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Robust Sensor Fault Estimation for LPV systems: Application to Quadrotor

UAV

Eslam Abouselima, Dalil Ichalal and Said Mammar

whose state space matrices are functions of bounded time-

varying parameters. The robust self-scheduled LPV control

law proposed in [6] was such an efficient method for

feedback controller design, so it has been enhanced adopted

by recent works as [7] and [8] for quadrotor control. In

this work, a quadratic observer-based feedback controller is

utilized to achieve reference tracking while being robust to

the undesired inputs.

The methodology followed in [9] shows how important

an FDD unit is for establishing an effective sensor FTC

algorithm where the controller reconfiguration is based on

the residual signal obtained after system diagnosis. Among

several techniques for fault diagnosis, there exists the model

based approach where H∞ strategies and eigenstructure

assignment are used for generating robust residual signals

see [10]. Based on the H−/H∞ technique an observer is

introduced in [11] for sensor fault detection that minimizes

exogenous disturbance effect while maximizing the fault

effect on the residual signal. Such technique has shown

great potential compared to the stochastic approach using

Kalman filter see [12], however, the regularity condition

[13] needed for quadratic constraints feasibility was satisfied

by introducing a virtual perturbation term for the outputs.

The progress of noisy signal estimation approaches like [14]

and [15] has inspired the work of [16] to develop a more

convenient solution for the regularity constraint depending

on output signal derivatives and its associated relative degree.

Such advancements have been benefited in our previ-

ous work [17] which introduced a new residual generator

scheme containing a virtual residual signal accompanied by

a weighting matrix that defines the residual signals type. By

analyzing the resulting error dynamics, it is proven that there

exist some structural conditions that, if satisfied, enable the

residual signal to converge exactly or at least asymptotically

to the fault. Furthermore, an enhanced H−/H∞ is proposed

for fault diagnosis if these decoupling conditions are not

satisfied. As a result, this paper represents an expansion for

this work which can be deployed for sensor fault diagnosis

by means of output integration [18] where the sensor faults

are remodeled to be affecting system states. Thus, the main

contributions of this paper are listed as follows:

• achieving sensor fault estimation using an auxiliary out-

put which avoids the fault signal derivatives estimation

while satisfying the regularity condition.

• accurate representation of the effect of exogenous dis-

turbances on the system output.

• synthesizing the residual generator gains assignment for

exact and asymptotic residual to fault convergence.

Abstract— This work is dedicated to handling the problem 

of quadrotor sensors fault diagnosis where the vehicle model is 

expressed in an LPV framework and accompanied by a robust 
self-scheduled LPV controller which minimizes the quadratic 

performance H∞ norm. Afterward, a new observer scheme 

including a virtual residual signal beside an auxiliary output 
is introduced to achieve quadrotor sensor fault estimation and 

isolation. Through the synthesis of such an observer gains as-
signment, some structural conditions are discussed to guarantee 

exact or at least asymptotic convergence of the residual to the 

fault followed by an enhanced H−/H∞ approach when the 

decoupling conditions are not satisfied. F inally, t he efficiency 

of the developed approach in fault estimation is demonstrated 

by applying it in simulation on a quadrotor UAV subjected to 

sensor faults.

I. INTRODUCTION

Nowadays autonomous systems have gained a huge share 

of scientific r esearch t hanks t o t he i ncreasing technology 

evolution. Such a rapid expansion of the word automation 

has triggered a great concern for another critically important 

branch of automatic control which is Fault Tolerant Control 

(FTC). FTC systems are defined in [1] as the control systems 

that possess the ability to accommodate component failures 

automatically, this can be performed through two steps: Fault 

Detection and Diagnosis (FDD), and control reconfiguration. 

Unmanned Aerial Vehicles (UAVs) take part as one of 

the most applications that need to be provided with FTC 

algorithms to enhance their reliability and robustness against 

system malfunction. Among these UAVs there exists the 

quadrotor which is very practical for various applications 

like surveillance and risk management thanks to its small 

volume and the advantage of vertical take-off and landing 

(VTOL). Usually, a quadrotor is equipped with lightweight, 

low-cost sensors like IMU for orientation and ultrasonic for 

altitude, and despite their acceptable performance in nominal 

conditions, they are vulnerable to sensor faults see [2]. 

According to [3], around 15% of UAVs failures result from 

the navigation system malfunction which urges this work to 

investigate the design of a sensor FDD unit for a quadrotor. 

The mathematical model of the vehicle dynamics is de-

rived based on Newton-Euler formulation in a similar way 

to the work presented in [4]. Indeed, the constructed system 

model has to be precise yet simple to convey further real-

time control law application which is achieved by the Linear 

Parameter Varying (LPV) representation. An LPV system 

is defined b y [ 5] a s a  t ype o f l inear t ime-varying system

All the authors are with IBISC Laboratory, University of Evry, Paris-
Saclay, Evry, 91000, France. Emails: (eslam.abouselima, dalil.ichalal, 
said.mammar)@ibisc.univ-evry.fr
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• validating the obtained results by simulating a quadrotor

LPV model subjected to sensors faults and exogenous

disturbances.

II. QUADROTOR LPV MODEL AND ROBUST CONTROL

A. Nonlinear model

A quadrotor vehicle has four actuators and is commonly

constructed in a cross configuration as illustrated in figure

1. One popular method to model such system dynamics is

the Newton-Euler formula assuming that the quadrotor is a

symmetric rigid structure whose body axes origin is located

at the center of gravity.
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𝑥𝑤
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Fig. 1: Quadrotor schematic with motors forces and moments

Consider the following state vector containing the system

position and orientation states:

Xs(t) = [x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇]T (1)

while the control input vector representing the motor forces

and moments described by:

u(t) = [uz,uφ ,uθ ,uψ ,Ωr]
T (2)

where uφ ,uθ ,uψ are the control inputs corresponding to the

rotations around y,x,z axes, respectively, while uz represents

the total thrust along z axis, and Ωr is the residual angular

speed. The relation between the control input (2) and the state

vector (1) is derived using Newton’s second law for linear

and angular motion with the aid of Euler angles and Euler

rates matrices to transfer the forces, moments, and inertia

properties from the inertial frame to the body-fixed frame

resulting in the nonlinear model given by (3) (Notice that

the derivation is omitted due to space limitation, however,

one can refer to [4] where a full illustration is developed).
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
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(3)

where Ixx, Iyy, Izz are the body moments of inertia, while the

terms Jr, l,g represent the propeller inertia, arm length, and

gravity acceleration, respectively.

B. LPV framework preliminaries

Consider a general nonlinear system given by
{

ẋ(t) = f (x(t),u(t))
y(t) = h(x(t),u(t))

(4)

By a proper choice of the nonlinear terms that need to be

expressed as varying parameters besides adding the sensor

faults and exogenous disturbance effect, the resulting LPV

system can be represented by
{

ẋ(t) = A(ρ(t))x(t)+B(ρ(t))u(t)+E(ρ(t))d(t)
y(t) =C(ρ(t))x(t)+F(ρ(t)) f (t)

(5)

where x(t) ∈ R
n,y(t) ∈ R

ny , u(t) ∈ R
nu ,d(t) ∈ R

nd , and

f (t) ∈ R
n f are the state, output, input, disturbance, and

fault vectors, respectively, while their corresponding state

space matrices are A(.),B(.),E(.),C(.),F(.) depending on

the vector of varying parameters ρT (t) =
(

ρ1(t), ...,ρnρ (t)
)

.

Assumption 1: Through the analysis of the LPV system,

the time-varying parameters are assumed to have known

bounds on the magnitude and rate of change, hence their

values are smoothly evolving within these limits along some

specific linear trajectories.

Given that a varying parameter is called ρi(t), then the

bounds on its magnitude and time derivatives can be de-

scribed by

ρi
min ≤ ρi(t)≤ ρi

max (6)

ρi
( j)min

≤ ρi
( j)(t)≤ ρi

( j)max
(7)

where ρi
( j)min

and ρi
( j)max

, i = 1, ...,nρ define the minimum

and maximum values of the jth time derivative of the

parameter ρi
( j)(t).

Based on the results of assumption 1, the vectors of

the varying parameters and their time derivatives belong to

hyperrectangle compact sets illustrated in [19] within which

they vary along smooth continuous trajectories according

to time (Lipschitz condition). The LPV systems can be

categorized by different classes according to the dependency

of the model matrices on the varying parameters. In this

work, the LPV model (5) is an affine polytopic system

containing nρ parameters which are evolving through a

convex polytope having a number of vertices w = 2nρ . Thus,

the resulting varying parameters matrices can be represented

by the following convex form

M (ρ(t)) =
w

∑
k=1

νk(ρ(t))Mk (8)

such that M (.)∈ {A(.),B(.),E(.),F(.),C(.)}, hence, at each

instant of time, the value of the state space matrices depends

on the interpolation between the varying parameters ultimate

values described by the weighting functions νk, k = 1, ...,w
which satisfy the following convex property:

{

0 ≤ νk(ρ(t))≤ 1, ∀t,k = 1, . . . ,w

∑
w
k=1 νk(ρ(t)) = 1

(9)
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It follows that the derivatives of the varying parameters

matrices which are important for constructing the auxiliary

output as discussed later are given by

dM (ρ(t))

dt
=

w

∑
k=1

νk(ρ̇(t))Mk (10)

Assumption 2: Based on the convexity property of the

LPV system (5), the conditions applied to the LPV model

(such as the controllability and observability) hold for all

possible values of ρ(t) if and only if they hold at the LPV

model vertices following the results of [6].

Assumption 3: Throughout this work, the output relative

degree to faults and disturbances denoted λ f and λd dis-

cussed in [17] is assumed to be uniform such that they

are independent of the variation of the parameters and their

successive time derivatives.

C. Quadrotor quasi-LPV model

Commonly, the quadrotor control is constructed in a

cascaded scheme where the inner loop including the fast

dynamics attitude states gets the command from the outer

loop representing the slower dynamics position states. So in

this work, the dynamics of the attitude and altitude states are

investigated, and thus the state vector is reduced to

x(t) = [ φ θ ψ z φ̇ θ̇ ψ̇ ż]T (11)

After eliminating the position dynamics from equation

(3) and by assuming that the system executes its motion

through small perturbations around the hovering point, hence

the trigonometric functions can be approximated by sinθ ≈
θ , cosθ ≈ 1. Then by choosing the terms θ̇ and φ̇ as the

varying parameters, the resulting model conveys a quasi-LPV

representation where the varying parameters are the system

states. Thus, the vector of the varying parameters is ρ(t) =
[θ̇ , φ̇ ] and the system can be described by the polytopic form

in (5) with the following time-varying matrices:

A(ρ(t)) =

[

04×4 I4×4

04×4 Aσ

]

,B(ρ(t)) =

[

04×5

Bσ

]

,C(ρ(t)) =
[

I8×8

]

(12)

Aσ =













0 0
θ̇(Iyy−Izz)

Ixx
0

0 0
φ̇(Izz−Ixx)

Iyy
0

θ̇(Ixx−Iyy)
Izz

0 0 0

0 0 0 0













, Bσ =











0 1
Ixx

0 0 θ̇Jr
Ixx

0 0 1
Iyy

0
−φ̇Jr

Iyy

0 0 0 1
Izz

0
1
m

0 0 0 0











(13)

The exogenous disturbances to be included in the model

depend on the environmental conditions within which the

drone will be operating. So in this work, two of the common

outdoor quadrotor disturbances listed in table I are included,

namely gust wind, and gravity acceleration which are de-

scribed mathematically by

d(t) =
[

d1(t),d2(t),d3(t)
]

(14)

where d1(t) and d2(t) are representing gust wind force in
y and x directions, respectively, in addition to d3(t) = g
describing the effect of the drone weight which allows the
controller to adapt to the varying payload.

E(ρ(t)) =

[

E1

E2

]

,E1 =







0.1 0 0
0 0.1 0
0 0 0
0 0 0






,E2 =







1 0 0
0 1 0
0 0 0
0 0 −1






(15)

TABLE I: Sensor faults and external disturbances
faults disturbances

bias gust wind

drift acceleration of gravity

freezing payload

loss of accuracy terrain induced wind

calibration error propeller vortex

Finally, F(ρ(t)) represents the impact of sensor faults f (t)
on the output y(t), thus its value depends on the sensors used

and their common faults. Some typical aircraft sensor faults

given in table I are investigated earlier in [1] and since this

work is dedicated to attitude and altitude fault diagnosis, two

main sensors are considered IMU and Ultrasonic.

Regarding the IMU, the readings of angular rates (φ̇ , θ̇ , ψ̇)
are obtained from the gyroscope which can be affected by

the structural vibrations and loose fixations resulting in loss

of accuracy. Furthermore, the orientation angles (φ ,θ ,ψ) are

calculated by integrating the angular rates so such measure-

ments are vulnerable to error accumulation (drift). Concern-

ing the ultrasonic sensor, the major problem is freezing due to

range limitations and speed of data acquisition. A convenient

way to represent all the aforementioned kinds of faults on

the measurement is to have two matrices as follows:

Fm =
[

I4×4 04×4

]

, Fr =
[

04×4 I4×4

]

(16)

Such that the vector f(t) contains the sensors parametric

faults, then according to which sensor to be examined there

are two possibilities:

• F(ρ(t)) = Fm, for altitude and orientation faults.

• F(ρ(t)) = Fr, for ascending and angular rates faults.

This is an efficient way to estimate the exact value of a sensor

fault while avoiding the coupled states effect, for example,

a residual in the direction of φ is not affected by a fault of

the angular velocity φ̇ and so on.

D. Observer-based feedback control

The proposed control law is similar to that utilized in our

previous work [17] where an additive state ˙̃z = −κ z̃+ z is

included to produce an integral action in the direction of

altitude z-axis. This method is appealing as it enables the

designed control law to adapt to the quadrotor weight if

there is an extra payload according to the tuned value of

the constant parameter κ . After examining the controllability

of the pair (A(ρ(t)),B(ρ(t))), the following observer-based

feedback control law is introduced in a polytopic form to

achieve reference tracking

u(t) =−K(ρ(t))x̂(t)+N(ρ(t))η(t) (17)

where x̂ and η(t) are the estimated state and the reference
input, respectively, while the feedback gain matrix K(.)
and the DC gain inverse matrix N(.) are parameter varying
matrices which conform with the polytopic form given by
equation (8). The following inequalities (18) and (19) are
used to deduce the values of the feedback gain matrices at
the polytope vertices K j, j ∈ {1, . . .w}

(Ak −BkK j)
T Ψ+Ψ(Ak −BkK j)+2ζcΨ < 0 (18)





(Ak −BkK j)
T Ψ+Ψ(Ak −BkK j) ΨBk Ck

T

Bk
T Ψ −γc

2I Dk
T

Ck Dk −I



< 0 (19)
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Fig. 2: Fault diagnosis schematic

By a simple change of variables the inequalities (18) and
(19) are transformed into LMIs to be solved using YALMIP
optimization tool [20] aiming to reach the minimum value
of γc while preserving the matrix Ψ as positive definite. The
inequality (18) corresponds to Lyapunov quadratic stability
and guarantees the accuracy of the closed loop system time
response. While the inequality (19) represents the Bounded
Real Lemmma (BRL) which ensures the exogenous signals
effect to be less than the quadratic H∞ performance level
γc following the results of [6]. The LPV controller can
be regarded as a self-scheduled control law due to its
dependence on the-varying parameters which are the system
states in our quasi-LPV model. Finally, to guarantee precise
reference tracking, the DC gain inverse N(ρ(t)) obtained
from equation (20) is introduced such that the steady-state
error that can arise due to a time-varying input is eliminated.

N(ρ(t)) =−
(

C(ρ(t))
[

A(ρ(t))−B(ρ(t))K(ρ(t))
]−1

B(ρ(t))
)†

(20)

where Λ† represents the pseudo-inverse of the matrix Λ

III. SENSOR FAULT ESTIMATION

In this work, we are seeking a robust residual generator

that is able to develop a reliable sensor fault estimation dur-

ing the presence of exogenous disturbances and measurement

noise see figure 2. By investigating the literature two main

challenging problems are found, namely regularity condition

satisfaction and exact residual to fault convergence, in this

section a solution for each one will be presented. In order to

apply the method discussed in [17] for sensor fault diagnosis,

the system (5) can be rewritten for simplicity as follows
{

ẋ(t) = Aρ x(t)+Bρ u(t)+Eρ d(t)
y(t) =Cρ x(t)+Fρ f (t)

(21)

by defining a new state ε(t) =
∫ t

0 y(τ)dτ,ε(t)∈R
ny such that

ε̇(t) =Cρ x(t)+Fρ f (t) (22)

Then the following augmented system can be constructed
{

ẋa(t) = Āρ xa(t)+ B̄ρ u(t)+ Ēρ d(t)+ F̄ρ f (t)
ya(t) = C̄ρ xa(t)

(23)

where xa(t) =

[

x(t)
ε(t)

]

, Āρ =

[

Aρ 0

Cρ 0

]

, B̄ρ =

[

Bρ

0

]

, Ēρ =
[

Eρ

0

]

, F̄ρ =

[

0

Fρ

]

, C̄ρ =
[

0 Iny

]

, represent the augmented

system matrices with appropriate dimensions. This procedure

is deployed in [18] to design an observer with an additive

integral action while the observability of the pair (Āρ ,C̄ρ) is

guaranteed under the following assumption.

Assumption 4: For every complex number s with non-

negative real part:

rank

[

sIn −Aρ Eρ

Cρ 0

]

= n+ rank(Eρ) (24)

A. auxiliary output

As mentioned before, to guarantee a feasible solution

for the problem of H∞ norm minimization, the regularity

assumption should be satisfied. The common way adopted in

the literature is to introduce a term modeling the disturbance

effect on the output, however, a promising method is pro-

posed in [16] based on an extended output of the system con-

taining the output and its successive time derivatives named

the auxiliary output ỹ(t). Such an output provides a more

realistic impact of the disturbances, but obviously, it depends

on signal differentiation which can amplify the measurement

noise effect. Fortunately, the recent algorithms developed for

estimating the high order time derivatives of a signal such

as high-gain differentiators [14] and numerical differentiators

[15] are able to provide robust signal differentiation that is

less sensitive to the noises affecting the signal. Consider ỹ(t)
is given by

ỹ(t) =

[

ya(t)
ẏa(t)

]

=

[

C̄ρ xa(t)
C̄ρ ẋa(t)

]

(25)

or in another form

ỹ(t) =Cρ̄ xa(t)+Bρ̄ u(t)+Rρ̄ f (t)+Dρ̄ d(t) (26)

where Cρ̄ =

[

C̄ρ

C̄ρ Āρ

]

, Bρ̄ =

[

0

C̄ρ B̄ρ

]

, Rρ̄ =

[

0

C̄ρ F̄ρ

]

, Dρ̄ =
[

0

C̄ρ Ēρ

]

are system matrices with appropriate dimensions

and ρ̄(t) represents the vector of the parameters ρ(t) and

their time derivatives.

Since sensor faults are considered, then their effect appears

in the 1st output time derivative (relative degree of fault

to output is λ f = 1). Fortunately regarding the quadrotor

model (12) to (16), the disturbance affect the 1st output

time derivative thus the regularity condition is satisfied in the

auxiliary output (25). Note if another system has a relative

degree from disturbance to output λd > 1, then it is necessary

to estimate input and fault derivatives, such an issue can be

interesting for future work.

B. virtual residual

As this work pursue a robust observer that is able to

perform fault diagnosis (detection, estimation, and isolation),

the same residual generator produced in our previous work

[17] is utilized taking the following form










˙̂xa(t) = Āρ x̂a(t)+ B̄ρ u(t)+L1ρ̄ (ya(t)− ŷa(t))+L2ρ̄

(

ỹ(t)− ˆ̃y(t)
)

ŷa(t) = C̄ρ x̂a(t)
ˆ̃y(t) =Cρ̄ x̂a(t)+Bρ̄ u(t)
r(t) = Mρ̄

(

ỹ(t)− ˆ̃y(t)
)

(27)

In addition, we introduce the reference residual vector

rr(t) = Q f (t), where Q is a the fault weighting matrix that

defines the type of the obtained residual signals as illustrated

in [17]. In this way, if the residual generator objective is

to perform fault detection along a specific direction, the

weighting matrix Q is chosen as a vector along this direction.

In our case, we aim to perform fault estimation so the

weighting matrix is chosen to be Q = In f
where In f

is the

identity matrix of dimensions n f ×n f . Furthermore, a virtual

residual signal defined by re(t) = r(t)− rr(t) = r(t)−Q f (t)
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is added aiming to minimize its magnitude such that the

residual r(t) converges to the fault f (t).

IV. RESIDUAL GENERATOR GAINS ASSIGNMENT

This section aims to assign the values of the gain ma-

trices L1ρ̄ , L2ρ̄ and Mρ̄ to ensure robust fault diagnosis

where two procedures for exact and asymptotic residual to

fault convergence are discussed followed by the worst case

H−/H∞ approach if non of the decoupling conditions are

satisfied. So consider the system (23) and (26) accompanied

with the residual generator (27), given the state error e(t) =
xa(t)− x̂a(t) the resulting error dynamics will be
{

ė(t) =
(

Āρ −L1ρ̄C̄ρ −L2ρ̄Cρ̄

)

e+
(

F̄ρ −L2ρ̄ Rρ̄

)

f (t)
+
(

Ēρ −L2ρ̄ Dρ̄

)

d(t)
re(t) = Mρ̄Cρ̄ e(t)+

(

Mρ̄ Rρ̄ −Q
)

f (t)+Mρ̄ Dρ̄ d(t)
(28)

which can be rewritten in the following form
{

ė(t)= Aeρ e(t)+E f ρ f (t)+Edρ d(t)

re(t)=Ceρ e(t)+Ff ρ f (t)+Fdρ d(t)
(29)

A. Exact convergence

It has been proven in [17] that if the system satisfies the

following condition

rank

([

Cρ̄ Rρ̄ Dρ̄

0 Q 0

])

= rank
([

Cρ̄ Rρ̄ Dρ̄
])

,∀ρ̄(t) ∈ Φ̄

(30)

then, the matrix Mρ̄ can be chosen as

Mρ̄ =
[

0 Q 0
][

Cρ̄ Rρ̄ Dρ̄

]†
(31)

which will guarantee exact convergence of the residual signal

to the reference residual resulting in re(t) = 0 or in other

words r(t) = Q f (t).
It is evident from the results of this approach that the

residual signal is independent of the error dynamics, hence

the matrix L1ρ̄ can be fixed to zeros. However, for practical

cases where the output derivatives can’t be guaranteed to be

exact, the gain L1ρ̄ can be calculated using pole placement

such that the residual generator can perform state estimation

also. Nevertheless, if the system doesn’t convey the condition

(30), then asymptotic residual to fault convergence can be

maintained by assigning the observer gain matrices according

to the following technique.

B. Asymptotic convergence

Again based on the results obtained in [17], if the follow-

ing conditions hold

rank
(

Rρ̄

)

= n f , rank

([

F̄ρ

Rρ̄

])

= rank
(

F̄ρ

)

(32)

then, the matrices Mρ̄ and L2ρ̄ can be chosen as
{

Mρ̄ = QR
†
ρ̄

L2ρ̄ = F̄ρ R
†
ρ̄

(33)

In that manner, the fault effect is decoupled from the error

dynamics (28) and under the observability of the pair (Āρ −
L2ρ̄Cρ̄ ,C̄ρ), the gain matrix L1ρ̄ can be calculated in a way

that minimizes the effect of the disturbances on the error

dynamics such that

‖r(t)−Q f (t)‖2 < γ ‖d(t)‖2 (34)

which results in asymptotic convergence of the residual

signal to the fault

lim
t→+∞

r(t) = Q f (t) (35)

Here arises the importance of the gain L1ρ̄ which offers

an additional degree of freedom to assign the observer poles

position such that it can perform fault estimation in the

nominal case even if the value of the other two gains Mρ̄ and

L2ρ̄ are fixed. The gain L1ρ̄ can be computed to minimize the

quadratic H∞ performance level γ by solving the Bounded

Real Lemma (BRL) illustrated in the next section where a

general solution based on the H−/H∞ technique is proposed

as our last option for observer gains assignment when the

system doesn’t convey any of the aforementioned decoupling

conditions.

C. Alternative H−/H∞ technique

Recall the error dynamics given by (29) which is affected

by the existence of faults and disturbances simultaneously.

The target of this approach is to assign the residual gen-

erator gain matrices Mρ̄ ,L1ρ̄ ,L2ρ̄ in a way that ensures the

maximum sensitivity of the residual to the fault ||Tr f ||− ≥ β
besides the minimum influence of the exogenous disturbance

||Trd ||∞ ≤ γ while preserving a fast time response for precise

fault estimation. These three objectives are settled by solving

the following inequalities (a detailed derivation can be found

in [12])






Aeρ
T P+PAeρ PE f ρ −Ceρ

T

E f ρ
T P −β 2I −Ff ρ

T

−Ceρ −Ff ρ −I






< 0 (36)





Aeρ
T P+PAeρ PEdρ Ceρ

T

Edρ
T P −γ2I Fdρ

T

Ceρ Fdρ −I



< 0 (37)

Aeρ
T P+PAeρ +2ζoP < 0 (38)

where ζo is a positive scalar to be chosen to determine the

observer time constant. The three inequalities (37), (36), (38)

can be transformed into LMIs by introducing the variables

V1ρ = PL1ρ̄ and V2ρ = PL2ρ̄ . Then, the resulting optimization

problem is solved for a symmetric positive definite matrix P

with an objective function max(β 2 − γ2) using semi-definite

programming solver called ’SEDUMI’ see [20].

V. SIMULATION RESULTS

In order to reveal the effectiveness of the proposed ap-

proach in sensor fault estimation, it is applied to the quadro-

tor quasi-LPV model detailed in section II.C having the

inertia properties given by [21] in simulation using Matlab-

Simulink. As previously mentioned through calculating the

auxiliary output ỹ(t), the faults and disturbances appear in the

1st time derivative of the system output. Hence, the relative

degree the relative degrees from the faults and disturbances to

the output are equal λ f = λd = 1, however, it is not satisfying

the condition of exact convergence (30). Afterward, while

checking the asymptotic convergence conditions, the system

is found to comply with the conditions (32) but the resulting
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pair (Āρ − L2ρ̄Cρ̄ ,C̄ρ) is not observable. So the H−/H∞

approach presented in section IV.C is used to obtain the gain

matrices L1ρ̄ ,L2ρ̄ , and Mρ̄ . Note: the discussed theorems have

shown great potential for fault estimation while applied for

some academic examples having different system models but

they are omitted due to space limitation.

Before proceeding to the residual generator optimization

problem solution, the upper and lower limits of the angular

velocities as varying parameters are chosen from the nonlin-

ear model simulation performed in our previous work [12]

to be ρ(t) ∈ [−0.5,0.5] rad/s. For the controller design, the

following constants are chosen ζc = 2, κ = 5 to add an inte-

gral action along z-direction beside keeping the closed-loop

system poles on the left hand side of σ =−2 in the s-plane.

Concerning the residual generator design, the constant ζo = 4

is introduced to ensure fast time response and after solving

the convex optimization problem, the resulting values of β 2

and γ2 are equal to 1.24 and 1.0924, respectively. To give

a better understanding of the simulation environment, the

initial condition of the state vector in (11) is x(0) = 0 except

for z(0) = 1 and its estimated value is given by x̂(0) = 0.1.

While the included disturbances are low-frequency sinusoidal

gust wind given by
{

d1(t) = 0.5sin0.8t t > 20s

d1(t) = 0.5cos0.8t t > 20s
(39)

Finally, the measured attitude, altitude, angular rates, and rate

of ascending are subjected to white Gaussian noises ns(t) ∈
[−0.03,0.03] and nv(t)∈ [−.06, .06] having a sample time of

0.03,0.01 s, respectively. The results demonstrated by figure

3 shows the residual generator response in fault free case

that proves the ability of the proposed algorithm to attenuate

the noise effect while providing the controller with smoothly

estimated states to attain reference tracking. Furthermore, the

effect of both initial conditions and wind disturbances on

the observer response is of a negligible order of magnitude

compared to the case where a real fault does exist.

To demonstrate the potential of the proposed H−/H∞

technique in fault estimation the states of the system are

subjected to the faults given by

fs(t) =















2◦ t > 10 s

(2+0.4t)◦ t > 10 s

5◦ 10 ≤ t ≤ 15 s
(40)
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Fig. 3: Fault free case

fr(t) =















(5sin0.8t +2cos2.4t)◦/s t > 10 s

(4sin0.5t +3cos t)◦/s t > 10 s

10◦/s 5 ≤ t ≤ 7 s

0.2m/s 10 ≤ t ≤ 12 s

(41)

Furthermore, by considering F(ρ(t)) = Fr given in (16), the

climbing and angular rates are subjected to the sensors faults

given by (41). Such faults represent time varying gyroscope

malfunction of φ̇ and θ̇ while ψ̇ and ż are affected by sudden

finite time changes.

Again the results shown in figure 5 illustrate great potential

of the proposed algorithm for the gyroscope time-varying

and abrupt faults estimation. In addition, although the gravity

effect is modeled as a disturbance on the system, it doesn’t

prohibit asymptotic convergence of the residual signal to the

fault. The results obtained here are very promising for further

sensor fault-tolerant control design as the residual generator

is able to identify the amount and location of fault precisely.

VI. CONCLUSION

In this paper, a newly developed model-based observer

scheme is deployed as a residual generator which is provided

with a virtual residual signal to perform sensor fault estima-

tion. An additive integral action is introduced to promote the

ability of the system to model the effect of the disturbances

on the measurements, in a way that increases its robustness.

Moreover, augmenting the system with an integral action

helps to avoid the problem resulting from the control input

and the fault differentiation while computing the auxiliary

output. The auxiliary output is introduced based on the output

relative degree to satisfy the regularity condition needed to

ensure the feasibility of the quadratic H∞ performance con-

straints. Through synthesizing the residual gains assignment,

two notions are investigated, namely exact and asymptotic

−ẑ + ẑ(Tf ) 8 ≤ t ≤ 12 s

The fault signal (40) represents a bias in the reading of (φ ), 

a drift of (θ ) (which as mentioned before likely to happen 

as the IMU integrates the (θ̇ ) measurement provided by the 

gyroscope), and a sudden abrupt change of (ψ). In addition,

the altitude z is subjected to freezing fault given by fs4 where 

Tf = 8s is the start time, such fault is common for ultrasonic 

sensors due to their measuring range limits. The results 

shown in figure 4 demonstrate the capabilities of the residual 

generator in fault detection and estimation of simultaneous 

different faults affecting the states measurements despite of 

the exogenous disturbances existence.
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Fig. 5: Faults vs residuals for states derivatives

residual to fault convergence depending on the mathematical 

model properties. If the system is not satisfying any of the 

decoupling conditions, then the min/max technique based 

on the H−/H∞ norms is used for computing the observer 

gain matrices. Finally, the proposed approach is tested by 

means of simulation of the quadrotor quasi-LPV model 

accompanied by a robust observer-based feedback control 

law. The adequate simulation results in fault estimation 

exhibit great potential of the proposed residual generator to 

be further used in active sensor fault-tolerant control.
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