Metagenes and molecular pattern discovery using matrix factorization, Proc Natl Acad Sci, vol.101, pp.4164-4169, 2004.

A. Reverter and E. K. Chan, Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks, Bioinformatics, vol.24, pp.2491-2497, 2008.

K. R. Clarke and M. Ainsworth, A method of linking multivariate community structure to environmental variables, Mar. Ecol. Prog. Ser, vol.92, pp.205-219, 1993.

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple. Testing, J. R. Stat. Soc. Ser. B, vol.57, pp.289-300, 1995.