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Abstract—Few-shot segmentation presents a significant chal-
lenge for semantic scene understanding under limited supervi-
sion. Namely, this task targets at generalizing the segmentation
ability of the model to new categories given a few samples.
In order to obtain complete scene information, we extend the
RGB-centric methods to take advantage of complementary depth
information. In this paper, we propose a two-stream deep neural
network based on metric learning. Our method, known as RDNet,
learns class-specific prototype representations within RGB and
depth embedding spaces, respectively. The learned prototypes
provide effective semantic guidance on the corresponding RGB
and depth query image, leading to more accurate performance.
Moreover, we build a novel outdoor scene dataset, known as
Cityscapes-3‘, using labeled RGB images and depth images
from the Cityscapes dataset. We also perform ablation studies
to explore the effective use of depth information in few-shot
segmentation tasks. Experiments on Cityscapes-3° show that our
method achieves excellent results with visual and complementary
geometric cues from only a few labeled examples.

I. INTRODUCTION

With the advent of multiple sensory modalities, multimodal
data has attracted much attention in the computer vision
domain. As one of the most commonly-used modalities, depth-
sensing cameras provide rich geometric information of the
scenes. Several deep neural networks exploit these depth maps
as an addition image channel [1, 2] or point cloud in 3D
space [3, 4]. Arguably, the integration of additional depth
features in semantic image segmentation leads to significant
performance improvement. Different from fully supervised
semantic segmentation, few-shot segmentation concentrates on
the generalization of segmentation ability to unseen categories
given only a few samples. To be specific, some existing few-
shot segmentation methods learn the representative features
for each target class in the support images, then guide the
pixel-level prediction on the query image. However, the gen-
eralization and discrimination abilities of these methods still
remain to be improved, especially for complex scenes.

For the above reasons, we take inspiration from existing
RGB-centric methods for few-shot semantic segmentation and
propose a two-stream deep neural network based on metric
learning, called RDNet. The original intention of our work is
to incorporate supplementary depth information into a few-
shot segmentation model. As shown in Figure 1, the proposed
RDNet employs both RGB and depth images of the same
scene in the support and query set. The abstract foreground
and background features of target classes are embedded into
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Fig. 1: Overview of the proposed RDNet approach. R and
D indicate the RGB and depth image input, respectively. The
abstract features of labeled support images are mapped into the
corresponding embedding space (circles). Multiple prototypes
(blue and yellow solid circles) are generated to perform seman-
tic guidance (dashed lines) on the corresponding query features
(rhombus). RDNet further produces the final prediction by
combining the probability maps from RGB and depth stream.

the corresponding embedding space. These prototype repre-
sentations learned from RGB and depth inputs provide further
similarity guidance on the query feature. Then our RDNet
fuses multiple probability maps generated by the two streams
into a joint prediction. In this way, our method outperforms
the baseline networks with higher accuracy.

Furthermore, we report the experimental results on a
new benchmark dataset, Cityscapes-3’. Different from the
frequently-used PASCAL-5¢ dataset for object segmentation,
Cityscapes-3' is derived from the large-scale Cityscapes
dataset, which consists of diverse urban street scenes at
varying times. Complex category information greatly increases
the difficulty of scene understanding, especially with limited
supervisory samples. To tackle this challenge, we conduct
various comparative experiments to exploit the potential of



depth information and effective fusion pattern. To the best
of our knowledge, we are the first to facilitate the few-
shot segmentation problem with additional depth cues. This
work also promotes the use of multimodal data in the few-
shot learning field. To sum up, the main contributions are
summarized as follows:

o We propose a metric learning-based deep neural network
for few-shot semantic segmentation, which processes
RGB-D data in two streams.

o We define a new few-shot segmentation benchmark on
the Cityscapes dataset, named Cityscapes-3.

o Extensive experiments and ablation studies demonstrate
the effectiveness of the proposed RDNet, as well as
the positive effects of geometric information in limited
supervisory scene understanding.

The remainder of this paper is organized as follows. Section
II reviews the related work in fully-supervised RGB-D seman-
tic segmentation and state of the art for few-shot segmentation.
Section III describes the proposed two-stream architecture
in detail. Section IV presents a new few-shot segmentation
benchmark called Cityscapes-3°. Section V reports the ex-
tensive experimental results as well as the ablation studies.
Conclusions are drawn in Section VI.

II. RELATED WORK

a) RGB-D Semantic Segmentation: Recent advances in
deep learning enable the fully-supervised semantic segmen-
tation on 2D images to achieve a significant performance
enhancement [5, 6, 7]. With the advent of various depth
sensors, a growing number of approaches have been proposed
which use depth cues for complex scene understanding. To
name a few, Qi et al. [8] proposed a 3D graph neural network
that builds a k-nearest neighbor graph on top of the 3D
point cloud. This method employs both the 2D appearance
information and 3D geometric relations to produce excellent
results on RGB-D segmentation benchmarks. In [3, 4], a series
of PointNet was proposed to take point clouds as input and
output point clouds directly. These architectures can effectively
learn representative features from informative points of the
point cloud.

Otherwise, some works [1, 2, 9, 10, 11] attempt to tackle
RGB-D semantic segmentation tasks by processing geomet-
ric information as a supplementary image or an additional
channel. Namely, multimodal image input was fed into an
elaborated neural network for a joint prediction. As an al-
ternative method, RGB and depth images can be separately
trained in a two-branch network. Moreover, Gupta et al. [12]
presented a geocentric embedding algorithm to generate three
channels HHA images, which contain horizontal disparity,
surface normal, and height above ground. In our work, we
process depth information by combining a complementary
depth stream with the RGB one. Then our model maps the
support depth data into a depth embedding space, which
provides further semantic guidance on the query image.

b) Few-shot Segmentation: Many approaches for few-
shot learning are proposed to generalize prior knowledge to
new tasks using only a few examples. Some research [13, 14]
introduced the metric learning-based matching network for
the few-shot classification task. The non-parametric structure
facilitates the generalization of models to new training sets.
Snell et al. [15] presented a method to represent the prototypes
per class in a representation space, known as Prototypical
Networks. Moreover, several studies such as [16] have focused
on the graph-based methods for few-shot learning.

Furthermore, few-shot semantic segmentation refers to the
pixel-level prediction of new categories on the query set, given
only a few labeled support images. For example, Shaban et al.
[17] first presents a dual branch parallel network for one-shot
segmentation, known as OSLSM, including a conditioning
branch and a segmentation branch. The conditioning branch
extracts representative high-level features from the supporting
image-label pair, whilst the segmentation branch integrates the
parameters learned from the conditioning branch and performs
a segmentation mask on the query image. Other variants of
OSLSM include Co-FCN [18], PL+SEG [19] and MDL [20].
All of which extend such dual branch structure to achieve
a substantial performance improvement. In the AMP model,
Siam et al. [21] replaces the guidance branch with a multi-
resolution weight. Moreover, SG-One [22] proposed a Masked
Average Pooling block (MAP) to extract the representative
vectors of support objects. Then the segmentation mask was
predicted via a similarity guidance network. More recently,
Wang et al. [23] presents a novel prototype alignment network,
called PANet, based on non-parametric metric learning.

III. METHODOLOGY
A. Problem setting

Few-shot semantic segmentation involves three datasets: a
training set Dy,.qip, @ support set Dy, and a query set D,. The
segmentation model is trained on Dy;.4;y,, and evaluated on D
and D,. Moreover, we adopt the training and testing protocols
in [17]. Suppose the set of semantic classes in Dyyqin 1S Cseen-
We assume that the set of classes at test time, C\,,seen, dO€S
not overlap with Cyeen, 1.6. CseenNCunseen = 0. We formally
define these datasets in the following lines:

N
o Divain = (B, 2P, y(1);),_,, where

;" is a color image,

xP is a depth image of the same scene, y(1); denotes the

corresponding segmentation mask of class [ (I € Cgeen),
and N indicates the number of training examples.

e D, = (xf,xf,y(l)j)jj\il, where z1* and 2 denote the
corresponding RGB and depth image, y(I); is the mask
for the semantic class [ (I € Cynseen), and M indicates
the number of labeled samples given in the test phase.

e D, = (xf,zf)?:l is the query set of n pairs of RGB
and depth images. Evaluations on D, show the relative

performance of the models.
Therefore the goal of few-shot segmentation is to train a
model f with high discriminative power and generalizability
from Dy;.qin, then produces a segmentation prediction on D
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Fig. 2: Details of the proposed RDNet architecture. It includes two mirrored streams: an RGB stream and a depth stream. Each
stream processes the corresponding input data, including a support set and a query set. The prototypes of support images are
obtained by masked average pooling. Then the semantic guidance is performed on the query feature by computing the relative
cosine distance. The results from these two streams are combined at the late stage.

given a support set D,. Usually, if the the support set consists
of K labeled samples for each of C semantic classes, we
consider such few-shot learning problem as C-way K-shot
segmentation task.

B. Proposed model

The main motivation of our work is to facilitate the few-
shot segmentation task by incorporating complementary depth
information. Existing supervised semantic segmentation ap-
proaches for RGB-D data do not offer a satisfactory solution
to learn new categories rapidly from limited data. For this rea-
son, we employ ideas from previous work of non-parametric
metric learning and propose a two-stream deep neural network
(RDNet). The main novelty of this study is to separately
learn the RGB and depth prototype representations in different
embedding spaces. The learned prototypes are applied to the
corresponding query features as semantic guidance. Then we
integrate the results from these two streams for an improved
segmentation performance.

RGB-D input As shown in Figure 2, the proposed RDNet
consists of two mirrored prototypical networks, which process
RGB and depth input separately. Note that the support and
query set through the depth stream provide the same scene
information as the RGB Stream. Then the support images
are embedded into high-level abstract features via a base

network. For efficient implementation, we adopt a VGG-16 as
the backbone network following the setup in [23]. In this way,
we can map RGB and depth data into different embedding
spaces.

Prototype learning for RGB-D data Snell et al. [15] pro-
posed a prototypical network that learns a common metric
space. Few-shot classification can be achieved by computing
distances to prototype representations of each class. We em-
ploy the Masked Average Pooling [22] to build pre-class proto-
types from both foreground and background information of the
support images. Given a support set D, = (zf, 27, y(l)j)jle
(see Section III-A), let F'(1)} be the output feature maps of the
base network with support RGB or depth input. Then F'(I),
denotes the resized feature maps, which have the same width
w and height h as the semantic mask y(); € {0, 1}V,
The prototype of target class [ can then defined via Masked
Average Pooling by the following equation:

oo FOT M 1y =1)

De = i Z Zw:O,h:O
¢ w,h w,h
M j o w=0,h=0 ]l[y(l)g = l]

where 1(-) is the indicator function that equals to 1 if the
argument is true or 0 otherwise. Similarly, the prototypes for
the background can be computed with Il[y(l)gw’h) #£1]. Tt is
notable that both foreground and background information of
RGD and depth images should be considered in this work.

D
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Fig. 3: Visualization using t-SNE [24] for RGB and depth prototype representations in our RDNet.

These representative prototypes are the premise of reliable
semantic guidance. To take an example, Figure 3 shows the
visualization of RGB and depth prototype representations in
our experiments.

Similarity guidance and feature fusion We compare the
abstract query feature with expressive prototypes using dis-
tance metric learning method. To be specific, we map the
query feature vector into the corresponding embedding space.
The computed cosine distance indicates the similarity of
target class. Besides, according to the previous work in fully-
supervised semantic segmentation with RGB-D data [1, 11],
there are two main fusion stategies, i.e., early fusion and
late fusion [25, 26]. In our work, we employ the late fusion
strategy, and concatenate all the probability maps generated
from RGB and depth steams for a joint prediction.

IV. DATASET

To fully exploit few-shot semantic segmentation with ad-
ditional depth information, we create a new dataset, named
Cityscapes-3'. We adopt the annotated RGB images and the
depth images of the same scene from the Cityscapes dataset
[27]. Cityscapes is a popular benchmark dataset for semantic
understanding of outdoor scenes, which consists of thousands
of precise depth images and pixel-wise semantic segmentation.
Compared with object segmentation datasets such as PASCAL
VOC [28] and COCO [29], it is more challenging to predict
a pixel-wise mask for semantic classes in the image of
Cityscapes. First, Cityscapes contains more complex urban

TABLE I: Training and evaluation on Cityscapes-3' dataset
using 3-fold cross-validation, where ¢ denotes the number of
subsets.

Test classes

road, sidewalk, bus
vegetation, terrain, sky
human, car, building

Dataset

Cityscapes-3°
Cityscapes-3T
Cityscapes-32

street scenes. Images provide a broader perspective from the
ground to the sky, involving a variety of categories. Then,
most of the categories in the image have irregular shapes and
lack distinct boundaries. Objects may overlap and be arranged
randomly. Therefore it is a difficult task for segmentation
models to learn characteristic features from only a few labeled
samples and generalize to unseen classes.

We adopt all the RGB-D image pairs as well as the corre-
sponding segmentation masks from Cityscapes training set for
training, referred to as Dyyqin. The test set Dycs; is formed
by including all the samples in Cityscapes validation set. Then
we choose 9 typical categories out of 30 as our target classes,
containing road, sidewalk, bus, vegetation, terrain, sky, human,
car, building. Following the setup of few-shot segmentation
dataset PASCAL-5" [17], we sample 3 classes out of all 9
categories as test label-set Lyos; = {3i+1, 3i+2, 3i+3} where
i € [1, 3] denotes the number of subsets, and the remaining 6
classes form the train label-set L4, (see Table I). Namely,
Lirain N Liess = (0. The images in Dyyq, and Dy.g; contain
at least one pixel in the semantic mask from the label-set



TABLE 1II: Results of 1-way 1-shot and 1-way 2-shot semantic segmentation on Cityscapes-5° using mean-IoU(%) metric.

Methods Modality 1-way 1-shot 1-way 2-shot
Cityscapes-3” | Cityscapes-3" | Cityscapes-3° | Mean | Cityscapes-3” | Cityscapes-3' [ Cityscapes-3* | Mean
PANet RGB 352 19.7 32.1 29.0 37.2 23.2 36.7 324
RDNet-R 35.7 22.3 32.6 30.2 36.7 24.1 37.5 32.8
PANet Depth 32.6 14.5 19.3 22.1 342 15.8 22.5 24.2
RDNet-D 35.1 15.8 21.0 24.0 33.7 17.3 253 25.4
RDNet-concat RGB-D 33.8 15.7 20.7 23.4 343 17.9 26.9 26.4
RDNet (ours) 36.8 23.5 33.3 31.2 37.3 26.1 37.6 33.7

TABLE III: Per-class mean-IoU(%) comparison of ablation
studies for 1-way 1-shot semantic segmentation

Class RDNet | RDNet-R | RDNet-D
Mean 31.2 30.2 24.0
Road 83.0 80.9 84.4
Sidewalk 17.8 15.7 15.7
Bus 9.5 10.6 5.3
Vegetation 43.1 40.2 26.9
Terrain 8.3 10.1 6.8
Sky 19.1 16.7 13.7
Human 47.8 46.6 36.9
Car 12.1 12.1 5.0
Building 39.9 39.2 21.1

TABLE IV: Results of 1-way 1-shot semantic segmentation
using binary IoU and the runtime.

Mehtods Modality | binary IoU | Runtime
PANet RGB 55.0 71ms
RDNet-R 56.5 65ms
RDNet-concat RGB-D 51.9 67ms
RDNet (ours) 57.9 135ms

Lirain and Ly.q, respectively. Moreover, we reset the pixels
in segmentation masks that not belong to the corresponding
label-sets as the background. In our experiments, we train and
evaluate the proposed model on 3 folders in a cross-validation
manner. For each folder, we take a random 500 samples and
average the results from 5 runs to evaluate the performance of
the models.

V. EXPERIMENTS
A. Setup

a) Implementation details: We conduct the experiments
with implementations in PyTorch [30]. The backbone network
(i.e., VGG-16) was initialized with pre-trained weights on
ImageNet [31]. We resized the input images to 768 x 384
and trained on a single Nvidia TITAN Xp GPU with 12GB
memory. All the few-shot segmentation models were trained
using stochastic gradient descent (SGD) with a batch size of
1, a momentum of 0.9, and weight decay of 0.0005 for a
maximum of 30,000 iterations. The initial learning rate was
set to 0.0001 and reduced by 0.1 every 10,000 iterations.

b) Evaluation metrics: Following the previous works on
few-shot segmentation [17][22][23], we apply two standard
metrics to evaluate the performance of learning models: mean-
IoU and binary-IoU. Generally, the mean Intersection-over-
Union (mean-IoU) is used to measure the accuracy of each
foreground class and average over all the classes. Binary-loU
deals uniformly with all object categories as one foreground

class and averages the IoU of both foreground and background.
Based on these two metrics, we can fairly compare the
accuracy and efficiency of baselines in terms of 1-way N-shot
semantic segmentation.

c) Baselines: First we employ PANet [23] as the uni-
modal baseline model. Arguably, this baseline network shows
significant performances on PASCAL-5' dataset. We report
its evaluations on both RGB and depth data. Moreover, we
present the performance of RGB stream and depth stream
of our model separately, performing a series of ablation
studies. Furthermore, we set a multimodal baseline with simple
concatenation, referred to as RDNet-concat. In this baseline,
we concatenate the RGB and depth images to 4 channels at the
early stage. An extra fusion layer (3 x 3 convolutional filters
and ReLU activation) was added to adapt the concatenated
inputs, while the rest of the network is exactly the same as
the RGB branch in our model.

B. Experimental results

In Table II, we illustrate the performance of our proposed
RDNet and other baseline methods on Cityscapes-3¢, including
1-way 1-shot and 1-way 2-shot semantic segmentation. First,
we observe that using RGB data provides better segmentation
results than using depth data as input. Moreover, one can
also notice that a simple concatenation of RGB and depth
features, RDNet-concat, does not provide satisfactory results.
Indeed, RDNet-concat achieves a mloU score of 26.4%, which
is higher than the score obtained with RDNet-D (25.4%) but
much lower than the score obtained by RDNet-R (32.8%)
for 1-way 2-shot semantic segmentation. Our method, RD-
Net, outperforms other unimodal networks and concatenated
approach overall. RDNet achieves a mloU score of 31.2% for
1-way 1-shot and 33.7% for 1-way 2-shot, which represents
an increase of +7% compared to RDNet-concat.

We further conduct ablation studies to investigate the va-
lidity of RDNet. The results are shown in Table III. We
can observe a satisfactory performance enhancement of our
method for most of the classes. In particular, the vegetation,
sidewalk and sky classes. These experimental results illustrate
the effectiveness of our method and the potential of depth
information in scene understanding with limited supervision.

Compared with RDNet-concat, our proposed method pro-
vides an improvement of +7.8% and +7.3% in terms of mloU
and binary IoU for 1-way 1-shot segmentation (see Table
IV). The results also show that simple concatenation has
no significant improvement in the segmenatation prediction.
Besides, Figure 4 shows the qualitative results of our method,
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Fig. 4: Qualitative results of our method for 1-way 1-shot semantic segmentation on Cityscapes-3°.

including multimodal input and the segmentation prediction.
Our model yields promising segmentation results in 1-shot
settings. However, it is still challenging to distinguish the
irregular objects and categories with similar characteristics in
the complex scenes, such as car and bus.

C. Comparison of visualized features

To clearly demonstrate the generalization and discrimination
of the proposed model, we visualize the prototype representa-
tions of target classes in the RGB and depth embedding space
using t-SNE (see Figure 3). Each figure was generated using
500 samples of test classes in Cityscapes-3'. On the whole,
the prototypes generated from support RGB input can be well
separated, especially for vegetation, terrain, sky in Figure 3b.
Although it is challenging to produce distinctive prototypes
in the depth embedding space, these prototype representations
provide complementary cues regarding depth information. For
example, the depth embeddings in Cityscapes-3° clearly show
the discrimination on the classes vegetation, terrain and sky
(see Figure 3d). Consequently, the generalizability of our few-
shot segmentation network gets improved by incorporating
supplementary depth information, leading to more promising
prediction results.

VI. CONCLUSION

We proposed a few-shot semantic segmentation model with
complementary depth information, which consists of two
mirrored streams based on metric learning. To fully take
advantage of color and geometric information of the scenes,
we mapped the representative features of target classes into
different embedding spaces. The learned prototype represena-
tions provide effective semantic guidance on the corresponding
query feature. Then we integrated the generated probability
maps at a late stage. Comprehensive experiments and ablation
studies on Cityscapes-3° dataset demonstrate the improved
generalizability and discriminating ability of our method. The
proposed RDNet is simple yet effective, and explore the use of
depth information in few-shot segmentation task. Our future

work will focus on the impact of multimodal data in few-
shot learning tasks and how to fuse these data for optimal
performance.
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