Clément Bertrand
email: clement.bertrand@scalian.com

Hanna Klaudel
email: hanna.klaudel@univ-evry.fr

Frédéric Peschanski
email: frederic.peschanski@lip6.fr

Layered Memory Automata: Recognizers for

Keywords: Quasi-Regular Languages with Unbounded Memory data languages, memory automata, register automata, unbounded memory, quasi-regular languages

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

Automata on datawords, involving infinite alphabets, represent an influential foundation for the analysis of datastreams [START_REF] Libkin | Regular expressions for data words[END_REF]. Resource analysis frameworks for concurrent systems have also been investigated based on similar automatatheoretic foundations, e.g. in [START_REF] Bartoletti | Usage automata[END_REF] or our own previous work [START_REF] Deharbe | The omniscient garbage collector: a resource analysis framework[END_REF]. Quoting [START_REF] Kaminski | Finite-memory automata[END_REF]:

Actions of concurrent processes, when concurrency and communication are restricted to very simple patterns, are another possible interpretation of infinite alphabets.

The classification of automata models for datawords can be roughly decomposed in two major families. The first family, pioneered by the finite memory and Kleene star. The HRA (History-Register Automata) uses multiple of this histories instead of registers to store letter of the infinite alphabet. Without injectivity constraints, HRA uses a similar transition as M-FMA (M-Automata from [START_REF] Kaminski | Finite-memory automata[END_REF]), the transition guard is satisfied when the input letter is stored in the exact set of histories annotating the transition. HRA transitions can clear a history and transfer the inputted letter among histories. Our model LaMA is similar to HRA, but without the possibility of performing transfers among its variables (histories) and preserving the injectivity constraint from FMA.

As a primary contribution, we argue that the LaMA provide a kind of a sweet spot between the "good" operational properties of the FMA, and (at least some of) the expressiveness of higher-level models with unbounded memory capabilities. A second contribution we defend in this paper is the economical nature of the proposed model regarding the (quasi-)regular constructions. The regular constructions proposed for FMA in [START_REF] Kaminski | Finite-memory automata[END_REF][START_REF] Tzevelekos | Fresh-register automata[END_REF]o r [8] all yield automata of exponential sizes. Despite the fact that the LaMA strictly subsume the FMA (with unbounded memory), the constructions we propose for concatenation, disjunction and conjunction1 of (the language recognized by) LaMA remain polynomial. Despite its simplicity, the idea of the memory layers plays here a crucial role. Unfortunately, the construction for the Kleene star remains exponential for LaMA. In [2]weintroduce a variant of the LaMA with transfer capabilities that allows to obtain a polynomial construction. However, this variant only preserves the membership problem, and most other "good" properties are lost. Because of this and of space constraints, this variant will not be presented in detail in this paper.

The outline of the presentation is as follows. The LaMA model is presented in Sect. 2 with a discussion of related work, and its main closure properties are discussed in Sect. [START_REF] Bertrand | Pattern matching in link streams: timed-automata with finite memory[END_REF]. Important language inclusion links between LaMA and other automata models are presented in Sect. [START_REF] Björklund | On notions of regularity for data languages[END_REF]. Finally, in Sect. 5 we discuss the important aspect of the sizes of the regular constructions in LaMA and related models.

Layered Memory Automata

We present in this section the model of layered memory automata (LaMA), an extension and improvement of the ν-automata presented in previous works [START_REF] Bertrand | Pattern matching in link streams: timed-automata with finite memory[END_REF]. The principle is to recognize datawords based on a countably infinite alphabet of letters, that we denote by U. During the recognition process, the LaMA use variables to identify memory cells that can store sets of letters read as input.

The main specificity of this memory model is its structuring in layers.A memory context M corresponds to a memory divided in distinct layers. Each layer, identified by a natural number, can store a finite set of letters (over the infinite alphabet). Thus, for example, we can say that, in M , a variable X contains (is associated with) the finite set E ⊆Uat layer l, which will be denoted by M (X l)=E. By a slight abuse of terminology, we will often write "the variable X l " to in fact designate "the variable X at layer l". The formal definition is given below.

Definition 1 (Memory context). Given a finite set of variables V , a finite set of layers L and an infinite alphabet U, we define a memory context M as an association function whose signature is as follows: M : V × L → 2 U where M (X l) ⊂U is the finite set of letters associated with variable X l .

The most important feature of memory contexts is the following injectivity constraint.

Definition 2 (Injectivity of layers). Let a memory context M be defined on the finite sets of variables V and layers L, the injectivity constraint is:

∀(X, Y) ∈ V × V, ∀l ∈ L, X = Y =⇒ M (X l) ∩ M (Y l)=∅
In more informal terms: it is forbidden for a given letter to be stored in the memory corresponding to distinct variables at the same layer. If compared to FMA, we can say that each layer resembles the memory context of a FMA, but that distinct layers remain independent. The second, and fundamental difference with FMA is that the memory of LaMA is unbounded : each memory cell X l can store an arbitrary number of letters.

Thanks to the injectivity constraint, we can define the notion of a fresh letter at layer l, i.e., a letter that is associated with no variable of the layer l. This subsumes the usual notion of a fresh letter, i.e., a letter being fresh at all layers.

We now explain the composition of a LaMA as state-transition machines.

Definition 3 (Layered Memory Automata). Layered Memory Automata are defined with respect to an infinite alphabet U and are represented as tuples of the form A =(Q, q 0 ,F,Δ,V,L,M 0) where:

-Q is a finite set of states2 , q 0 ∈ Q and F ⊆ Q are respectively the initial state and the set of accepting states, -Δ is a finite set of transitions3 , described below in Definition 4 and 5, -V and L are respectively the finite set of variables and the finite set of layers, and -

M 0 : V × L → 2 U is the initial memory context.
The initial memory context M 0 indicates the letters initially associated with each variable. This makes it possible to define a finite alphabet of constants, similarly to FMA, with thus the possibility to simulate classical FA (a feature we will not take advantage of in this paper).

The set Δ of transitions encompasses two kinds of transitions: (1) the observable transitions that are fired when a letter is read in input, and which consume the letter, and (2) the ε-transitions, which are non-observable and thus can be fired at any time (without consuming the input).

Definition 4 (Observable transition). The observable transitions are tuples of the form: δ =(q, ν, α, ν,q ′) ∈ Δ where:

q, q ′ ∈ Q are the source and destination states of the transition, ν ⊆ 2 V ×L is the set of variables modifiable by the transition, α : L → V ∪{♯} indicates for each layer the variable consulted by the transition, ν ⊆ 2 V ×L is the set of variables which are reset by the transition.

Input letters can only be consumed when firing such observable transitions. The precise definition of a transition firing is given below (cf. Definitions 7 and 8) but we summarize the informal intent now. The α function indicates the variables consulted by the transition, with the constraint that at most one variable can be consulted for each layer. The special symbol ♯ is used to indicate that no variable is to be consulted for this layer when firing the transition. When reading a letter u, the transition may be fired if, for each variable X l such that α(l)=X:

-either X l is not modifiable (X l ∈ ν)a n du is already associated with X l ; -o r ,i fX l is modifiable (X l ∈ ν), then u is fresh for layer l (i.e., associated with no variable of layer l).

Because of the injectivity constraint, only a fresh letter can be associated with a variable X l . That is, upon reading, the letter must not be associated with any variable in layer l, not even X l .

Remark 1 (Universal transition). If no variable is consulted by a transition (i.e., ∀l ∈ L, α(l)=♯), then the transition can be fired when reading any letter.

The set ν is the set of variables that must be reset by the transition. No letter is associated with the variables of ν in the configuration reached by the transition.

Definition 5 (ε-transition). The non-observable ε-transitions are tuples of the form δ ε =(q, ν, q ′) ∈ Δ where:

q, q ′ ∈ Q are the source and destination states of δ ε , ν ⊆ 2 V ×L is the set of variables reset by the transition.

We now turn to the dynamics of the model, describing the behavior of LaMA as language recognizers. We begin with the definition of a configuration, i.e., a "running state".

Definition 6 (configuration).

A configuration of a LaMA is a pair (q, M) of a state q and a memory context M . Given an automaton A = (Q, q 0 ,F,Δ,V,L,M 0), the initial configuration is (q 0 ,M 0) and an accepting configuration is a pair (q f ,M), for a reachable memory context M and an accepting, final state q f ∈ F .

A dataword belongs to the language of a LaMA if there is a (finite) sequence of firings of transitions going from the initial configuration to an accepting one. For observable transitions the question is the following: given a source configuration (q, M) and an input letter u ∈U, is there an observable transition δ ∈ Δ which is enabled such that, as an effect, we can construct a destination configuration (q ′ ,M ′)? In such a case, the actual firing is denoted by (q, M)

u -→ δ (q ′ ,M ′)(f o r observable transitions), or alternatively (q, M) ε -→ δ (q ′ ,M ′)(f o rε-transitions).
Observable transitions, to be fired, must be enabled, under the following conditions.

Definition 7 (Enabling of an observable-transition). For a configuration (q, M) and an input letter u ∈U , an observable transition (q, ν, α, ν, q ′) ∈ Δ is enabled if and only if for each layer l ∈ L and variable X ∈ V such that α(l)=X ∈ V :

-i fX l is modifiable (X l ∈ ν) then no variable must be already associated with u in layer l, i.e., ∄Y ∈ V, u ∈ M (Y l); -otherwise (X l ∈ ν), u must be associated with X in layer l, i.e., u ∈ M (X l).

Informally, the role of the enabling conditions is: (1) to preserve the injectivity of each layer, and (2) to check the capability of consuming the input and store it in the required memory cells. The ε-transitions are enabled independently from the inputted letter. Once a transition is enabled, it can be non-deterministically fired, which produces as an effect a resulting configuration, as explained by the following definition.

Definition 8 (Effect of a transition firing). For a source configuration (q, M), an input letter u ∈Uand an enabled transition δ ∈ Δ, the firing (q, M) u -→ δ (q ′ ,M ′) produces the configuration (q ′ ,M ′) constructed as follows:

-i fδ =(q, ν, q ′), then M ′ consists of M where the variables in ν are reset, M ′ = M [ν →∅], -i fδ =(q, ν, α, ν,q ′), then in M ′ the modifiable variables are associated with u and the variables of ν are reset, i.e., for each

X l , M ′ (X l)=    ∅ if X l ∈ ν (1) M (X l) ∪{u} if α(l)=X ∧ X l ∈ ν (2) M (X l) if X l ∈ ν ∨ α(l) = X (3)
The memory context M ′ produced by a transition firing is the result of a combination of three different cases of effects, denoted by (1) -(3) in the definition above. Case (1) corresponds to the reset of the memory cell X l ,whic h

q0 q1 q2 q3 νS 1 ,S 1 ν{X 1 ,Y 2 },X 1 ,Y 2 S 1
Y 2 ,νY 2 Fig. 1. A layered memory automaton recognizing words of the form abbccdd . . . a is thus emptied. Case (2) corresponds to the actual consumption of the letter u, which is placed in all the required memory cells. Finally Case (3) aims at preserving the unchanged parts of the memory.

The language recognized by a LaMA is now naturally defined by sequences of firings from the initial configuration to accepting ones. To simplify the definition, we first introduce the notion of a weak firing that encompasses the firing of a single observable transition, surrounded by (possibly empty) sequences of εtransitions.

We denote by (q, M) u = ⇒ δ (q ′′ ,M ′′) a weak transition firing, corresponding to any firing sequence of the form: (q, M)

ε -→ γ * ••• u -→ δ (q ′ ,M ′) ε -→ η * (q ′′ ,M ′′).
Definition 9 (Language of a LaMA). Let A be a LaMA and L(A) the language it recognizes. A word w = u 1 u 2 ... u n ∈U * belongs to L(A) iff there exists a sequence of weak transition firings:

(q 0 ,M 0) u1 =⇒ δ1 (q 1 ,M 1) u2 =⇒ δ2 ••• un = = ⇒ δn (q n ,M n) such that q n ∈ F .
We depict in Fig. 1 an example of a LaMA with 4 states and 5 transitions. The memory structure of the automaton involves the variables X, Y , S with two distinct layers 1 and 2.

For the sake of readability, we use a slightly simplified notation for the transition label. A transition labeled ν{X 1 ,...}Y 1 Z 2 ...ν{U 1 ,...} in a diagram, from a state labeled q to a state labeled q ′ , corresponds more formally to a transition δ =(q, ν, α, ν,q ′) such that ν = {X 1 ,...}, α = {1 → Y, 2 → Z,...} and ν = {U 1 ,...}. Also, we omit the brackets for singleton sets, and we also omit the empty sets and the epsilons. For example, in the diagram of Fig. 1,f

o r the transition labeled Y 2 , νY 2 we in fact mean ν = ∅, α = {1 → ♯, 2 → Y } and ν = {Y 2 }. Thus, the transition labeled S 1 actually means ν = ν = ∅ and α = {1 → S, 2 → ♯}.
Now that the simplified notation is in place, we can explain the behavior of the depicted automaton. The language it recognizes is the following one:

{sx 0 x 0 x 2 x 2 ...x n x n s |∀i, j ∈ N,s,x i ∈U,i = j =⇒ x i = x j }
This is an example inspired from [START_REF] Bertrand | Pattern matching in link streams: timed-automata with finite memory[END_REF] where we study the pattern recognition in dynamic graphs, with datawords representing sequences of edges established dynamically (so-called link streams). In this representation, the automaton characterizes a Hamiltonian circuit as a pattern.

We assume the initial memory context to be empty, i.e., no letter is initially associated with the variables. The role of variable S is to identify and memorize the first letter of the word (here a node of a graph) through the transition from q 0 to q 1 . This is stored in S at layer 1, denoted S 1 . The cycling transitions between q 1 and q 2 allow to read intermediate letters of the word. The variable X 1 memorizes these intermediate letters when ensuring that letters in even positions are all different from each other. Since X 1 belongs to the same layer as S 1 ,t h e injectivity constraint ensures that all letters are different from the first one. Then, the variable Y 2 ensures that the letters in odd positions are identical to the ones which immediately precede them. In the transition going from q 1 to q 2 the letter in even position is associated with Y 2 . The only letter enabling the transition from q 2 to q 1 is the one previously associated with Y 2 . Then, Y 2 is reset in order to track the next letter, and not confuse it with the one previously stored. Eventually, the last letter is read, which has to be in even position and to be the same letter as the one stored in S 1 to enable the transition from q 1 to the accepting state q 3 .

Regular Constructions and Closure Properties

One of the most important properties of FMA, beyond their extended expressiveness, is the fact that they preserve most of the "good" properties of FA, especially closure properties for all the regular constructions, except for complement. This aspect is emphasized by the authors of [START_REF] Kaminski | Finite-memory automata[END_REF] by defining the class of languages recognized by FMA as quasi-regular.

The LaMA we introduce in this paper correspond to a strict extension of the FMA (and in fact an extension of both the FRA and the GRA, as discussed in Sect. 4). But most importantly, we aim with the LaMA to an extension that is as conservative as possible, wrt. the "good" properties of FMA. In particular, the LaMA ensure the same closure properties as the FMA wrt. the regular constructions. In fact, most regular constructions are greatly facilitated by the availability of layers that allow to compose memory contexts without interference (e.g. composing two LaMA for concatenation). With the notable exception of the Kleene star, the proof schemes thus resemble the ones of FA. As such, we will only present proof sketches, the details being available in [2]. Note, also, that Sect. 5 discusses quantitative aspects related to these constructions.

Theorem 1 (Closure properties of basic operators). Let the two LaMA

A 1 =(Q 1 ,q 1 ,F 1 ,Δ 1 ,V 1 ,L 1 ,M 1) and A 2 =(Q 2 ,q 2 ,F 2 ,Δ 2 ,V 2 ,L 2 ,M 2),s u c h that L 1 ∩ L 2 = ∅, then: -(Concatenation) there is a LaMA A 1•2 such that L(A 1•2)=L(A 1) • L(A 2). -(Union) there is a LaMA A 1∪2 such that L(A 1∪2)=L(A 1) ∪ L(A 2). -(Intersection) there is a LaMA A 1∩2 such that L(A 1∩2)=L(A 1) ∩ L(A 2).

Proof (Proof sketches).

The assumption L 1 ∩ L 2 = ∅ is without loss of generality because a trivial fact is that the injective renaming of the set of layers of a LaMA (with fresh layer identities) does not change the language it recognizes. Now, we consider the basic operators in turn.

Concatenation. It is possible to construct automaton A 1•2 following the classical construction of finite state automata, which consists in adding ε-transitions allowing to access the initial state of A 2 from each accepting state of A 1 .A st h e layers of A 1 and A 2 are disjoint, their memories are actually put side by side and the variables of both automata do not interact together. Thus, we ensure that there is no side effect of A 1 on A 2 and the initial values of the variables of A 2 do not change when firing transitions in A 1 .

Union. Similarly as above, the classical construction of FA applies here, which consists in adding a new initial state connected to the former initial states of A 1 and A 2 with ε-transitions (without reset). As for concatenation, the variables of both automata do not interact thus the initial context of the A 1 has no impact on the recognized language of A 2 .

Intersection. As the memories of both automata are disjoint, it is possible to use the classical construction of a synchronized product of automata. The synchronization of two non-ε-transitions consists forming a transition labeled with the union of the sets ν, α and ν of both transitions. Formally, the synchronization of observable transitions (q

1 ,ν 1 ,α 1 , ν 1 ,q ′ 1) ∈ Δ 1 with (q 2 ,ν 2 ,α 2 , ν 2 ,q ′ 2) ∈ Δ 2 is the transition : ((q 1 ,q 2),ν 1 ∪ ν 2 ,α 1∩2 , ν 1 ∪ ν 2 , (q ′ 1 ,q ′ 2)) where ∀i ∈{ 1, 2},l ∈ L i ,α 1∩2 (l)=α i (l). This construction is illustrated in Appendix A.
The case of iteration, or Kleene star, is a little bit less straightforward because during an iteration the memory context of the automaton may change, however such effect should be "canceled" for further iterations. Indeed, each (regular) iteration has to recognize exactly the same language, and not a language changed due to memory effects of previous iterations.

Theorem 2 (Closure property of Kleene star). Let A =(Q, q, F, Δ, V, L, M) be a LaMA, then there is a LaMA A * such that L(A *)=L(A) * . Proof (Proof sketch). The proposed construction is based on the classical one for FA which requires adding "ε-loops" from accepting states to the initial, thus allowing to iterate on the content of automaton A. As with all kinds of register automata, one difficulty with LaMA is that the language recognizable from a configuration depends on its memory context. And the latter can change at each iteration. In a way similar to what is done in the case of M-automata [START_REF] Kaminski | Finite-memory automata[END_REF], the required "cancelling" of memory effects is realized thanks to a mechanism simulating a reset of the memory context to its initial value M 0 .T od os o ,t h e principle is to duplicate the set of variables of layers in L on a set of "shadow" layers L s . The variables of L are used to memorize the initial values of M 0 while the variables of L s are used to store the fresh values recognized during the iterations. This way, in order to retrieve the initial values of the memory context, it is enough to remove at the end of each iteration all the letters stored in the variables of L s .

If a transition is enabled in A when the letter read is associated with variable X l , then this transition has to be duplicated in A * such that it is possible to

q0 q1 q2 q3 νY 1 ,Y 1 Y 1 Y 1 νX 1 X 1 νX 1 X 1 νX 1 X 1 νX 1 X 1 Y 1
Fig. 2. LaMA accepting the language L =2 .

access either X l (the initial values) or X ls (the possibly updated ones), with l s the "shadow" layer corresponding to l. Moreover, if a transition in A has a guard referencing several variables, it is necessary to duplicate this transition in A * . For example, a transition accessing the variables X l ,Y k will be duplicated 4 times, once for each pair of : (X l ,Y k), (X ls ,Y k), (X l ,Y ks), (X ls ,Y ks). This duplication is required, in the absence of e.g. a transfer mechanism (cf. Sect. 5), because it is not effective to consult the variables in the layers of L and L s simultaneously. Indeed, their sets of values are disjoint (e.g. initially the layer L s is empty). In consequence, this construction leads to an exponential growth in terms of the number of transitions of the resulting automaton A * . Moreover, it is also necessary to know which variables have been reset during each iteration, which is realized by duplicating states, implying also an exponential growth in terms of constructed states. These exponential growth phenomena are discussed further in Sect. 5.

The infinite nature of the alphabet manipulated by all the classes of memory automata (at least all the classes discussed in this paper) is in contradiction with the principle of complementation and determinism. Thus, unsurprisingly the following negative result also applies to LaMA.

Proposition 1 (Complement). The set of languages recognized by LaMA is not closed under complement.

Proof. The LaMA represented in Fig. 2 recognizes the language L =2 of words containing at least one letter not appearing twice in all words. It does so by nondeterministicaly selecting a letter when it occurs for the first time, associating it to variable Y 1 and accepting the word only if this letter does not occur in the word exactly twice. The variable X 1 is used to store all the other letters and to never forget them, which ensures that the selection of a letter may only happen at its first occurrence.

The complement of L =2 is the language L =2 containing only words with all their letters occurring exactly twice. In order to encode L =2 , it is necessary to enumerate the occurrences of all the letters of words recognized by this language. An automaton recognizing this language would have to count an arbitrary number of occurrences of distinct letters. With a finite number of variables and states, such a construction is not possible with LaMA.

A deterministic LaMA is an automaton such that for all configurations, when reading any letter of U, at most one transition can be fired. This restriction implies that when reading a globally fresh letter there is at each step only one way to identify it (associate it with a variable).

Proposition 2 (Determinism). The set of languages recognized by deterministic LaMA is strictly included in the set of languages recognized by nondeterministic LaMA.

Proof. The language L =2 recognized by the non-deterministic LaMA from Fig. 2 cannot be recognized by a deterministic LaMA. To recognize this language, the automaton would have to "find" a letter that will not occur exactly twice. However, the words from this language are finite but may contain an arbitrary amount of different letters. Thus, it is not possible to track the number of occurrences of each of them with a finite amount of variables and layers.

A Classification of LaMA (Related Work)

Bounded memory

Unbounded memory FMA [START_REF] Kaminski | Finite-memory automata[END_REF] VFA [START_REF] Grumberg | Variable automata over infinite alphabets[END_REF] FRA [START_REF] Tzevelekos | Fresh-register automata[END_REF] GRA [START_REF] Kaminski | Finite-memory automata with non-deterministic reassignment[END_REF] νA [START_REF] Bertrand | Pattern matching in link streams: timed-automata with finite memory[END_REF] LaMA HRA [8] DA [START_REF] Bojanczyk | Two-variable logic on data words[END_REF] CMA [START_REF] Björklund | On notions of regularity for data languages[END_REF] [15]

[9]

[11]

[8] [3] [START_REF] Grumberg | Variable automata over infinite alphabets[END_REF] [8]

[8]

[9] Fig. 3. A classification of automata over datawords, based on [START_REF] Kara | Logics on data words: expressivity, satisfiability, model checking[END_REF]. The arrows represent (strict) language inclusions, the dashed arrows are presented in Sect. 4, and dotted lines denote language incomparability.

Figure 3 represents most of the automata models we investigated while developing our proposition. The arrows on the figure are (strict) language inclusions. In this discussion, we denote by A ⊏ B the fact that the languages recognized by automata of model A strictly includes those of model B. For example, we know from [START_REF] Tzevelekos | Fresh-register automata[END_REF] that the FRA (fresh register automata) can simulate the FMA, and thus FMA ⊏ FRA. The models related by dotted lines are knowingly incomparable. In this section we discuss the positioning of the LaMA in the family of data language recognizers. More precisely, we present the language inclusions depicted by dashed arrows on the figure. Since we cannot describe the related automata models with enough details in this paper, the discussion remains mostly informal, with the complete proof available in [2].

The LaMA were designed, broadly speaking, as a variant of FMA with unbounded memory capabilities. It is thus expected that LaMA are able to simulate FMA. Since the LaMA with one layer correspond exactly to ν-automata, we can reuse the result of [START_REF] Deharbe | Analyse de ressources pour les systèmes concurrents dynamiques[END_REF] to show that LaMA are able to simulate the FMA. Proposition 3. FMA ⊏ LaMA However, in technical terms, it is interesting to compare the LaMA with other models proposed as extensions or variations of the FMA. FRA (fresh register automata) is a conservative extension of FMA capable of dealing with (a restricted kind of) unbounded memory. It is possible to simulate a FRA with a 2-layer LaMA, and thus to simulate a FMA by transitivity. Proposition 4. FRA ⊏ LaMA Proof (Proof sketch). The FRA model is based on a memory composed of a set of registers capable to memorize a unique letter, and constrained by injectivity. The model is thus quite similar to the FMA, however with a little but important "twist". An FRA also provides a "special" variable capable of recording all the letters read since the beginning of the recognition. The transitions of FRA are found in three categories that can be enabled in three different ways:

1. when reading a letter already present in some register; 2. when reading a letter which is locally fresh, i.e., not present in any register currently; 3. when reading a letter which is globally fresh, i.e., not encountered since the beginning of the recognition.

It is not difficult to provide these mechanisms with a LaMA. The required memory context contains two layers. Each variable of the first layer corresponds to a register of the simulated FRA. The second layer, independent, only concerns the "special" variable to simulate its content. Since the memory cells of LaMA are not bounded, we can say that all the variables of LaMA are "special", in the FRA understanding of the term. Put in other terms, the FRA can be seen as a special cases of LaMA with a FMA-like layer of bounded memory, and a unique variable of unbounded memory in a second layer. The LaMA are also strictly more expressive than the FRA. One may observe, indeed, that FRA are not closed under concatenation. For example, the language L = of words composed of all-distinct letters, may be recognized by both FRA or LaMA. But the language L = • L = is only recognized by LaMA.

The GRA (guessing register automata) model is an interesting variant of FMA using a non-deterministic assignation (guessing) principle. By proving, below, that LaMA are able to simulate GRA it emphasizes the fact that the LaMA are also capable of simulating its guessing principle, and not only the operational principles of the FMA. This establishes an interesting connection with the "logical" family that also rely on guessing features (note the inclusion link between VFA and DA in Fig. 3).

Proposition 5. GRA ⊏ LaMA

Proof. The GRA model is a variant of FMA with a modified variable assignment method. The memory of a GRA is composed of a finite set of registers, each containing at most one letter, together with an injectivity constraint. The transitions of GRA are found in two categories:

-the observable ones are annotated by the register containing the letter that has to be consumed to fire the transition; -t h eε-transitions are annotated with a register which is reassigned to a nondeterministically guessed letter.

The assigned letter will be decided when firing the next observable transition annotated with this register. However, if other registers are reassigned in the meantime, they cannot be assigned the same letter due to the injectivity constraint.

Given a GRA, it is possible to construct a LaMA which recognizes the same language. After the reassignment of a register r, an arbitrary letter of the infinite alphabet is non-deterministically assigned to it. To find out which letter was assigned to r, it is necessary to memorize all letters currently assigned to the other registers and those that will be assigned to them until an observable transition labeled with r is fired. This transition will be enabled by any letter not recorded since the reassignation.

Hence, for each register of a GRA, the simulating LaMA will use as many variables as necessary to memorize all the values stored by every other registers between its reassignment and the transition that will determine the guessed value. This way, when an observable transition allowing to determine the value of the input letter is enabled, the injectivity constraint ensures that the letter is different from those already associated with other registers. The actual construction is in consequence quite intricate, and we delegate to [2] for the formal details.

The inclusion is strict since it is known (from [START_REF] Kaminski | Finite-memory automata with non-deterministic reassignment[END_REF]) that there is no GRA that can recognize the language of words of any length with all letters occurring only once.

Perhaps the most interesting inclusion link is the one connecting the LaMA to the more expressive HRA (history-register Automata). Proposition 6. LaMA ⊏ HRA Proof (Proof sketch). The HRA memory is constituted of variables associated with histories that can store an unbounded amount of letters. This is very much like the ν-automata and thus the LaMA with a single memory layer. However, a very important difference is that the HRA histories are not restricted by an injectivity constraint. There are thus quite similar to the M-automata of [START_REF] Kaminski | Finite-memory automata[END_REF], but with unbounded memory. The observable transitions are annotated with two sets of histories: R (read) and W (write). A transition is enabled when the input letter is exactly associated with all histories of R. After the firing, in the resulting configuration, the letter is associated exactly to all histories of W .Thus, the letter can be transferred among the histories, or erased from them, in the resulting configuration. The ε-transitions are annotated with a set of histories C containing histories cleared (reset) in the resulting configuration. It is possible to simulate a LaMA with a HRA by encoding the memory layers and the injectivity constraint. The simulating HRA has the same set of states, as well as a history for each variable of the original LaMA. Since the observable transitions of HRA cannot reset variables, they are split in two parts:

(1) a transition for the enabling and firing, and (2) a transition for the reset. To simulate the enabling and firing of a LaMA transition, multiple observable transitions are needed in the HRA:

-for each variable X l consulted in the LaMA transition, α(l)=X, X l ∈ ν,t he matching history is part of both R and W ; -for each variable X l modified in the LaMA transition, α(l)=X, X l ∈ ν,t h e matching history is only part of W .

As R needs to encompass the histories containing the input letter in order to be enabled, when no variable is consulted for some layer, ∃l, α(l)=♯, then the transition needs to be duplicated in the HRA to search if the value is present in one of the histories of this layer. If multiple layers are not consulted, then the transition is duplicated to search the letter in each combination of histories for those layers. To enforce the layer injectivity constraint, the construction is designed so that the transitions are never annotated by histories that simulate variables of the same layer. This way, during the recognition, it is not possible to reach a configuration in which the histories corresponding to the same layer contain a common letter. The observable transitions can remove the input letter from the histories it is annotated with, when R\W = ∅. It will thus be possible to delete a particular letter from a history, which is impossible for LaMA. Thus, it is rather easy to come up with a language recognizable by a HRA, and not recoginizable by a LaMA. For example, no LaMA can recognize the language of the HRA in Fig. 4, which is the language of words of the form w = uv where:

-the prefix u is a word whose length is even and in which all letters are different;

-t h es u ffi xv = v 1 v 2 v 3 ...v n is a word in which each letter v i satisfies that if i is odd then the occurrence of v i is in an even position in w,a n di fi is even then the previous occurrence of v i is in an odd position in w.

It is known, from [8], that the HRA recognize languages that are incomparable with those of the CMA and DA (class memory automata and data automata). This is due to the capability of resetting histories in HRA, which cannot be simulated by a CMA/DA. We have not studied the problem finely, but, for the same reason, we expect the incomparability of LaMA vs. CMA/DA, although it is for now only a conjecture.

The connections we established with related automata models allow us to give some insight about the complexity (and decidability) of some decision problems concerning LaMA. First, the strict inclusion of FMA induces the undecidability of the same problems as FMA, in particular the language inclusion and the universal language problems (cf. [START_REF] Neven | Towards regular languages over infinite alphabets[END_REF]). The inclusion links discussed previously allow to establish the following: Fact 1. The emptiness checking and membership problems for LaMA are both NP-hard.

Proof. The emptiness checking problem consists in detecting if the language of an automaton is empty. The problem is known to be NP-complete in the case of FMA [START_REF] Kaminski | Finite-memory automata[END_REF][START_REF] Neven | Towards regular languages over infinite alphabets[END_REF]. Moreover, the same problem is known to be Ackermann-complete for HRA [8], thus trivially decidable for LaMA. The situation is in fact exactly the same for the membership problem: NP-complete for FMA and "at-most" Ackermann-complete for HRA. Indeed, the membership problem can be solved through emptiness, although for some automata model the membership problem can be solved by better, dedicated ways (starting with FA). It is unlikely that this would be the case for LaMA since it is already not the case for FMA (cf. [START_REF] Kaminski | Finite-memory automata[END_REF][START_REF] Neven | Towards regular languages over infinite alphabets[END_REF]).

As a future work, we intend to study more finely the complexity of these two problems for LaMA. It would be interesting to see if the use of unbounded memory without a transfer mechanism simplifies the emptiness problem (put in other terms, do we reach the Ackermann bound?).

A Quantitative Point of View on Regular Constructions

Expressiveness is not the only important aspect to consider when comparing classes of automata. For example, many "regular"-expression packages (e.g. PCRE 4) adopt the non-deterministic finite state automata (NFA) rather than the theoretically "more efficient" and equivalent determistic ones (DFA), because of the exponential growth when translating the former to the latter. In the same spirit, the prototype analysis tool we develop5 requires the construction of an automaton, akin to a (timed variant of the) LaMA, from an extension of regular expressions (cf. [2,[START_REF] Bertrand | Pattern matching in link streams: timed-automata with finite memory[END_REF]). In this compilation step, the size of the resulting automaton plays a significant role.

In this section we compare the sizes of the regular constructions for three models of automata: the LaMA, the FMA (taking the constructions proposed in [START_REF] Kaminski | Finite-memory automata[END_REF]) and the HRA (taking those of [8]). Note that these sizes are not given in the aforementioned papers, and we established them while learning about those constructions. As a consequence, all encountered errors about these computations would be ours, not those of the original authors. We evaluated the sizes of the constructions of the FMA presented in the proof of Theorem 3 of [START_REF] Kaminski | Finite-memory automata[END_REF]. For the HRA, we evaluated the sizes of the constructions presented in Sect. 3 of [8]. The GRA [START_REF] Kaminski | Finite-memory automata with non-deterministic reassignment[END_REF]a n dF R A [START_REF] Tzevelekos | Fresh-register automata[END_REF] constructions are not studied here as they are based on the ones presented for FMA and HRA. For the sake of concision, we only consider the (most intricate) cases of concatenation and Kleene star in this paper (the other constructions being also detailed in [8,[START_REF] Kaminski | Finite-memory automata[END_REF]).

Most importantly, our intent is not to say that the construction we propose are "better", in any sense of the word, but instead: (1) to motivate the fact that reasoning about the size of the constructions is important, and (2) trying to find ways to make such construction as compact as possible. A positive point of view is that if we find compact constructions for LaMA, then they can also be used almost directly as compact constructions for FMA (by first translating FMA to LaMA, which is both straightforward and economical), and similarly for FRA, GRA and VFA.

To compare the constructions, the sizes we consider are the worst-case estimates of the automata, with respect to:

-the number of states in the automata, denoted by |Q|, -the number of transitions, denoted by |Δ|, -and the number of memory identifiers, denoted by |M |.

What we call memory identifiers here are the registers in the FMA, the histories in the HRA and the variables X l ∈ V × L in the LaMA. This quantification on the identifiers does not take into account the number of letters that may be stored in memory, simply because there is no bound in the case of LaMA and HRA. In the following tables we denote by |Σ| the number of letters initially stored in the memory of an automaton and by |L| the number of layers of the LaMA.

In [START_REF] Kaminski | Finite-memory automata[END_REF], the regular constructions are not established directly for FMA but rather rely on the equivalent model of M-Automata (M-FMA). Thus, the FMA are first converted to M-FMA, which in fact already causes an exponential growth, as described on Table 1. The M-FMA resulting from the translations use approximately the same number of registers. However, the loss of the injectivity constraint in M-FMA causes an explosion in the number of states required to simulate the correct (i.e., injective) use of registers. The duplication of transitions follows from the duplication of states. Perhaps surprisingly the exponential growth is also present when translating back to FMA (which could perhaps be avoided by keeping a little bit more structural information in M-FMA). But as it is, none of the regular constructions proposed for FMA has polynomial size.

Concatenation. Table 2 represents the sizes of the automata constructed for concatenation. The constructions for the three models try to duplicate that of the finite state automata by keeping the structures of the two automata and by adding transitions allowing access to the initial state of the suffix automaton at the end of the prefix automaton path.

M-FMA |Q1| + |Q2| |Δ1| * 2 |M 2 | + |Δ2| * 2 |M 1 | HRA (|Q1| + |Q2|) * 2 |Σ 2 | * |M 2 | (|Δ1| + |Δ2|) * (|Σ2| +1) * 2 |Σ 2 | * |M 2 | LaMA |Q1| + |Q2| 2 * |Δ1| + |Δ2| ♯registers M-FMA |M1| + |M2| HRA max(|M1|, |M2|)+|Σ2| LaMA |M1| + |M2|
In M-FMAs, the constructed automaton uses all the registers of the two concatenated automata, as well as their initial valuations. However, due to the nature of the transitions, similar to that of the HRA, it becomes necessary to duplicate all the transitions for each subset of registers of the other automaton. Thus, this leads to a combinatorial explosion in the number of transitions in the automaton resulting from the construction.

In the HRA, before the construction is carried out, all the letters initially associated with the histories of the suffix automaton are extracted from the two automata. These letters are each associated with a new history. This preserves the initial value of the suffix automaton memory when transiting the prefix one. However, when these values are extracted, it is necessary to add transitions in order to preserve the language of the automaton. Thus, in the resulting automaton, the transitions leading to the initial position of the suffix automaton reset all the histories except those containing the extracted letters. For the Kleene star, the construction in the HRA consists first of all in extracting all the letters initially stored in the histories and in storing them in new dedicated histories, as in the construction for concatenation. It is again necessary to duplicate the transitions and the states so that the automaton always recognizes the same language. So at the end of each iteration it suffices to reset all the other histories in order to reset the memory to its initial value.

As a summary, the constructions proposed for LaMA are in most cases more compact than the ones proposed for FMA (and M-FMA) and HRA. This is not shown here but the situation is the same for all the regular operators. In fact, all constructions are polynomial for LaMA with the notable exception of the Kleene star. To address this issue, we propose in [2] a variant of LaMA with a transfer mechanism that allows to copy all the letters associated with a variable from one layer to another layer. This allows to "dump" the memory from the layers in L to the layers in L s in the final transitions of an iteration, enabling an exponential reduction in the number of required states and transitions. However this new mechanism is quite "powerfull", causing a loss of several "good" properties of the model (if only the closure properties). However, it is shown in [2] that this alternative model is conservative wrt. the membership problem, which explains why we use it in practice.

Conclusion

In this paper we introduced the model of LaMA, characterized by the layered structure of their memory, and the fact that this memory is not bounded. We mostly discussed the quasi-regular constructions (insisting on quantitative aspects) and language inclusion links with related models. Beyond such (important) theoretical considerations, we find important to emphasize the fact that the LaMA were also designed with practical applications in mind. This is the main reason why we emphasized so much the "compactness" of the quasi-regular constructions, the layered architecture playing a significant role here.

For future works, we intend to study two more aspects of the model. First, we know that the class of deterministic LaMA is strictly less expressive than the non-deterministic ones. However, this class is still worth studying given the fact that the membership problem becomes much easier in this case. Second, we would also like to investigate the relationship between subclasses of MSO and language classes recognizable by LaMA, or a restricted version (without reset for example) as it is done for DA wrt. ∃MSO. In this appendix, we give some more details about the constructions corresponding to the intersection and iteration of LaMa, as a complement to Sect. 3.

Intersection. Figure 5 illustrates the synchronized product of two LaMA on the left, A 1 and A 2 , used to produce the LaMA recognizing the intersection of the languages of A 1 and A 2 . The resulting LaMA A 1∩2 , on the right of the Figure, contains only the states reachable by transitions from the initial states. The construction is thus quite similar to the usual construction for finite automata. One notable difference relates to then handling of observable transitions. In fact, only observable transitions are synchronized together, while non-observable ones are not. The reason is the firing of non-observable transition does not consume letters, and are thus "transparent" wrt. language intersection. Iteration. Figure 6 illustrates the Kleene star construction, with on top a LaMA A, recognizing language L(A), and below the LaMA A * constructed such that L(A *)=L(A) * .

The construction is in principle close to the equivalent construction for finite automata. However, the handling of memory layers requires some care. To illustrate this, the automaton A in the figure uses two layers, 1 and 2. To simulate the reset, two so-called "shadow layers", resp. 3 and 4, are added in A * . A variable Ω is added on the layers 1 and 2 (even if not used on 2) to check the layer freshness without altering the values initially associated with their other variables.

The states of A are duplicated in A * where they are annotated with the variables that were reset since the beginning of an iteration. These annotations are used in the construction to create the outgoing transitions. When the variable X 1 is consulted by a transition in A, the matching transitions in A * are going to consult both X 1 and X 3 if X 1 was never reset before. However, if X 1 was reset, then only X 3 is consulted as the values associated with X 1 should have been deleted. When the variable X 1 is modified by a transition of A, the matching

A : q1 q2 νX 1 ,X 1 νX 1 X 1 ,Y 2 q qε q0, ∅ A * : q1, ∅ q2, ∅ q0, {X 1 } q1, {X 1 } q2, {X 1 } ε ε ε ν{Ω 1 ,X 3 },Ω 1 ,X 3 νΩ 1 X 1 ,Y 2 X 3 ,Y 2 X 1 ,Y 4 X 3 ,Y 4 ν X 3 ν{Ω 1 ,X 3 },Ω 1 ,X 3 νΩ 1 νX 3 ,X 1 ,X 3 νX 3 X 3 ,Y 2 X 3 ,Y 4
Fig. 6. Kleene star construction transition in A * will modify X 3 and it will also check if the value is fresh on layer 1, using Ω 1 . However, if X 1 is supposed to have been reset earlier in the iteration, then the transition is duplicated to check if the letter is associated with X 1 instead, as the values it is associated with are supposed to be fresh.

Fig. 4 .

 4 Fig. 4. HRA recognizing a language which is not recognized by a LaMA

FMA

 → M-FMA |Q| * (|M |!) |Δ| * (|M |!) |M | +1 M-FMA → FMA |Q| * |M | |M | |Δ| * |M | |M | |M |

X 3 ν{X 1 ,

 31 Y 2 },X 1 ,Y 2 ,X 3 νX 1 ,X 1 ,X 3 ,νX 3 ε, νX 1

Fig. 5 .

 5 Fig. 5. Intersection construction

 q0

Table 1 .

 1 Translation between FMA and M-FMA

Table 2 .

 2 Sizes of constructions for concatenation L(A1) • L(A2)

	♯states	♯transitions

Table 3 .

 3 Sizes of constructions for the Kleene star L(A) * . |Σ| * |M | |Δ| * 2 |Σ| * |M | * (|Σ| +1) |M | + |Σ|

	♯states	♯transitions	♯registers
	M-FMA |Q| * 2 |M |	|Δ| * 2 2 * |M |	2 * |M |
	HRA |Q| * 2 LaMA |Q| * 2 |M |	|Δ| * 2 2 * |M |	(2 * |M |)+|L|

Without complementation, the conjunction operator becomes primitive in FMA and related models.

The term state is rather connoted, being also used in e.g. "state-space" to designate "runtime" artifacts. We will use the term configuration to designate the notion of a "running state".

For transitions, we will make the distinction between the transition itself, and its firing, i.e., the fact of effecting the transition on a previous configuration, to construct a next configuration, at "runtime".

Perl compatible regular expressions, cf. https://www.pcre.org/.

PaMaTina, cf. https://github.com/clementber/MaTiNA.

Kleene Star. Table3presents the sizes of constructions for Kleene star. The construction used in the LaMA is inspired from that of M-FMA. Thus, the sizes are of the same order.