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Abstract

Recent advances in deep learning have shown excellent performance in various

scene understanding tasks. However, in some complex environments or under

challenging conditions, it is necessary to employ multiple modalities that pro-

vide complementary information on the same scene. A variety of studies have

demonstrated that deep multimodal fusion for semantic image segmentation

achieves significant performance improvement. These fusion approaches take

the benefits of multiple information sources and generate an optimal joint pre-

diction automatically. This paper describes the essential background concepts

of deep multimodal fusion and the relevant applications in computer vision.

In particular, we provide a systematic survey of multimodal fusion methodolo-

gies, multimodal segmentation datasets, and quantitative evaluations on the

benchmark datasets. Existing fusion methods are summarized according to a

common taxonomy: early fusion, late fusion, and hybrid fusion. Based on their

performance, we analyze the strengths and weaknesses of different fusion strate-

gies. Current challenges and design choices are discussed, aiming to provide the

reader with a comprehensive and heuristic view of deep multimodal image seg-

mentation.
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1. Introduction

Semantic segmentation, as a high-level task in the computer vision field,

paves the way towards complete scene understanding. From a more technical

perspective, semantic image segmentation refers to the task of assigning a se-

mantic label to each pixel in the image [1, 2, 3]. This terminology was further5

distinguished from instance-level segmentation [4] that devotes to produce per-

instance mask and class label. Recently, panoptic segmentation [5, 6] is getting

popular which combines pixel-level and instance-level semantic segmentation.

Although there are many traditional machine learning algorithms available to

tackle these challenges, the rise of deep learning techniques [7, 8] gains unprece-10

dented success and tops other approaches by a large margin. For example,

Convolutional Neural Networks (CNNs) [9] has become one of the most impres-

sive algorithms for image-driven pattern recognition tasks. Besides, Recurrent

Neural Networks (RNNs) [10, 11] are commonly used for retrieving contextual

features, which remember every information through time. The various mile-15

stones in the evolution of deep learning significantly promote the advancement

of semantic segmentation research.

Moreover, the availability of multiple sensing modalities has encouraged the

development of multimodal fusion, such as 3D LiDARs, RGB-D cameras, ther-

mal cameras, etc. These modalities are usually used as complementary sen-20

sors in complex scenarios, reducing the uncertainty of scene information. For

example, visual cameras perform advanced information processing in lighting

conditions, while LiDARs are robust to challenging weather conditions such as

rain, snow, or fog. Thermal cameras work well in the nighttime as they are

more sensitive to infrared radiation emitted by all objects with a temperature25

above absolute zero [12]. Arguably, the captured multimodal data provide more

spatial and contextual information for robust and accurate scene understanding.

Compared to using a single modality, multi-modalities significantly improve the

performance of learning models [13, 14, 15, 16, 17].

Especially in recent years, deep multimodal fusion methods benefit from the30

2



RGB
Depth

NIR
Polar ...

Multimodal data

Pixel-wise
prediction

Fusion
network

Figure 1: An illustration of deep multimodal segmentation pipeline.

massive amount of data and increased computing power. These fusion meth-

ods fully exploit hierarchical feature representations in an end-to-end manner.

Multimodal information sources provide rich but redundant scene information,

which is also accompanied by uncertainty. Researchers engage in designing

compact neural networks to extract valuable features, thus enhancing the per-35

ception of intelligent systems. The underlying motivation for deep multimodal

segmentation is to learn the optimal joint representation from rich and comple-

mentary features of the same scene. Improving the accuracy and robustness of

deep multimodal models is one of the significant challenges in this area. Also,

scalability and real-time issues should be taken into consideration for real-world40

applications. As an illustration, Figure 1 shows the pipeline of deep multimodal

segmentation.

Several relevant surveys already exist, such as deep learning-based seman-

tic segmentation [2, 3, 18, 19], indoor scene understanding [20, 21], multimodal

perception for autonomous driving [22], multimodal human motion recogni-45

tion [23], multimodal medical image segmentation [24], and multimodal learning

study [25, 26]. However, these review works are mostly focused on unimodal im-

age segmentation, multimodal fusion for specific domains, or multimedia analy-

sis across video, audio, and text. Especially with the advent of low-cost sensors,

an increasing number of visible/invisible light and depth cameras are employed50

in scene understanding. There is a lack of systematic review that focuses ex-

plicitly on deep multimodal fusion for 2D/2.5D semantic image segmentation.

In summary, the main contributions of this paper are as follows:
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• We provide necessary background knowledge on multimodal image seg-

mentation and a global perspective of deep multimodal learning.55

• We conduct an extensive literature review on existing deep multimodal

fusion methods, with the highlight of their contributions to model design.

• We conduct a comprehensive survey of current semantic segmentation

datasets as well as the potential multimodal datasets.

• We gather quantitative experimental results of multimodal fusion methods60

on different benchmark datasets, including their accuracy, runtime, and

memory footprint.

The remainder of this paper is organized as follows. The background con-

cepts of deep multimodal fusion for semantic image segmentation are firstly

described in Section 2, including the development, recent advancements as well65

as related applications. Section 3 reviews the existing deep multimodal seg-

mentation methods according to our taxonomy of fusion strategy, followed by

a brief discussion on architectural design. Section 4 provides a broad survey of

current unimodal and multimodal image segmentation datasets. Several typi-

cal modalities (e.g., RGB-D, Near-InfraRed, thermal and polarization cameras)70

are highlighted. Quantitative performance evaluations of the fusion methods

mentioned earlier are summarized and analyzed in Section 5. Finally, Section 6

concludes this paper.

2. Background

Multimodal fusion systems work like the human brain, which synthesizes75

multiple sources of information for semantic perception and further decision

making. First of all, we adopt the definition of ”modality” from [27], which

refers to each detector acquiring information about the same scene. Ideally, we

would like to have an all-in-one sensor to capture all the information, but for

most complex scenarios, it is hard for a single modality to provide complete80
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knowledge. The primary motivation for multimodal fusion is to obtain rich

characteristics of the scenes by integrating multiple sensory modalities.

As a multi-disciplinary research area, the adopted definition of multi-modality

varies in different fields. For example, in medical image analysis, the principal

modalities involve Computed Tomography (CT), Magnetic Resonance Imaging85

(MRI), Positron Emission Tomography (PET), Single-Photon Emission Com-

puted Tomography (SPECT) [28], to name a few. Benefiting from the comple-

mentary and functional information about a target (e.g. an organ), multimodal

fusion models can achieve a precise diagnosis and treatment [29, 30, 24]. In

multimedia analysis, multimodal data collected from audio, video as well as90

text modalities [31, 32, 26] are used to tackle semantic concept detection, in-

cluding human-vehicle interaction [33], biometric identification [34, 35, 36]. In

remote sensing applications, multimodal fusion leverages the high-resolution op-

tical data, synthetic aperture radar, and 3D point cloud [37, 38].

In this survey, we clarify the definition of ”modality” for semantic segmen-95

tation tasks as a single image sensor. Relevant modalities reviewed in this

survey include RGB-D cameras, Near-InfraRed cameras, thermal cameras, and

polarization cameras. Next, we introduce the development of semantic image

segmentation from uni-modality to multi-modality and their applications for

indoor and outdoor scene understanding.100

2.1. Semantic Image Segmentation

There have been many studies addressing the task of semantic image seg-

mentation with deep learning techniques [2, 39]. Fully Convolutional Network

(FCN) [40] was first proposed for effective pixel-level classification. In FCN,

the last fully connected layer is substituted by convolutional layers. DeconvNet105

[41], which is composed of deconvolution and unpooling layers, was proposed in

the same year. Badrinarayanan et al. [42] introduced a typical encoder-decoder

architecture with forwarding pooling indices, mentioned as SegNet. Another

typical segmentation network with multi-scale features concatenation, U-Net

[43], was initially proposed for biomedical image segmentation. In particular,110
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Figure 2: Number of papers published per year. Statistical analysis is based on the work by

Caesar [51]. Segmentation includes image/instance/panoptic segmentation and joint depth

estimation.

U-Net employs skip connections to combine deep semantic features from the

decoder with low-level fine-grained feature maps of the encoder. Then a com-

pact network called ENet [44] was presented for real-time segmentation. In the

work of PixelNet, Bansal et al. [45] explore the spatial correlations between

pixels to improve the efficiency and performance of segmentation models. It115

is worth noting that Dilated Convolution was introduced in DeepLab [46] and

DilatedNet [47], which helps to keep the resolution of output feature maps with

large receptive fields. Besides, a series of Deeplab models also achieves excellent

success on semantic image segmentation [48, 49, 50].

Furthermore, Peng et al. [52] dedicated to employing larger kernels to ad-120

dress both the classification and localization issues for semantic segmentation.

RefineNet [53] explicitly exploits multi-level features for high-resolution predic-

tion using long-range residual connections. Zhao et al. [54] presented an image

cascade network, known as ICNet, that incorporates multi-resolution branches

under proper label guidance. In more recent years, semantic segmentation for125

adverse weather conditions [55, 56] and nighttime [57, 58] has also been ad-

dressed to perform the generalization capacity and robustness of deep learning

models. Figure 2 shows the number of papers about segmentation published in
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the past decade.

In addition to the aforementioned networks, many practical deep learning130

techniques (e.g., Spatial Pyramid Pooling [59], CRF-RNN [60], Batch Normal-

ization [61], Dropout [62]) were proposed for improving the effectiveness of learn-

ing models. Notably, multi-scale feature aggregation was frequently used in

semantic segmentation [63, 64, 65, 66, 67]. These learning models experimen-

tally achieve significant performance improvement. Lin et al. [68] introduced135

the Global Average Pooling (GAP) that replaces the traditional fully connected

layers in CNN models. GAP computes the mean value for each feature map

without additional training of model parameters. Thus it minimizes overfitting

and makes the network more robust. Related applications in multimodal fusion

networks can be found in [69, 70, 71]. Also, the 1 × 1 convolution layer is com-140

monly used to allow complex and learnable interaction across modalities and

channels [72, 70]. Besides, attention mechanism has become a powerful tool for

image recognition [73, 74, 75]. The attention distribution enables the model to

selectively pick valuable information [76], achieving more robust feature repre-

sentation and more accurate prediction.145

2.2. Deep Multimodal Segmentation

Before the tremendous success of deep learning, researchers expressed an

interest in combining data captured from multiple information sources into a

low-dimensional space, known as early fusion or data fusion [77]. Machine

learning techniques used for such fusion include Principal Component Analysis150

(PCA), Independent Components Analysis (ICA), and Canonical Correlation

Analysis (CCA) [25]. As the discriminative classifiers [78] become increasingly

popular (e.g. SVM [79] and Random Forest [80]), a growing body of research

focus on integrating multimodal features at the late stage, such fusion strategy

was called late fusion or decision fusion. These fusion strategies had become155

mainstream for a long time until the popularity of convolutional neural networks.

Compared to conventional machine learning algorithms, deep learning-based

methods have competitive advantages in high-level performance and learning
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ability. In many cases, deep multimodal fusion methods extend the unimodal

algorithms with an effective fusion strategy. Namely, these fusion methods160

do not exist independently but derive from existing unimodal methods. The

representative unimodal neural networks, such as VGGNet [81] and ResNet [82],

are chosen as the backbone network for processing data in a holistic or separated

manner. The initial attempt of deep multimodal fusion for image segmentation

is to train the concatenated multimodal data on a single neural network [83]. We165

will present a detailed review of recent achievements in the following sections,

covering various existing fusion methodologies and multimodal image datasets.

We conclude this part by pointing out three core challenges of deep multi-

modal fusion:

Accuracy. As one of the most critical metrics, accuracy is commonly used170

to evaluate the performance of a learning system. Arguably, the architectural

design and the quality of multimodal data have a significant influence on ac-

curacy. How to optimally explore the complementary and mutually enriching

information from multiple modalities is the first fundamental challenge.

Robustness. Generally, we assume that deep multimodal models are trained175

under the premise of extensive and high-quality multimodal data input. How-

ever, multimodal data not only brings sufficient information but also brings

redundancy and uncertainty. During data acquisition, image sensors have dif-

ferent sensitivity to scene information. The poor performance of individual

modality and the absence of modalities should be seriously considered.180

Effectiveness. In practical applications, multimodal fusion models need to

satisfy certain requirements, including simplicity of implementation, scalability,

real-time, etc. Moreover, ensuring network convergence can be a significant

challenge with the use of redundant multimodal data.

2.3. Applications for Scene Understanding185

As one of the major challenges in scene understanding, deep multimodal fu-

sion for semantic segmentation cover a wider variety of scenarios. For instance,
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Hazirbas et al. [84] address the problem of pixel-level prediction of indoor scenes

using color and depth data. Schneider et al. [85] present a mid-level fusion archi-

tecture for urban scene segmentation. Similar works in both indoor and outdoor190

scene segmentation can be found in [70]. Furthermore, the work by Valada et al.

[86] led to a new research topic in scene understanding of unstructured forested

environments. Considering non-optimal weather conditions, Pfeuffer and Diet-

mayer [56] investigated a robust fusion approach for foggy scene segmentation.

Besides the image segmentation task mentioned above, there are many other195

scene understanding tasks that benefit from multimodal fusion, such as object

detection [13, 87, 88], human detection [89, 14, 90, 91], salient object detection

[92, 93], trip hazard detection [94] and object tracking [69]. Especially for au-

tonomous systems, LiDAR is always employed to provide highly accurate three-

dimensional point cloud information [95, 96]. Patel et al. [97] demonstrated the200

utility of fusing RGB and 3D LiDAR data for autonomous navigation in the in-

door environment. Moreover, many works adopting point cloud maps reported

in recent years have focused on 3D object detection (e.g., [98, 99, 100]). It is

reasonably foreseeable that deep multimodal fusion of homogeneous and hetero-

geneous information sources can be a strong emphasis for intelligent mobility205

[22, 101] in the near future.

3. Fusion Methodologies

In this section, we provide a comprehensive review of deep multimodal fusion

methods for semantic image segmentation. We highlight their benefits and

drawbacks, providing interested readers with a complete overview of deep fusion210

strategies.

3.1. Taxonomy

In the early works [31, 95, 102], the classification of multimodal fusion strate-

gies involves various taxonomic methods, including data fusion, early fusion,

late fusion, intermediate fusion, and hybrid fusion. In this review, we explicitly215
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Figure 3: An illustration of different fusion strategies for deep multimodal learning.

divide the deep multimodal fusion methods into early fusion, late fusion, and

hybrid fusion, according to the fusion stage and motivation (see Figure 3).

Early fusion methods involve raw data-level fusion and feature-level fusion.

The initial attempt of early fusion is to concatenate the raw data from different

modalities into multiple channels. The learning model can be trained end-to-220

end using an individual segmentation network. Almost all the state-of-the-art

segmentation networks are adaptable for such fusion strategy. Moreover, cross-

modal interactions throughout the encoding stage, namely feature-level fusion,

is also a distinctive manifestation of early fusion. For the sake of explanation,

we denote the single segmentation network as I, (x1, x2, ..., xn) is a set of n225

modalities as input, then the final prediction y can be defined as:

y = I(x1, x2, ..., xn). (1)

On the contrary, late fusion methods aim to integrate multimodal feature

maps at decision-level. More precisely, late fusion separately processes the mul-

timodal data in different branches. During the decoding stage, all the feature

maps computed by branches are mapped into a common feature space via fusion230

operations (e.g., concatenation, addition, averaging, weighted voting, etc.) [22],

followed by a series of convolutional layers. Besides, we consider the common

feature learned by the transformation network as a further refinement of de-

coding and prediction, some conventional intermediate fusion approaches (e.g.,

[103]) are therefore categorized into late fusion strategy in this review. Suppose235

that the segmentation networks (I1, . . . , In) are used to process the multimodal
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Figure 4: FuseNet architecture with RGB-D input. Figure reproduced from [84].

data (x1, x2, ..., xn) from different modalities, and P is the fusion operation as

well as the following convolutional layers, the final output y can be formulated

as:

y = P (I1(x1), I2(x2), ..., In(xn)). (2)

Hybrid fusion methods are elaborately designed to combine the strengths240

of both early and late fusion strategies. Generally, the segmentation network

accesses the data through the corresponding branch. Then more than one ex-

tra module is employed to compute the class-wise or modality-wise weights

and bridge the encoder and decoder with skip connections. Therefore the hy-

brid fusion networks can adaptively generate a joint feature representation over245

multiple modalities, yielding a better performance in terms of accuracy and

robustness.

3.2. Fusion strategies

Based on the common taxonomy of fusion strategy in Section 3.1, we sys-

tematically review the existing deep multimodal fusion networks for semantic250

image segmentation.

3.2.1. Early fusion

The first attempt at deep multimodal fusion was made by Couprie et al. [83]

in 2013. This work presents an early fusion strategy via a simple concatenation

of RGB and depth channels before feeding into a segmentation network. In the255
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Table 1: Typical early fusion methods reviewed in this paper.

Ref. Method Backbone Contribution(s) Year Source Code

[83] Couprie’ - Initial attempt 2013 Available

[84] FuseNet VGG-16 Dense fusion/Sparse fusion 2016 Available

[104] MVCNet VGG-16 Multi-view consistency 2017 -

[72] LDFNet VGG-16 D&Y Encoder 2018 Available

[105] RFBNet AdapNet++ Bottom-up interactive fusion structure 2019 -

[71] ACNet ResNet-50 Multi-branch attention based network 2019 Available

[106] RTFNet ResNet-152 RGB-Thermal fusion with Upcepton blocks 2019 Available

Figure 5: RFBNet architecture with three bottom-up streams (RGB stream, depth stream,

and interaction stream). Figure extracted from [105].

case of similar depth appearance and location, this method shows positive re-

sults for indoor scene recognition. However, the simple concatenation of images

provides limited help in multimodal feature extraction. The high variability of

depth maps, to a certain extent, increase the uncertainty of feature learning.

To further explore semantic labeling on RGB-D data, FuseNet [84] was pro-260

posed in 2016 (see Figure 4). FuseNet is a clear example of incorporating the

auxiliary depth information into an encoder-decoder segmentation framework.

The abstract features obtained from the depth encoder are simultaneously fused

to the RGB branch as the network goes deeper. Motivated by FuseNet, Ma

et al. [104] proposed MVCNet to predict multi-view consistent semantics. Then265

Hung et al. [72] presented LDFNet that contains a well-designed encoder for

the non-RGB branch, aiming to fully make use of luminance, depth, and color

information. Recently, RFBNet [105] was proposed with an efficient fusion

mechanism that explores the interdependence between the encoders (see Figure

5). The Residual Fusion Block (RFB), which consists of two modality-specific270
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Table 2: Typical late fusion methods reviewed in this paper.

Ref. Method Backbone Contribution(s) Year Source Code

[107] Gupta’ - CNN+SVM 2014 Available

[108] LSTM-CF Deeplab LSTM-based context fusion 2016 Available

[86] LFC VGG-16 Late-fused convolution 2016 Available

[103] Wang’ VGG-16 Feature transformation network 2016 -

[109] CMoDE AdapNet Class-wise adaptive gating network 2017 Available

[110] LSD-GF VGG-16 Locality-sensitive DeconvNet with gated fusion 2017 -

[111] CMnet VGG-16/ ResNet-10 RGB-Polarization fusion/Different encoders 2019 -

Figure 6: Convoluted Mixture of Deep Experts framework. Figure extracted from [109].

residual units (RUs) and one gated fusion unit (GFU), was employed as the

basic module to achieve the interactive fusion in a bottom-up way. Hu et al.

[71] proposed a novel early fusion architecture based on attention mechanism,

known as ACNet, which selectively gathers valuable features from RGB and

depth branches. Besides, RTFNet [106] was particularly designed to fuse both275

RGB and thermal images by element-wise summation. Notably, average pooling

and the fully connected layers in the backbone network was removed to avoid

the excessive loss of spatial information.

3.2.2. Late fusion

As early as 2014, Gupta et al. [107] proposed a geocentric embedding for280

object detection and segmentation. The authors employed two convolutional

neural network streams to extract RGB and depth features, respectively. The

feature maps obtained from these two streams are combined by an SVM classifier
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Figure 7: LSD-GF architecture. Figure extracted from [110].

at the late stage. Then the work by Li et al. [108] addresses semantic labeling

of RGB-D scenes by developing a Long Short-Term Memorized Context Fusion285

(LSTM-CF) model. This network captures photometric and depth information

in parallel, facilitating deep integration of contextual information. The global

contexts and the last convolutional features of RGB stream are fused by simply

concatenating.

Besides, Wang et al. [103] proposed a feature transformation network for290

learning the common features between RGB and depth branches. This fusion

structure bridges the convolutional networks with the deconvolutional networks

by sharing feature representation. Another typical late fusion network, men-

tioned as LFC, was presented by Valada et al. [86]. This fusion architecture

separately extracts multimodal features on the corresponding branch. The com-295

puted feature maps are summed up for joint representation, followed by a series

of convolutional layers. Afterward, the authors extended the LFC method with

a convoluted mixture of deep expert units, referred to as CMoDE [109]. This

deep fusion framework was inspired by the work [112, 113], in which multimodal

features are mapped to a particular subspace. An adaptive gating subnetwork300

is employed to produce class-wise probability distribution over the experts (see

Figure 6). In the work of LSD-GF, Cheng et al. [110] proposed a gated fu-

sion module to adaptively merge RGB and depth score maps according to their

weighted contributions (see Figure 7). More recently, CMnet [111] made a new

14



Table 3: Typical hybrid fusion methods reviewed in this paper.

Ref. Method Backbone Contribution(s) Year Source Code

[114] RDFNet ResNet-152 Extension of residual learning 2017 Available

[115] DFCN-DCRF VGG-16 Dense-sensitive FCN/ Dense-sensitive CRF 2017 Available

[116] S-M Fusion VGG-16 Semantics-guided Multi-level feature fusion 2017 -

[117] CFN RefineNet-152 Context-aware receptive field/ Cascaded structure 2017 -

[118] RedNet ResNet-50 Residual Encoder-Decoder structure 2018 Available

[70] SSMA AdapNet++ self-supervised model adaptation fusion mechanism 2019 Available

Figure 8: Semantics-guided multi-level fusion. Figure extracted from [116]

attempt to explore the complementary characteristics of polarimetric data. Dif-305

ferent backbones are used for multimodal feature extraction.

3.2.3. Hybrid fusion

Previous studies have shown that simply concatenating multimodal features

or fusing weighted feature maps at decision level may not be sufficient to meet

the requirements of highly accurate and robust segmentation. The hybrid fusion310

strategy is proposed to combine the strengths of early fusion and late fusion as

an alternative method.

In the early stages of hybrid fusion, Park et al. [114] extended the core

idea of residual learning to deep multimodal fusion. This method, known as

RDFNet, can effectively combine RGB-D features for high-resolution prediction315

through multimodal feature fusion blocks and multi-level feature refinement

blocks. Afterward, Jiang et al. [115] introduced a fusion structure combining
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Figure 9: Fusion architecture with self-supervised model sdaptation modules. Figure extracted

from [109].

a fully convolutional neural network of RGB-D (DFCN) and a depth-sensitive

fully-connected conditional random field (DCRF). The DFCN module can be

considered as an extension of FuseNet, while the DCRF module is used to refine320

the preliminary prediction. CFN is a cascaded feature network introduced by

Lin et al. [117]. The feature maps generated by the RGB branch are used to

match the image regions to complementary branches. Experimentally, the use

of context-aware receptive field (CaRF) enables the fusion network to achieve

a competitive segmentation result. Additionally, semantics-guided multi-level325

fusion [116], referred to as S-M Fusion, was proposed to learn the feature repre-

sentation in a bottom-up manner (see Figure 8). This fusion strategy employed

the cascaded Semantics-guided Fusion Block (SFB) to fuse lower-level features

across modalities sequentially.

Moreover, Jiang et al. [118] described a residual encoder-decoder network for330

RGB-D semantic segmentation, named RedNet. The complementary features

are fused into the RGB branch before upsampling. The skip-connection was used

to bypass the spatial feature between the encoder and decoder. Instead of VGG,

the residual module was applied as the basic building block. A more recent

method addressed the issue of deep multimodal fusion using a Self-Supervised335

Model Adaptation module (SSMA) [70]. This fusion framework dynamically

adapts the fusion of semantically mature multiscale representations. The latent

16



Figure 10: Individual semantic segmentation experts are combined modularly using different

statistical methods. Figure extracted from [119]

joint representation generated from the SSMA block is integrated into decoder

by two skip connections (see Figure 9). Arguably, the SSMA blocks enable

the fusion model to exploit complementary cues from each modality-specific340

encoder, notably enhancing the discriminative power of feature representation.

3.2.4. Statistical fusion

As an alternative post-processing approach, statistical fusion is proposed

to reduce the uncertainty of model and modalities at decision-level. Blum

et al. [119] introduced statistical fusion methods to integrate deep learning-345

based segmentation prediction, including Bayes categorical fusion and Dirichlet

fusion. The presented methods allow different training sets per expert (modal-

ity). Without extra training on aligned data, only a small subset is needed for

calibration of the statistical models (see Figure 10). Combining multiple clas-

sifiers in a statistical way is not a new concept [120], but this work leads to an350

interesting research direction in the combination of deep learning and statistics.

3.2.5. Discussion

Deep multimodal fusion for scene understanding is a complex issue that in-

volves several factors, including the spatial location of objects, the semantic

17



context of scenes, the effectiveness of fusion models, the physical properties of355

modalities, etc. The fusion strategies mentioned above follow different design

concepts to tackle this challenge. Early fusion methods make an effort to opti-

mally integrate information from multimodal sources during feature extraction.

Namely, the representative features from complementary modality are auto-

matically fused to the RGB branch or a gated branch at the early stage, while360

features are reconstructed via a common decoder. These works emphasize the

importance of cross-modal information interaction. Late fusion methods gen-

erally map multimodal features into a common space at the decision level. In

other words, the fusion model is trained to learn unimodal features separately.

Thus, late fusion may offer more flexibility and scalability but lacks sufficient365

cross-modal correlation. Regarding hybrid fusion, such fusion strategy is elabo-

rated to combine the strengths of early fusion and late fusion, achieving a more

robust performance. However, the trade-off between accuracy and execution

time should be carefully considered in architectural design.

This brings us to two main questions:370

When to Fuse: Many deep multimodal fusion methods are extended from ex-

isting unimodal methods, or derived from other typical neural networks.

In the former case, multiple unimodal segmentation networks are inte-

grated into a composite end-to-end training model in early, late, or multi-

level stages. Early fusion strategy allows stronger cross-modal informa-375

tion interaction, while late fusion shows more flexibility and scalability for

implementation. Extensive experiments demonstrate that both low-level

and high-level features are valuable to the final prediction. Multi-level

fusion is helpful for segmentation model to learn representative features.

Fusing multimodal contextual information in multi-level stages represents380

the current trend. Moreover, semantic guiding across layers, such as skip

connections, can be effectively used to bridge early feature extraction and

late decision making. The state-of-the-art method SSMA shows a typical

example.
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How to Fuse: Different from unimodal networks, deep multimodal fusion net-385

works should consider multimodal information collaboration. Although

deep learning-based methods learn representative features automatically,

in many cases, multimodal input is likely to be imperfect. The redundancy,

imbalance, uncertainty, and even contradiction of multimodal data may

significantly affect the model’s performance. Simple fusion operations,390

such as summation and concatenation, provide limited help to generate

optimal joint feature representations. Experiments indicate that several

adaptive fusion methods make remarkable progress in terms of accuracy,

such as attention-based networks. One potential reason is that such a

learning model takes into account the contribution of multimodal features395

at multiple stages. Such fusion methods usually contain specific gating

units that assign class-wise or modality-wise weights. One extreme case

that should be noted is modality missing. Most of the existing deep fusion

models can not work effectively when the supplementary modality is un-

available. Piasco et al. [121] offers some ideas based on learning with the400

privileged information paradigm to tackle this challenge. Otherwise, the

trade-offs between accuracy/speed [122, 123, 22] or memory/robustness

should be carefully considered in the architectural design. In order to

provide readers a more intuitive understanding, we show more detailed

evaluations in Section 5.405

4. Datasets

Over the last decade, a large number of datasets have been proposed to

meet the needs of deep learning-based methods. Since the quantity and quality

of training data significantly affect the performance of learning models, many

academic and research institutions have released several large-scale benchmark410

datasets for different scenarios. The creation of these well-annotated datasets

actively promotes semantic scene understanding, which also facilitates the per-

formance evaluation and inspires innovative approaches.
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Figure 11: Accumulated dataset importance. Statistical analysis is based on the work by [51].

With the advent of multiple sensory modalities, numerous multimodal bench-

mark datasets have been released to the public successively. These datasets pro-415

vide complementary properties of the same scene, such as geometric information,

toward learning an improved feature representation. Figure 11 shows the accu-

mulated dataset importance for image segmentation task since 2010. We observe

that several large-scale datasets have emerged from 2015. Notably, PASCAL

VOC 2012 [124] and Cityscapes [125] are two of the most popular datasets for420

semantic segmentation. As the representative RGB-D dataset, NYU-D [126]

and SUN RGB-D [127] are frequently used for indoor scene understanding.

In the following parts, we provide a summary of current unimodal and mul-

timodal datasets for semantic image segmentation. The aim is to grab the

reader’s interest in multimodal scene understanding and facilitate the prelimi-425

nary experiments on deep multimodal segmentation.

20



Table 4: Summary of popular datasets for image segmentation task.

Ref. Dataset Classes Resolution Images Scene Data Year

[128] MSRC 23 320x213 591 Outdoor 2D 2006

[133] Stanford background 8 320x240 715 Outdoor 2D 2009

[134] CamVid 32 960x720 701 Outdoor 2D 2009

[124] PASCAL VOC 20 Variable 11K Variable 2D 2012

[126] NYU Depth v2 40 480x640 1449 Indoor 2.5D 2012

[132] Microsoft COCO 80 Variable 330K Variable 2D 2014

[135] KITTI 11 Variable 400 Outdoor 2D/3D 2015

[125] Cityscapes 30 2048x1024 5K Outdoor 2.5D 2015

[136] SYNTHIA 13 960x720 13K Outdoor(synthetic) 2.5D 2016

[137] GTA5 19 1914x1052 13K Outdoor(synthetic) 2D 2016

[127] SUN RGB-D 37 Variable 10K Indoor 2.5D 2015

[138] ADE20K 150 Variable 22K Variable 2D 2017

[139] Mapillary Vistas 66 1920x1080 25K Outdoor 2D 2017

[140] WildDash 28 Variable 1.8K Outdoor 2D 2018

4.1. Popular datasets for image segmentation

As one of the earliest pixel-wise labeled image databases, MSRC dataset

[128] was released for full scene segmentation. It consists of 591 images and

23 object classes. However, along with the development of deep learning tech-430

niques, small-scale datasets can not meet the demands of model training. PAS-

CAL VOC dataset [124] is one of the most popular object segmentation datasets,

which derived from the early stage competition: PASCAL Visual Object Classes

(VOC) challenge. It provides thousands of images with pixel-level labeling. Up

to now, it has been augmented to several additional datasets with a set of extra435

annotations, such as PASCAL-Context [129], PASCAL-Part [130], SBDB [131].

Another similar large-scale dataset is Microsoft COCO dataset [132], which con-

tains 81 categories of objects, including 21 categories of PASCAL VOC. It covers

complex everyday scenes and their contextual information. PASCAL VOC and

COCO dataset are not only the most popular benchmarks for fully supervised440

segmentation but also frequently-used in weakly supervised learning for object

segmentation.

Furthermore, several outdoor road scene datasets are constantly emerging
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during the last decade, e.g. CamVid [134], KITTI [135], Cityscapes [125], Map-

illary Vistas [139], toward promoting the commercialization and advancement445

of autonomous driving technology [141]. To be specific, CamVid database is

the first collection of fully segmented videos, captured from a moving vehicle. It

provides over 700 manually labeled images of naturally complex driving scenes

sampling from the video sequences. After that, KITTI Vision Benchmark was

published to tackle various real-world computer vision problems, such as stereo,450

optical flow, visual odometry/SLAM, and 3D object detection. It consists of

around 400 semantically annotated images recorded by RGB cameras, grayscale

stereo cameras, and a 3D laser scanner.

During the past few years, Cityscapes dataset has been a strong performer

in outdoor scene semantic segmentation. This high-quality dataset contains455

around five thousand high-resolution images with pixel-level annotations, record-

ing the street scenes from 50 different cities. Also, Cityscapes is a superior mul-

timodal segmentation dataset, containing precomputed depth maps of the same

scenes. Besides, Mapillary Vistas dataset [139] provides 25,000 high-resolution

images of street scenes captured from all over the world at various conditions460

regarding weather, season, and daytime. The images were annotated into 66

object categories, aiming to support the development of state-of-the-art meth-

ods for road scene understanding. More recently, for the sake of robustness and

performance evaluation, WildDash [140] was released to the research commu-

nity. This new benchmark provides standard data of driving scenarios under465

real-world conditions for a fair comparison of semantic segmentation algorithms.

It is worth noting that RailSem19 [142] is the first public outdoor scene dataset

for semantic segmentation targeting the rail domain, which is useful for rail

applications and road applications alike.

We present a summary of the reviewed segmentation datasets in Table 4.470

Further information are provided, including numbers of classes, size of the

database, and the type of scenes.

22



Table 5: Summary of popular 2D/2.5D multimodal datasets for scene understanding.

Ref. Dataset Images Scene Multi-modal data Year

[126] NYUDv2 1449 Indoor RGB/Depth 2012

[127] SUN RGB-D 10K Indoor RGB/Depth 2015

[125] Cityscapes 5K Urban street RGB/Depth 2015

[136] SYNTHIA 13K Urban street RGB/Depth 2016

[86] Freiburg Forest 5K Forest RGB/Depth/NIR 2016

[143] ScanNet 19K Indoor RGB/Depth 2017

[144] Tokyo Multi-Spectral 1569 Urban street RGB/Thermal 2017

[145] CATS 2 686 Variable RGB/Depth/Thermal 2018

[146] RANUS 40k Urban street RGB/NIR 2018

[111] POLABOT 175 Outdoor RGB/NIR/Polarization 2019

[147] PST900 894 Subterranean RGB/Thermal 2019

[148] DISCOMAN 600K Indoor RGB/Depth 2019

4.2. Multimodal datasets

Throughout the years, multimodal data are gaining the attention of re-

searchers in various domains. The primary motivation for using multiple sensory475

modalities is to improve learning models’ performance by enriching the feature

representation. Table 5 lists numerous multimodal datasets reviewed in this

survey, providing valuable information such as their application scenarios and

data information. Next, we describe the potential multimodal datasets for im-

age segmentation in detail, covering RGB-D datasets, Near InfraRed datasets,480

thermal datasets, and polarization datasets. Multiple samples can be found in

Table 6.

4.2.1. RGB-D datasets

RGB-D cameras are widely used to augment the conventional color images

with a depth map, which provides supplementary depth information about the485

distance of the object surface. Gupta et al. [107] proposed a method to encode

horizontal disparity, height above ground, and the angle of the local surface

normal into more efficient HHA images using raw depth images. Apart from
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semantic segmentation, depth information also makes significant contributions

to other scene understanding tasks, such as object detection [107, 13] and pose490

estimation [149]. The first row in Table 6 illustrates RGB-D image examples

sampling from the datasets reviewed in this part.

Indoor scenes One of the main difficulties for indoor scene segmentation is

that object classes always come in various positions, shapes, and sizes.

By taking advantage of RGB-D data, we can encode the pixel-level color495

and depth information of the same scene into a high-level feature rep-

resentation. Such information fusion, to a certain extent, reduces the

difficulty of indoor object recognition. NYUDv2 [126] is an early RGB-

D database containing 795 training images and 654 testing images with

pixel-wise labels for 40 semantic categories. A Microsoft Kinect camera500

captured all the RGB and depth image pairs with favorable frame synchro-

nization. This dataset aims to inform a structured 3D interpretation of

indoor scenes, having become one of the most popular multimodal bench-

marks so far. Another standard benchmark for indoor scene recognition

is SUN RGB-D [127]. It consists of around 10K RGB-D images with 37505

indoor object classes. This dataset advances the state-of-the-art in all

major scene understanding tasks and provides a fair comparison of deep

multimodal fusion methods.

Outdoor scenes Unlike indoor scenes, the depth information of outdoor scenes

is generally captured by stereo vision cameras or LiDAR due to Kinect’s510

poor performance in sunlight. As one of the segmentation benchmark

datasets, Cityscapes consists of thousands of high-quality depth images of

the same scene. These depth maps overcome the lack of depth informa-

tion of objects for road scene recognition. In order to simulate different

seasons, weather, and illumination conditions, several synthetic RGB-D515

datasets (e.g., SYNTHIA [136]) are generated for driving scenes semantic

segmentation.
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4.2.2. Near-InfraRed datasets

Infrared imaging captured from multi-spectral cameras shows high contrast

of natural and artificial objects [150, 151]. In the computer vision field, multi-520

spectral images make up the data in the non-visible light spectrum and help bet-

ter understand the scene characteristics. For example, Freiburg Forest dataset

[86] was created to tackle the semantic segmentation problem in forested en-

vironments. It consists of 366 aligned color, depth, and near-infrared images

with six classes pixel-wise annotation. Due to the abundant presence of vege-525

tation in the unstructured forest environment, this dataset provides enhanced

NIR images (e.g., Normalized Difference Vegetation Index images, Enhanced

Vegetation Index images) to ensure border accuracy. Besides, RANUS dataset

[146] has been released to the public in 2018. It consists of 40k spatially-aligned

RGB-NIR pairs for real-world road scenes, and thousands of keyframes are an-530

notated with ground truth masks for ten classes: sky, ground, water, mountain,

road, construction, vegetation, object, vehicle, and pedestrian.

Apart from semantic segmentation, multi-spectral images are also used in

other computer vision tasks, including pedestrian detection [152, 153], face

recognition [154], image dehazing [155, 156], video surveillance [157], to name a535

few.

4.2.3. Thermal datasets

Different from NIR images, thermal images are captured to recognize visible

and invisible objects under various lighting conditions. The thermal imaging

cameras are sensitive to all the objects that constantly emit thermal radia-540

tions [158]. The wavelength is generally detected up to 14µm. In the early

years, thermal imaging cameras are invented for military uses. With the cost

of sensors decreasing, many scene understanding tasks can now benefit from

thermal information [106].

Tokyo Multi-Spectral [144] is the first large-scale color-thermal dataset for545

urban scene segmentation. It contains both visible and thermal infrared im-

ages captured in daily and night conditions. There are 1569 images manually
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Figure 12: Reflection influence on polarimetry. (a) and (b) represent a zoom on the non-

polarized and polarized area, respectively. Figure extracted from [164].

labeled to eight classes: car, person, bike, curve, car stop, guardrail, color cone,

and bump. Then Shivakumar et al. [147] presented PST900, a dataset of 894

synchronized and calibrated RGB and thermal image pairs with pixel-level an-550

notations across four distinct classes from the DARPA Subterranean Challenge.

The long-wave infrared (LWIR) imagery was used as a supporting modality for

semantic segmentation of subterranean scenes. These large-scale RGB-Thermal

datasets broaden the research field of deep learning-based scene understanding,

allowing for more in-depth exploration in poor visibility and adverse weather555

conditions.

4.2.4. Polarization datasets

As a universal phenomenon existing in natural scenes, polarimetric imaging

is highly sensitive to the vibration pattern of the light [159]. In the natural

environment, the polarisation of light is generally obtained by reflection or scat-560

tering. The polarization images carry crucial information of reflection surface,

including object shape and surface material. As shown in 12, the micro-grid ap-

pears on the polarized surface and reveals an intensity change according to the

polarizer affected. To tackle practical problems in computer vision, polarization

images have been widely applied to object detection [160], image dehazing [161],565

depth estimation [162, 163].
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Zhang et al. [111] released a small-scale segmentation dataset, known as PO-

LABOT, that dedicates to the polarimetric imaging of outdoor scenes. Synchro-

nized cameras collect hundreds of raw color, Near-InfraRed, and polarimetric

images. All the images are manually labeled into eight classes according to the570

polarimetric characteristic of the scenes. For example, reflective areas such as

windows and water are typically considered. More recently, Sun et al. [165]

developed a multimodal vision system that integrates a stereo camera, a polar-

ization camera, and a panoramic camera. The polarization camera is mainly

used to detect specular materials such as glass and puddles, potentially danger-575

ous for autonomous systems. Currently, the use of polarimetric data leads to

new directions for deep multimodal fusion research. The polarimetric imaging

offers great potential [166, 167] in scene understanding. For future perspec-

tives, polarization cameras may be extremely valuable in autonomous driving

[164, 165] and robotics [168, 169].580

4.2.5. Critical challenges for multimodal data

Based on the review of multimodal image datasets, we summarized four

critical challenges for multimodal data:

• Data diversity: different image sensors offer different representative fea-

tures of the scene according to their physical properties. The accuracy and585

robustness of deep fusion models are closely related to the amount and va-

riety of multimodal data. In addition to the multimodal types mentioned

above, more data types are expected for complex tasks in computer vision.

• Quantity and quality: in order to meet the needs of deep learning

model training, high-quality and large-scale multimodal image datasets590

are expected to cover various scenarios. Meanwhile, inaccuracy and noise

should be considered in image processing.

• Data alignment: data collected by image sensors should be well aligned

before training. Such alignment is often referred to as multi-modality

calibration, and is an essential prerequisite for effective multimodal fusion.595
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NYUDv2 SUN RGB-D Cityscapes SYNTHIA

(RGB+Depth) (RGB+Depth) (RGB+Depth) (RGB+Depth)

Freiburg Forest Tokyo Multi-Spectral RANUS POLABOT

(RGB+NIR) (RGB+Thermal) (RGB+NIR) (RGB+Polarization)

Table 6: Examples of multimodal image datasets mentioned in Section 4.2. For each dataset,

the top image shows two modal representations of the same scene. The bottom image is the

corresponding groundtruth.

• Dataset construction: in the construction of multimodal datasets, we

should think about 1) what kind of multimodal data do we need for the

target scenarios? 2) what kind of multimodal data can provide more

efficient information for specific tasks? 3) what kind of multimodal data

is easier to collect in practice?600

5. Evaluation

In this section, we report the evaluations of deep multimodal fusion methods

that are mentioned in Section 3 on four benchmark datasets: SUN RGB-D

[127], NYU Dv2 [126], Cityscapes [125], and Tokyo Multi-Spetral dataset [144].

We also conduct a direct comparison of different unimodal and multimodal605
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methods, aiming to demonstrate the necessity and importance of multimodal

fusion approaches. All the results reported in this survey are collected from the

original publications to ensure fairness.

5.1. Evaluation metrics and backbone networks

It is well known that how to evaluate the performance of a segmentation610

algorithm is a critical issue. A series of benchmark datasets promote the stan-

dardization of comparison metrics, providing a fair comparison of the state-

of-the-art methods. More precisely, the performance of deep learning-based

approaches can be reflected in all aspects [2], such as accuracy, memory usage,

and runtime. Among these factors, accuracy may be the most common evalu-615

ation criteria to measure the performance of pixel-level prediction [170]. As a

reference, a general analysis of accuracy metrics for classification tasks can be

found in [171]. For multimodal image segmentation, the most popular metrics

have no difference with unimodal approaches, including Pixel Accuracy (PA),

Mean Accuracy (MA), Mean Intersection over Union (MIoU), and Frequency620

Weighted Intersection over Union (FWIoU), which are first employed in [40].

For the sake of explanation, we denote nij as the number of pixels belonging

to class i which are classified into class j, and we consider that there are ncl

classes, and ti =
∑

j nij is the numbers of pixel in class i. Then we can define

these metrics as follows:625

• Pixel Accuracy∑
i nii/

∑
i ti

• Mean Accuracy

(1/ncl)
∑

i nii/ti

• Mean Intersection over Union630

(1/ncl)
∑

i nii/(ti +
∑

j nji − nii)

• Frequency Weighted Intersection over Union

(
∑

k tk)−1
∑

i tinii/(ti +
∑

j nji − nii)
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Table 7: Performance results of deep multimodal fusion methods on SUN RGB-D dataset.

Method Backbone Input size Modality Fusion strategy Mean Acc Mean IoU

Bayesian SegNet [175] VGG-16 - - 45.9 30.7

Context [176] VGG-16 - RGB - 53.4 42.3

RefineNet [53] ResNet-152 - - 58.5 45.9

LSTM-CF [108] VGG-16 426x426 Late 48.1 -

FuseNet [84] VGG-16 224x224 Early 48.30 37.3

DFCN-DCRF [115] VGG-16 480x480 Early 50.6 39.3

S-M Fusion [116] VGG-16 449x449 Hybrid 53.93 40.98

LSD-GF [110] VGG-16 417x417 RGB-D Late 58.0 -

SSMA [70] ResNet-50 768x384 Hybrid - 44.52

RDFNet [114] ResNet-152 - Early 60.1 47.7

RedNet [118] ResNet-50 640x480 Hybrid 60.3 47.8

CFN [117] RefineNet-152 - Hybrid - 48.1

ACNet [71] ResNet-50 640x480 Early - 48.1

Besides, many elaborated backbone networks, such as VGGNet [81], ResNet

[82], and Xception [172], are widely used in a variety of segmentation network635

design [173]. These backbone networks not only extract effective semantic in-

formation and spatial details but also simplify the training.

The segmentation performance is generally affected by many factors, such as

the preprocessing of data, fusion strategy, the choice of the backbone network,

the practice of state-of-the-art deep learning technologies, etc. In the follow-640

ing, we summarize the evaluation results of multimodal fusion models and also

analyze the influence of the algorithms and the multimodal data on the per-

formances. Almost all of the models are pre-trained on a large-scale image

database such as ImageNet [174].

5.2. Comparative results in terms of accuracy645

We gathered quantitative results of the aforementioned fusion approaches

from the corresponding papers and grouped them according to the benchmark

datasets. The mean accuracy (%) and mean IoU (%) are the most reported

metrics for a fair comparison. In the comparison tables, deep multimodal fusion

methods are differentiated based on the used backbone network, the type of650

multimodal input, and the fusion strategy.
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Table 8: Performance results of deep multimodal fusion methods on NYU Depth v2 dataset.

# of classes Method Backbone Input size Modality Fusion strategy Mean Acc Mean IoU

FuseNet [84] VGG-16 320x240 Early 67.46 56.01

13 Wang’[103] VGG-16 - RGB-D Late 52.7 -

MVCNet [104] VGG-16 320x240 Early 70.59 59.07

Gupta’ [107] - - Late 35.1 -

FuseNet [84] VGG-16 320x240 Early 44.92 35.36

40 Wang’[103] VGG-16 - RGB-D Late 47.3 -

MVCNet [104] VGG-16 320x240 Early 51.78 40.07

LSD-GF [110] VGG-16 417x417 Late 60.7 45.9

CFN [117] RefineNet-152 - Hybrid - 47.7

ACNet [71] ResNet-50 640x480 Early - 48.3

Table 9: Experimental results of deep multimodal fusion methods on Cityscapes dataset.

Input images are uniformly resized to 768 × 384.

Method Backbone Modality Fusion strategy Mean IoU

ERFnet [177] - - 62.71

AdapNet [109] ResNet-50 RGB - 69.39

AdapNet++ [70] ResNet-50 - 80.80

AdapNet [109] ResNet-50 Depth - 59.25

AdapNet++ [70] ResNet-50 - 66.36

AdapNet++ [70] ResNet-50 HHA - 67.66

LFC [86] VGG-16 RGB-D Late 69.25

CMoDE [109] AdapNet Late 71.72

SSMA [70] AdapNet++ Hybrid 83.44

SSMA [70] AdapNet++ RGB-HHA Hybrid 83.94

• SUN RGB-D dataset

Firstly, we report the experimental results on the indoor scene dataset, SUN

RGB-D (see Table 7). Ten fusion methods and three unimodal methods are

compared on this benchmark dataset. We observe that ACNet and CFN are655

the two top scorers with a mean IoU score of 48.1%. RedNet and RDFNet

are not far behind with a score of 47.8% and 47.7%, respectively. In general,

multimodal fusion methods are superior to unimodal methods, which have a

similar backbone network.

• NYU Depth v2 dataset660
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Table 10: Experimental results of deep multimodal fusion methods on Tokyo Multi-Spectral

dataset. The image resolution in the dataset is 640 × 480.

Method Backbone Modality Mean Acc Mean IoU

SegNet [42] VGG-16 35.4 31.7

PSPNet [178] ResNet-50 RGB 44.9 39.0

DUC-HDC [179] ResNet-101 58.9 47.7

MFNet [144] VGG-16 45.1 39.7

SegNet-4c [42] VGG-16 49.1 42.3

FuseNet [84] VGG-16 52.4 45.6

PSPNet-4c [178] ResNet-50 51.3 46.1

DUC-HDC-4c [179] ResNet-101 RGB-Thermal 59.3 50.1

RTFNet [106] ResNet-152 63.1 53.2

Regarding the NYU Depth v2 dataset, which is also a typical indoor scene

dataset with high-quality depth information, we select six methods to make a

detailed comparison. Table 8 demonstrates the experimental results with 13

and 40 classes. ACNet is again the best performing method with a mean IoU

score of 48.3% for 40 classes. Note that when the methods are evaluated on665

13 classes only, the performances are higher because most challenging classes

are not taken into account.

• Cityscapes dataset

Apart from the indoor scene datasets, we also show the segmentation results

on a more challenging urban scene dataset, Cityscapes in Table 9. For this670

outdoor dataset, SSMA, as a typical hybrid fusion architecture, achieves the

best performance with a mean IoU score of 83.94%. Moreover, we have ob-

served that HHA representation provides more valuable properties than the

original depth map. The multimodal fusion methods generally outperform

the performance of the unimodal methods.675

• Tokyo Multi-Spectral dataset

As shown in Table 10, we report the evaluation results on Tokyo Multi-

Spectral dataset. Both visible spectral images and thermal images were used
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in the fusion experiments. We also collect 4-channel early fusion methods

for comparative study. The winner, RTFNet, achieves a maximum accuracy680

of 53.2% mean IoU. Notably, the segmentation accuracy is significantly in-

creased by adding thermal infrared information. These results clearly show

the effectiveness of multimodal data and the advancement of deep multimodal

methods.

Based on the analysis of these results, we can draw some conclusions. First,685

depth information is the most commonly used supplementary information for

multimodal image fusion. Most deep fusion methods report their results on

the large-scale RGB-D datasets for both outdoor and indoor scene understand-

ing. However, other types of multimodal datasets are of varying quality and

lack further evaluation. The establishment of standard benchmark datasets is690

the premise of multimodal fusion study. Also, reported fusion methods em-

ployed various backbone networks, input size, and setups for the experiment,

making fair performance comparisons difficult. Although many deep learning

frameworks and libraries already exist, more multimodal toolkits are expected

to facilitate multimodal fusion study.695

In light of the reported results, we have observed that ACNet and SSMA

achieved remarkable results on the RGB-D datasets. A major reason is that

these methods adopt many advanced deep learning techniques, such as atten-

tion mechanism, multiscale feature aggregation, and skip connection. It can

be seen that the development of deep learning technology is of great benefit to700

multimodal fusion. Moreover, it is worth noting that most methods focus on

accuracy, which does not allow for a comprehensive evaluation of fusion models.

Multiple metrics can also reflect the effectiveness of multimodal data, which is

instructive to the construction of the multimodal data collection platform. In

general, deep multimodal fusion methods require higher memory footprint and705

execution time. We report more detailed results in the following subsections.
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Figure 13: Real-time and accuracy performance. Performance of SSMA fusion method using

different real-time backbones on the Cityscapes validation set (input image size: 768 × 384,

GPU: NVIDIA TITAN X).

Figure 14: Real-time and accuracy performance. Performance of different fusion methods on

Tokyo Multi-Spectral dataset.(input image size: 640 × 480, GPU: NVIDIA 1080 Ti graphics

card).
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Table 11: Parameters and inference time performance. The reported results on the Cityscapes

are collected from [70].

Network Backbone mIoU (%) Parms. (M) Time (ms)

PSPNet [178] ResNet-101 81.19 56.27 172.42

DeepLab v3 [49] ResNet-101 81.34 58.16 79.90

DeepLab v3+ [50] Modified Xception 82.14 43.48 127.97

AdapNet++ [70] ResNet-50 81.34 30.20 72.92

SSMA [70] ResNet-50 82.31 56.44 101.95

5.3. Real-time consideration

In order to evaluate the real-time performance of deep multimodal fusion

networks, we summarized and provided the researchers with two sets of execu-

tion time comparisons, as shown in Figure 1314. Execution time or runtime, as710

an essential metric, obviously shows the learning model’s execution efficiency.

Although this metric is easily ignored in the accuracy-centric algorithm opti-

mization, it should be carefully considered in industrial-level applications, such

as self-driving cars. The inference time is usually dependant on the hardware

and backend implementation.715

5.4. Memory footprint

Another performance indicator in the implementation aspect is memory us-

age. Large memory usage may increase computation time during training and

testing. In this regard, proper use of deep learning frameworks, GPU accel-

eration, appropriate batch size, and compressed input may be beneficial for720

the model training. Table 11 demonstrates the comparisons on the number of

parameters and inference time for various network architectures.

6. Conclusion

We have reviewed deep multimodal image segmentation from two aspects:

fusion methodology and dataset. Multimodal image data, such as RGB-D im-725

age, Near-InfraRed image, thermal image, polarization image, are the primary

concerns in this paper. To the best of our knowledge, this is the first review
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paper that focuses on deep learning-based multimodal fusion for semantic image

segmentation. In this work, we first described the development of multimodal

fusion and provided the reader with relevant background knowledge to support730

text comprehension. Then we categorized 20 deep multimodal fusion methods

into early fusion, late fusion, and hybrid fusion. We further discussed architec-

tural design to explore the essentials of deep multimodal fusion. Besides, the

existing image segmentation datasets are summarized, covering 12 current mul-

timodal datasets. We made a comparative analysis of existing fusion approaches735

in terms of accuracy, execution time, and memory footprint, which evaluate the

model performance on different benchmark datasets ranging from indoor scenes

to urban street scenes.

In conclusion, deep multimodal fusion has gained much attention in recent

years. Multimodal images captured from various sensory modalities provide740

complementary information of the scenes. The experimental results collected

in this survey show the effectiveness of the deep multimodal fusion method.

The state-of-the-art methods make efficient use of multimodal data, yielding an

improved performance on semantic scene understanding. However, the optimal

fusion strategy remains an open question in need of further exploration. As745

we know that deep learning-based artificial intelligence is gradually evolving

from perception to cognitive intelligence, we expect deep multimodal fusion to

facilitate this evolution and offer a host of innovations in the following years.
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