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3 LIP6, Sorbonne Université, CNRS UMR7606, Paris, France

frederic.peschanski@lip6.fr

Abstract. This paper presents the model of Layered Memory Automata
(LaMA) to deal with languages involving infinite alphabets, with prac-
tical applications in the analysis of datastreams, or modeling complex
resource usages in concurrent systems. The LaMA can be seen as an
extension of the Finite Memory Automata (FMA) with memory lay-
ers and the capacity of dealing with an unbounded amount of mem-
ory. Despite the increased expressiveness, the LaMA preserve most of
the “good” properties of the FMA, in particular the closure properties
for the so-called quasi-regular constructions. Moreover, the layering of
the memory enables particularly economical constructions, which is an
important focus of our study. The capacity of dealing with an unbounded
amount of memory brings the LaMA closer to more powerful automata
models such as the history register automata (HRA), thus occupying an
interesting position at the crossroad between the operational and the
more abstract points of view over data-languages.

Keywords: data languages · memory automata · register automata ·
unbounded memory · quasi-regular languages

1 Introduction

Automata on datawords, involving infinite alphabets, represent an influential
foundation for the analysis of datastreams [13]. Resource analysis frameworks
for concurrent systems have also been investigated based on similar automata-
theoretic foundations, e.g. in [1] or our own previous work [7]. Quoting [10]:

Actions of concurrent processes, when concurrency and communication
are restricted to very simple patterns, are another possible interpretation
of infinite alphabets.

The classification of automata models for datawords can be roughly decom-
posed in two major families. The first family, pioneered by the finite memory
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automata (FMA) of [10] (colloquially known as register automata), adopts a
mostly operational point of view similar to the classic finite state automata (FA).
With FMA, letters (ranging over an infinite alphabet) can be temporarily or per-
manently stored in a finite amount of dedicated memory cells (or registers). They
can then be compared with letters read at a later time during the recognition
process. These models characterize an important notion of freshness: the prop-
erty of a recorded letter to be unique among the ones already stored. In the
FMA, this is obtained thanks to an injectivity constraint: the fact that the reg-
isters must hold distinct letters at any given time. The languages recognized by
FMA are called quasi-regular, emphasizing their “classical” roots. In particular,
they enjoy important closure properties, especially for the regular operators with
the notable exception of complementation. Moreover, several important decision
problems (e.g. emptiness checking) for FA remain decidable in FMA and related
models. At the other end of the spectrum, the family related to data automata
(DA) [5] adopts a more abstract point of view. They adopt principles, such as
guessing that are very high level in comparison. Unsurprisingly, the decision
problems are much harder for these models.

An important distinction can be made between these two operational vs.
abstract families regarding the nature of the memory store. In the FMA and
related models, the memory is finitely bounded. The automata cannot store more
letters, in a given configuration, than the number of available registers. As a
consequence, it is impossible expressing a language, which needs an unbounded
number of different letters such as the language of words where each letter occurs
at most once. This is a particularly strong constraint that one would like to lift
in order to take more advantage of the infinite alphabets.

In this paper, we introduce an extension of the FMA, namely the model of
Layered Memory Automata (LaMA), with both practical and theoretical bene-
fits. Essentially, the intent is to establish a link between the abstract and opera-
tional families of automata. On the one side, the LaMA possess a strong oper-
ational nature in that they are a (conservative) extension of the FMA with
the extra ability to handle an unbounded amount of memory. LaMA are non-
deteministic finite state automata that have a finite number of variables, each of
them able to store a finite set of letters. Upon reading a letter, a transition can
test if the letter is already stored in a variable, can store the letter in a variable,
or can reset a variable to emptyset. Like FMA, the variables of LaMA are under
an injectivity constraint, which means that two variables cannot stores the same
letter. This constraint is partially relaxed with the introduction of a finite set of
memory layers. Variables are grouped into layers, and the injectivity constraint
is only required between variables of a same layer.

Other works designed models extending FMA to manage an unbounded num-
ber of different letters. The FRA (Fresh-Register Automata) introduce the his-
tory, a memory cell able to store a set of letters from the infinite alphabet not
restricted by injectivity constraint. It is used as well as the registers of FMA
to express the notion of globally fresh letter, a letter never stored in a regis-
ter before. However, this extension only slightly increases the expressivity of
FMA as the set of languages recognized by FRA is not close to concatenation
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and Kleene star. The HRA (History-Register Automata) uses multiple of this
histories instead of registers to store letter of the infinite alphabet. Without
injectivity constraints, HRA uses a similar transition as M-FMA (M-Automata
from [10]), the transition guard is satisfied when the input letter is stored in
the exact set of histories annotating the transition. HRA transitions can clear
a history and transfer the inputted letter among histories. Our model LaMA is
similar to HRA, but without the possibility of performing transfers among its
variables (histories) and preserving the injectivity constraint from FMA.

As a primary contribution, we argue that the LaMA provide a kind of a sweet
spot between the “good” operational properties of the FMA, and (at least some
of) the expressiveness of higher-level models with unbounded memory capabili-
ties. A second contribution we defend in this paper is the economical nature of
the proposed model regarding the (quasi-)regular constructions. The regular con-
structions proposed for FMA in [10,15] or [8] all yield automata of exponential
sizes. Despite the fact that the LaMA strictly subsume the FMA (with unbounded
memory), the constructions we propose for concatenation, disjunction and con-
junction1 of (the language recognized by) LaMA remain polynomial. Despite its
simplicity, the idea of the memory layers plays here a crucial role. Unfortunately,
the construction for the Kleene star remains exponential for LaMA. In [2] we intro-
duce a variant of the LaMA with transfer capabilities that allows to obtain a poly-
nomial construction. However, this variant only preserves the membership prob-
lem, and most other “good” properties are lost. Because of this and of space con-
straints, this variant will not be presented in detail in this paper.

The outline of the presentation is as follows. The LaMA model is presented
in Sect. 2 with a discussion of related work, and its main closure properties
are discussed in Sect. 3. Important language inclusion links between LaMA and
other automata models are presented in Sect. 4. Finally, in Sect. 5 we discuss the
important aspect of the sizes of the regular constructions in LaMA and related
models.

2 Layered Memory Automata

We present in this section the model of layered memory automata (LaMA), an
extension and improvement of the ν-automata presented in previous works [3].
The principle is to recognize datawords based on a countably infinite alphabet
of letters, that we denote by U . During the recognition process, the LaMA use
variables to identify memory cells that can store sets of letters read as input.

The main specificity of this memory model is its structuring in layers. A
memory context M corresponds to a memory divided in distinct layers. Each
layer, identified by a natural number, can store a finite set of letters (over the
infinite alphabet). Thus, for example, we can say that, in M , a variable X

contains (is associated with) the finite set E ⊆ U at layer l, which will be
denoted by M(X l) = E. By a slight abuse of terminology, we will often write

1 Without complementation, the conjunction operator becomes primitive in FMA and
related models.
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“the variable X l” to in fact designate “the variable X at layer l”. The formal
definition is given below.

Definition 1 (Memory context). Given a finite set of variables V , a finite
set of layers L and an infinite alphabet U , we define a memory context M as
an association function whose signature is as follows: M : V × L → 2U where
M(X l) ⊂ U is the finite set of letters associated with variable X l.

The most important feature of memory contexts is the following injectivity
constraint.

Definition 2 (Injectivity of layers). Let a memory context M be defined on
the finite sets of variables V and layers L, the injectivity constraint is:

∀(X,Y ) ∈ V × V,∀l ∈ L,X �= Y =⇒ M(X l) ∩ M(Y l) = ∅

In more informal terms: it is forbidden for a given letter to be stored in the
memory corresponding to distinct variables at the same layer. If compared to
FMA, we can say that each layer resembles the memory context of a FMA, but
that distinct layers remain independent. The second, and fundamental difference
with FMA is that the memory of LaMA is unbounded : each memory cell X l can
store an arbitrary number of letters.

Thanks to the injectivity constraint, we can define the notion of a fresh letter
at layer l, i.e., a letter that is associated with no variable of the layer l. This
subsumes the usual notion of a fresh letter, i.e., a letter being fresh at all layers.

We now explain the composition of a LaMA as state-transition machines.

Definition 3 (Layered Memory Automata). Layered Memory Automata
are defined with respect to an infinite alphabet U and are represented as tuples
of the form A = (Q, q0, F,Δ, V, L,M0) where:

– Q is a finite set of states2,
– q0 ∈ Q and F ⊆ Q are respectively the initial state and the set of accepting

states,
– Δ is a finite set of transitions3, described below in Definition 4 and 5,
– V and L are respectively the finite set of variables and the finite set of layers,

and
– M0 : V × L �→ 2U is the initial memory context.

The initial memory context M0 indicates the letters initially associated with
each variable. This makes it possible to define a finite alphabet of constants,

2 The term state is rather connoted, being also used in e.g. “state-space” to designate
“runtime” artifacts. We will use the term configuration to designate the notion of a
“running state”.

3 For transitions, we will make the distinction between the transition itself, and its
firing, i.e., the fact of effecting the transition on a previous configuration, to construct
a next configuration, at “runtime”.
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similarly to FMA, with thus the possibility to simulate classical FA (a feature
we will not take advantage of in this paper).

The set Δ of transitions encompasses two kinds of transitions: (1) the observ-
able transitions that are fired when a letter is read in input, and which consume
the letter, and (2) the ε-transitions, which are non-observable and thus can be
fired at any time (without consuming the input).

Definition 4 (Observable transition). The observable transitions are tuples
of the form: δ = (q, ν, α, ν, q′) ∈ Δ where:

– q, q′ ∈ Q are the source and destination states of the transition,
– ν ⊆ 2V ×L is the set of variables modifiable by the transition,
– α : L → V ∪ {♯} indicates for each layer the variable consulted by the transi-

tion,
– ν ⊆ 2V ×L is the set of variables which are reset by the transition.

Input letters can only be consumed when firing such observable transitions.
The precise definition of a transition firing is given below (cf. Definitions 7 and 8)
but we summarize the informal intent now. The α function indicates the variables
consulted by the transition, with the constraint that at most one variable can be
consulted for each layer. The special symbol ♯ is used to indicate that no variable
is to be consulted for this layer when firing the transition. When reading a letter
u, the transition may be fired if, for each variable X l such that α(l) = X:

– either X l is not modifiable (X l �∈ ν) and u is already associated with X l;
– or, if X l is modifiable (X l ∈ ν), then u is fresh for layer l (i.e., associated

with no variable of layer l).

Because of the injectivity constraint, only a fresh letter can be associated with
a variable X l. That is, upon reading, the letter must not be associated with any
variable in layer l, not even X l.

Remark 1 (Universal transition). If no variable is consulted by a transition (i.e.,
∀l ∈ L,α(l) = ♯), then the transition can be fired when reading any letter.

The set ν is the set of variables that must be reset by the transition. No
letter is associated with the variables of ν in the configuration reached by the
transition.

Definition 5 (ε-transition). The non-observable ε-transitions are tuples of
the form δε = (q, ν, q′) ∈ Δ where:

– q, q′ ∈ Q are the source and destination states of δε,
– ν ⊆ 2V ×L is the set of variables reset by the transition.

We now turn to the dynamics of the model, describing the behavior of LaMA
as language recognizers. We begin with the definition of a configuration, i.e., a
“running state“.
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Definition 6 (configuration). A configuration of a LaMA is a pair (q,M)
of a state q and a memory context M . Given an automaton A =
(Q, q0, F,Δ, V, L,M0), the initial configuration is (q0,M0) and an accepting con-
figuration is a pair (qf ,M), for a reachable memory context M and an accepting,
final state qf ∈ F .

A dataword belongs to the language of a LaMA if there is a (finite) sequence of
firings of transitions going from the initial configuration to an accepting one. For
observable transitions the question is the following: given a source configuration
(q,M) and an input letter u ∈ U , is there an observable transition δ ∈ Δ which
is enabled such that, as an effect, we can construct a destination configuration
(q′,M ′)? In such a case, the actual firing is denoted by (q,M)

u
−→
δ

(q′,M ′) (for

observable transitions), or alternatively (q,M)
ε
−→
δ

(q′,M ′) (for ε-transitions).

Observable transitions, to be fired, must be enabled, under the following
conditions.

Definition 7 (Enabling of an observable-transition). For a configuration
(q,M) and an input letter u ∈ U , an observable transition (q, ν, α, ν, q′) ∈ Δ

is enabled if and only if for each layer l ∈ L and variable X ∈ V such that
α(l) = X ∈ V :

– if X l is modifiable (X l ∈ ν) then no variable must be already associated with
u in layer l, i.e., ∄Y ∈ V, u ∈ M(Y l);

– otherwise (X l �∈ ν), u must be associated with X in layer l, i.e., u ∈ M(X l).

Informally, the role of the enabling conditions is: (1) to preserve the injectivity
of each layer, and (2) to check the capability of consuming the input and store it
in the required memory cells. The ε-transitions are enabled independently from
the inputted letter. Once a transition is enabled, it can be non-deterministically
fired, which produces as an effect a resulting configuration, as explained by the
following definition.

Definition 8 (Effect of a transition firing). For a source configuration
(q,M), an input letter u ∈ U and an enabled transition δ ∈ Δ, the firing

(q,M)
u
−→
δ

(q′,M ′) produces the configuration (q′,M ′) constructed as follows:

– if δ = (q, ν, q′), then M ′ consists of M where the variables in ν are reset,
M ′ = M [ν → ∅],

– if δ = (q, ν, α, ν, q′), then in M ′ the modifiable variables are associated with
u and the variables of ν are reset,

i.e., for each X l, M ′(X l) =







∅ if X l ∈ ν (1)
M(X l) ∪ {u} if α(l) = X ∧ X l ∈ ν (2)
M(X l) if X l �∈ ν ∨ α(l) �= X (3)

The memory context M ′ produced by a transition firing is the result of
a combination of three different cases of effects, denoted by (1) - (3) in the
definition above. Case (1) corresponds to the reset of the memory cell X l, which
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q0 q1 q2 q3

νS1, S1

ν{X1, Y 2}, X1, Y 2

S1

Y 2, νY 2

Fig. 1. A layered memory automaton recognizing words of the form abbccdd . . . a

is thus emptied. Case (2) corresponds to the actual consumption of the letter
u, which is placed in all the required memory cells. Finally Case (3) aims at
preserving the unchanged parts of the memory.

The language recognized by a LaMA is now naturally defined by sequences of
firings from the initial configuration to accepting ones. To simplify the definition,
we first introduce the notion of a weak firing that encompasses the firing of a
single observable transition, surrounded by (possibly empty) sequences of ε-
transitions.

We denote by (q,M)
u
=⇒
δ

(q′′,M ′′) a weak transition firing, corresponding to

any firing sequence of the form: (q,M)
ε
−→
γ

∗
· · ·

u
−→
δ

(q′,M ′)
ε
−→
η

∗
(q′′,M ′′).

Definition 9 (Language of a LaMA). Let A be a LaMA and L(A) the lan-
guage it recognizes. A word w = u1 u2 . . . un ∈ U∗ belongs to L(A) iff there exists

a sequence of weak transition firings: (q0,M0)
u1=⇒
δ1

(q1,M1)
u2=⇒
δ2

· · ·
un==⇒
δn

(qn,Mn)

such that qn ∈ F .

We depict in Fig. 1 an example of a LaMA with 4 states and 5 transitions.
The memory structure of the automaton involves the variables X, Y , S with
two distinct layers 1 and 2.

For the sake of readability, we use a slightly simplified notation for the tran-
sition label. A transition labeled ν{X1, . . .}Y 1Z2 . . . ν{U1, . . .} in a diagram,
from a state labeled q to a state labeled q′, corresponds more formally to a
transition δ = (q, ν, α, ν, q′) such that ν = {X1, . . .}, α = {1 �→ Y, 2 �→ Z, . . .}
and ν = {U1, . . .}. Also, we omit the brackets for singleton sets, and we also
omit the empty sets and the epsilons. For example, in the diagram of Fig. 1, for
the transition labeled Y 2, νY 2 we in fact mean ν = ∅, α = {1 �→ ♯, 2 �→ Y }
and ν = {Y 2}. Thus, the transition labeled S1 actually means ν = ν = ∅ and
α = {1 �→ S, 2 �→ ♯}.

Now that the simplified notation is in place, we can explain the behavior of
the depicted automaton. The language it recognizes is the following one:

{sx0x0x2x2 . . . xnxns | ∀i, j ∈ N, s, xi ∈ U , i �= j =⇒ xi �= xj}

This is an example inspired from [3] where we study the pattern recognition
in dynamic graphs, with datawords representing sequences of edges established
dynamically (so-called link streams). In this representation, the automaton char-
acterizes a Hamiltonian circuit as a pattern.
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We assume the initial memory context to be empty, i.e., no letter is initially
associated with the variables. The role of variable S is to identify and memorize
the first letter of the word (here a node of a graph) through the transition
from q0 to q1. This is stored in S at layer 1, denoted S1. The cycling transitions
between q1 and q2 allow to read intermediate letters of the word. The variable X1

memorizes these intermediate letters when ensuring that letters in even positions
are all different from each other. Since X1 belongs to the same layer as S1, the
injectivity constraint ensures that all letters are different from the first one.
Then, the variable Y 2 ensures that the letters in odd positions are identical to
the ones which immediately precede them. In the transition going from q1 to q2

the letter in even position is associated with Y 2. The only letter enabling the
transition from q2 to q1 is the one previously associated with Y 2. Then, Y 2 is
reset in order to track the next letter, and not confuse it with the one previously
stored. Eventually, the last letter is read, which has to be in even position and
to be the same letter as the one stored in S1 to enable the transition from q1 to
the accepting state q3.

3 Regular Constructions and Closure Properties

One of the most important properties of FMA, beyond their extended expres-
siveness, is the fact that they preserve most of the “good” properties of FA,
especially closure properties for all the regular constructions, except for comple-
ment. This aspect is emphasized by the authors of [10] by defining the class of
languages recognized by FMA as quasi-regular.

The LaMA we introduce in this paper correspond to a strict extension of the
FMA (and in fact an extension of both the FRA and the GRA, as discussed in
Sect. 4). But most importantly, we aim with the LaMA to an extension that is
as conservative as possible, wrt. the “good” properties of FMA. In particular,
the LaMA ensure the same closure properties as the FMA wrt. the regular
constructions. In fact, most regular constructions are greatly facilitated by the
availability of layers that allow to compose memory contexts without interference
(e.g. composing two LaMA for concatenation). With the notable exception of
the Kleene star, the proof schemes thus resemble the ones of FA. As such, we
will only present proof sketches, the details being available in [2]. Note, also,
that Sect. 5 discusses quantitative aspects related to these constructions.

Theorem 1 (Closure properties of basic operators). Let the two LaMA
A1 = (Q1, q1, F1,Δ1, V1, L1,M1) and A2 = (Q2, q2, F2,Δ2, V2, L2,M2), such
that L1 ∩ L2 = ∅, then:

– (Concatenation) there is a LaMA A1·2 such that L(A1·2) = L(A1) · L(A2).
– (Union) there is a LaMA A1∪2 such that L(A1∪2) = L(A1) ∪ L(A2).
– (Intersection) there is a LaMA A1∩2 such that L(A1∩2) = L(A1) ∩ L(A2).

Proof (Proof sketches). The assumption L1 ∩L2 = ∅ is without loss of generality
because a trivial fact is that the injective renaming of the set of layers of a LaMA
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(with fresh layer identities) does not change the language it recognizes. Now, we
consider the basic operators in turn.

Concatenation. It is possible to construct automaton A1·2 following the classi-
cal construction of finite state automata, which consists in adding ε-transitions
allowing to access the initial state of A2 from each accepting state of A1. As the
layers of A1 and A2 are disjoint, their memories are actually put side by side
and the variables of both automata do not interact together. Thus, we ensure
that there is no side effect of A1 on A2 and the initial values of the variables of
A2 do not change when firing transitions in A1.

Union. Similarly as above, the classical construction of FA applies here, which
consists in adding a new initial state connected to the former initial states of A1

and A2 with ε-transitions (without reset). As for concatenation, the variables of
both automata do not interact thus the initial context of the A1 has no impact
on the recognized language of A2.

Intersection. As the memories of both automata are disjoint, it is possible to
use the classical construction of a synchronized product of automata. The syn-
chronization of two non-ε-transitions consists forming a transition labeled with
the union of the sets ν, α and ν of both transitions. Formally, the synchronization
of observable transitions (q1, ν1, α1, ν1, q

′
1) ∈ Δ1 with (q2, ν2, α2, ν2, q

′
2) ∈ Δ2 is

the transition : ((q1, q2), ν1 ∪ ν2, α1∩2, ν1 ∪ ν2, (q
′
1, q

′
2)) where ∀i ∈ {1, 2}, l ∈

Li, α1∩2(l) = αi(l). This construction is illustrated in Appendix A.

The case of iteration, or Kleene star, is a little bit less straightforward because
during an iteration the memory context of the automaton may change, however
such effect should be “canceled“ for further iterations. Indeed, each (regular)
iteration has to recognize exactly the same language, and not a language changed
due to memory effects of previous iterations.

Theorem 2 (Closure property of Kleene star). Let A = (Q, q, F,Δ,

V, L,M) be a LaMA, then there is a LaMA A∗ such that L(A∗) = L(A)∗.

Proof (Proof sketch). The proposed construction is based on the classical one
for FA which requires adding “ε-loops” from accepting states to the initial, thus
allowing to iterate on the content of automaton A. As with all kinds of register
automata, one difficulty with LaMA is that the language recognizable from a
configuration depends on its memory context. And the latter can change at
each iteration. In a way similar to what is done in the case of M-automata [10],
the required “cancelling” of memory effects is realized thanks to a mechanism
simulating a reset of the memory context to its initial value M0. To do so, the
principle is to duplicate the set of variables of layers in L on a set of “shadow”
layers Ls. The variables of L are used to memorize the initial values of M0

while the variables of Ls are used to store the fresh values recognized during
the iterations. This way, in order to retrieve the initial values of the memory
context, it is enough to remove at the end of each iteration all the letters stored
in the variables of Ls.

If a transition is enabled in A when the letter read is associated with variable
X l, then this transition has to be duplicated in A∗ such that it is possible to
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q0 q1 q2 q3

νY 1, Y 1

Y 1 Y 1

νX 1

X1

νX 1

X1

νX 1

X1

νX 1

X1

Y 1

Fig. 2. LaMA accepting the language L�=2.

access either X l (the initial values) or X ls (the possibly updated ones), with
ls the “shadow” layer corresponding to l. Moreover, if a transition in A has a
guard referencing several variables, it is necessary to duplicate this transition in
A∗. For example, a transition accessing the variables X l, Y k will be duplicated
4 times, once for each pair of : (X l, Y k), (X ls , Y k), (X l, Y ks), (X ls , Y ks). This
duplication is required, in the absence of e.g. a transfer mechanism (cf. Sect. 5),
because it is not effective to consult the variables in the layers of L and Ls

simultaneously. Indeed, their sets of values are disjoint (e.g. initially the layer Ls

is empty). In consequence, this construction leads to an exponential growth in
terms of the number of transitions of the resulting automaton A∗. Moreover, it
is also necessary to know which variables have been reset during each iteration,
which is realized by duplicating states, implying also an exponential growth in
terms of constructed states. These exponential growth phenomena are discussed
further in Sect. 5.

The infinite nature of the alphabet manipulated by all the classes of memory
automata (at least all the classes discussed in this paper) is in contradiction
with the principle of complementation and determinism. Thus, unsurprisingly
the following negative result also applies to LaMA.

Proposition 1 (Complement). The set of languages recognized by LaMA is
not closed under complement.

Proof. The LaMA represented in Fig. 2 recognizes the language L �=2 of words
containing at least one letter not appearing twice in all words. It does so by non-
deterministicaly selecting a letter when it occurs for the first time, associating
it to variable Y 1 and accepting the word only if this letter does not occur in the
word exactly twice. The variable X1 is used to store all the other letters and to
never forget them, which ensures that the selection of a letter may only happen
at its first occurrence.

The complement of L�=2 is the language L=2 containing only words with
all their letters occurring exactly twice. In order to encode L=2, it is necessary
to enumerate the occurrences of all the letters of words recognized by this lan-
guage. An automaton recognizing this language would have to count an arbitrary
number of occurrences of distinct letters. With a finite number of variables and
states, such a construction is not possible with LaMA.

A deterministic LaMA is an automaton such that for all configurations, when
reading any letter of U , at most one transition can be fired. This restriction
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implies that when reading a globally fresh letter there is at each step only one
way to identify it (associate it with a variable).

Proposition 2 (Determinism). The set of languages recognized by determin-
istic LaMA is strictly included in the set of languages recognized by non-
deterministic LaMA.

Proof. The language L�=2 recognized by the non-deterministic LaMA from Fig. 2
cannot be recognized by a deterministic LaMA. To recognize this language,
the automaton would have to “find” a letter that will not occur exactly twice.
However, the words from this language are finite but may contain an arbitrary
amount of different letters. Thus, it is not possible to track the number of occur-
rences of each of them with a finite amount of variables and layers.

4 A Classification of LaMA (Related Work)

Bounded memory Unbounded memory

FMA[10]

VFA [9]

FRA [15]

GRA [11]

νA [3] LaMA HRA [8]
DA[5]

CMA [4]

[15]

[9]

[11]

[8][3]

[9]
[8]

[8]

[9]

Fig. 3. A classification of automata over datawords, based on [12]. The arrows represent
(strict) language inclusions, the dashed arrows are presented in Sect. 4, and dotted lines
denote language incomparability.

Figure 3 represents most of the automata models we investigated while develop-
ing our proposition. The arrows on the figure are (strict) language inclusions. In
this discussion, we denote by A ⊏ B the fact that the languages recognized by
automata of model A strictly includes those of model B. For example, we know
from [15] that the FRA (fresh register automata) can simulate the FMA, and
thus FMA ⊏ FRA. The models related by dotted lines are knowingly incompara-
ble. In this section we discuss the positioning of the LaMA in the family of data
language recognizers. More precisely, we present the language inclusions depicted
by dashed arrows on the figure. Since we cannot describe the related automata
models with enough details in this paper, the discussion remains mostly informal,
with the complete proof available in [2].
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The LaMA were designed, broadly speaking, as a variant of FMA with
unbounded memory capabilities. It is thus expected that LaMA are able to sim-
ulate FMA. Since the LaMA with one layer correspond exactly to ν-automata,
we can reuse the result of [6] to show that LaMA are able to simulate the FMA.

Proposition 3. FMA ⊏ LaMA

However, in technical terms, it is interesting to compare the LaMA with
other models proposed as extensions or variations of the FMA. FRA (fresh reg-
ister automata) is a conservative extension of FMA capable of dealing with (a
restricted kind of) unbounded memory. It is possible to simulate a FRA with a
2-layer LaMA, and thus to simulate a FMA by transitivity.

Proposition 4. FRA ⊏ LaMA

Proof (Proof sketch). The FRA model is based on a memory composed of a set
of registers capable to memorize a unique letter, and constrained by injectivity.
The model is thus quite similar to the FMA, however with a little but important
“twist”. An FRA also provides a “special” variable capable of recording all the
letters read since the beginning of the recognition. The transitions of FRA are
found in three categories that can be enabled in three different ways:

1. when reading a letter already present in some register;
2. when reading a letter which is locally fresh, i.e., not present in any register

currently;
3. when reading a letter which is globally fresh, i.e., not encountered since the

beginning of the recognition.

It is not difficult to provide these mechanisms with a LaMA. The required mem-
ory context contains two layers. Each variable of the first layer corresponds to
a register of the simulated FRA. The second layer, independent, only concerns
the “special” variable to simulate its content. Since the memory cells of LaMA
are not bounded, we can say that all the variables of LaMA are “special”, in the
FRA understanding of the term. Put in other terms, the FRA can be seen as a
special cases of LaMA with a FMA-like layer of bounded memory, and a unique
variable of unbounded memory in a second layer.

The LaMA are also strictly more expressive than the FRA. One may observe,
indeed, that FRA are not closed under concatenation. For example, the language
L �= of words composed of all-distinct letters, may be recognized by both FRA
or LaMA. But the language L�= · L�= is only recognized by LaMA.

The GRA (guessing register automata) model is an interesting variant of
FMA using a non-deterministic assignation (guessing) principle. By proving,
below, that LaMA are able to simulate GRA it emphasizes the fact that the
LaMA are also capable of simulating its guessing principle, and not only the
operational principles of the FMA. This establishes an interesting connection
with the “logical” family that also rely on guessing features (note the inclusion
link between VFA and DA in Fig. 3).
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Proposition 5. GRA ⊏ LaMA

Proof. The GRA model is a variant of FMA with a modified variable assign-
ment method. The memory of a GRA is composed of a finite set of registers,
each containing at most one letter, together with an injectivity constraint. The
transitions of GRA are found in two categories:

– the observable ones are annotated by the register containing the letter that
has to be consumed to fire the transition;

– the ε-transitions are annotated with a register which is reassigned to a non-
deterministically guessed letter.

The assigned letter will be decided when firing the next observable transition
annotated with this register. However, if other registers are reassigned in the
meantime, they cannot be assigned the same letter due to the injectivity con-
straint.

Given a GRA, it is possible to construct a LaMA which recognizes the same
language. After the reassignment of a register r, an arbitrary letter of the infi-
nite alphabet is non-deterministically assigned to it. To find out which letter
was assigned to r, it is necessary to memorize all letters currently assigned to
the other registers and those that will be assigned to them until an observable
transition labeled with r is fired. This transition will be enabled by any letter
not recorded since the reassignation.

Hence, for each register of a GRA, the simulating LaMA will use as many
variables as necessary to memorize all the values stored by every other regis-
ters between its reassignment and the transition that will determine the guessed
value. This way, when an observable transition allowing to determine the value
of the input letter is enabled, the injectivity constraint ensures that the letter
is different from those already associated with other registers. The actual con-
struction is in consequence quite intricate, and we delegate to [2] for the formal
details.

The inclusion is strict since it is known (from [11]) that there is no GRA that
can recognize the language of words of any length with all letters occurring only
once.

Perhaps the most interesting inclusion link is the one connecting the LaMA
to the more expressive HRA (history-register Automata).

Proposition 6. LaMA ⊏ HRA

Proof (Proof sketch). The HRA memory is constituted of variables associated
with histories that can store an unbounded amount of letters. This is very much
like the ν-automata and thus the LaMA with a single memory layer. However,
a very important difference is that the HRA histories are not restricted by an
injectivity constraint. There are thus quite similar to the M-automata of [10],
but with unbounded memory. The observable transitions are annotated with
two sets of histories: R (read) and W (write). A transition is enabled when the
input letter is exactly associated with all histories of R. After the firing, in the
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qi qp qp qi

∅, {I}

∅, {P}

{I}, {P}

{P}, {I}

{P}, {I}

Fig. 4. HRA recognizing a language which is not recognized by a LaMA

resulting configuration, the letter is associated exactly to all histories of W . Thus,
the letter can be transferred among the histories, or erased from them, in the
resulting configuration. The ε-transitions are annotated with a set of histories
C containing histories cleared (reset) in the resulting configuration.

It is possible to simulate a LaMA with a HRA by encoding the memory
layers and the injectivity constraint. The simulating HRA has the same set of
states, as well as a history for each variable of the original LaMA. Since the
observable transitions of HRA cannot reset variables, they are split in two parts:
(1) a transition for the enabling and firing, and (2) a transition for the reset.
To simulate the enabling and firing of a LaMA transition, multiple observable
transitions are needed in the HRA:

– for each variable X l consulted in the LaMA transition, α(l) = X,X l �∈ ν, the
matching history is part of both R and W ;

– for each variable X l modified in the LaMA transition, α(l) = X,X l ∈ ν, the
matching history is only part of W .

As R needs to encompass the histories containing the input letter in order to
be enabled, when no variable is consulted for some layer, ∃l, α(l) = ♯, then the
transition needs to be duplicated in the HRA to search if the value is present
in one of the histories of this layer. If multiple layers are not consulted, then
the transition is duplicated to search the letter in each combination of histories
for those layers. To enforce the layer injectivity constraint, the construction is
designed so that the transitions are never annotated by histories that simulate
variables of the same layer. This way, during the recognition, it is not possible
to reach a configuration in which the histories corresponding to the same layer
contain a common letter.

The observable transitions can remove the input letter from the histories it
is annotated with, when R\W �= ∅. It will thus be possible to delete a particular
letter from a history, which is impossible for LaMA. Thus, it is rather easy to
come up with a language recognizable by a HRA, and not recoginizable by a
LaMA. For example, no LaMA can recognize the language of the HRA in Fig. 4,
which is the language of words of the form w = uv where:

– the prefix u is a word whose length is even and in which all letters are
different;
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– the suffix v = v1v2v3 . . . vn is a word in which each letter vi satisfies that if i

is odd then the occurrence of vi is in an even position in w, and if i is even
then the previous occurrence of vi is in an odd position in w.

It is known, from [8], that the HRA recognize languages that are incompara-
ble with those of the CMA and DA (class memory automata and data automata).
This is due to the capability of resetting histories in HRA, which cannot be sim-
ulated by a CMA/DA. We have not studied the problem finely, but, for the same
reason, we expect the incomparability of LaMA vs. CMA/DA, although it is for
now only a conjecture.

The connections we established with related automata models allow us to give
some insight about the complexity (and decidability) of some decision problems
concerning LaMA. First, the strict inclusion of FMA induces the undecidability
of the same problems as FMA, in particular the language inclusion and the
universal language problems (cf. [14]). The inclusion links discussed previously
allow to establish the following:

Fact 1. The emptiness checking and membership problems for LaMA are both
NP-hard.

Proof. The emptiness checking problem consists in detecting if the language of
an automaton is empty. The problem is known to be NP-complete in the case of
FMA [10,14]. Moreover, the same problem is known to be Ackermann-complete
for HRA [8], thus trivially decidable for LaMA. The situation is in fact exactly
the same for the membership problem: NP-complete for FMA and “at-most”
Ackermann-complete for HRA. Indeed, the membership problem can be solved
through emptiness, although for some automata model the membership problem
can be solved by better, dedicated ways (starting with FA). It is unlikely that
this would be the case for LaMA since it is already not the case for FMA (cf.
[10,14]).

As a future work, we intend to study more finely the complexity of these
two problems for LaMA. It would be interesting to see if the use of unbounded
memory without a transfer mechanism simplifies the emptiness problem (put in
other terms, do we reach the Ackermann bound?).

5 A Quantitative Point of View on Regular Constructions

Expressiveness is not the only important aspect to consider when comparing
classes of automata. For example, many “regular”-expression packages (e.g.
PCRE4) adopt the non-deterministic finite state automata (NFA) rather than
the theoretically “more efficient” and equivalent determistic ones (DFA), because
of the exponential growth when translating the former to the latter. In the same
spirit, the prototype analysis tool we develop5 requires the construction of an

4 Perl compatible regular expressions, cf. https://www.pcre.org/.
5 PaMaTina, cf. https://github.com/clementber/MaTiNA.
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Table 1. Translation between FMA and M-FMA

♯states ♯transitions ♯registers

FMA → M-FMA |Q| ∗ (|M |!) |Δ| ∗ (|M |!) |M | + 1

M-FMA → FMA |Q| ∗ |M ||M| |Δ| ∗ |M ||M| |M |

automaton, akin to a (timed variant of the) LaMA, from an extension of reg-
ular expressions (cf. [2,3]). In this compilation step, the size of the resulting
automaton plays a significant role.

In this section we compare the sizes of the regular constructions for three
models of automata: the LaMA, the FMA (taking the constructions proposed in
[10]) and the HRA (taking those of [8]). Note that these sizes are not given in
the aforementioned papers, and we established them while learning about those
constructions. As a consequence, all encountered errors about these computa-
tions would be ours, not those of the original authors. We evaluated the sizes
of the constructions of the FMA presented in the proof of Theorem 3 of [10].
For the HRA, we evaluated the sizes of the constructions presented in Sect. 3 of
[8]. The GRA [11] and FRA [15] constructions are not studied here as they are
based on the ones presented for FMA and HRA. For the sake of concision, we
only consider the (most intricate) cases of concatenation and Kleene star in this
paper (the other constructions being also detailed in [8,10]).

Most importantly, our intent is not to say that the construction we propose
are “better”, in any sense of the word, but instead: (1) to motivate the fact that
reasoning about the size of the constructions is important, and (2) trying to find
ways to make such construction as compact as possible. A positive point of view
is that if we find compact constructions for LaMA, then they can also be used
almost directly as compact constructions for FMA (by first translating FMA to
LaMA, which is both straightforward and economical), and similarly for FRA,
GRA and VFA.

To compare the constructions, the sizes we consider are the worst-case esti-
mates of the automata, with respect to:

– the number of states in the automata, denoted by |Q|,
– the number of transitions, denoted by |Δ|,
– and the number of memory identifiers, denoted by |M |.

What we call memory identifiers here are the registers in the FMA, the histories
in the HRA and the variables X l ∈ V × L in the LaMA. This quantification
on the identifiers does not take into account the number of letters that may be
stored in memory, simply because there is no bound in the case of LaMA and
HRA. In the following tables we denote by |Σ| the number of letters initially
stored in the memory of an automaton and by |L| the number of layers of the
LaMA.

In [10], the regular constructions are not established directly for FMA but
rather rely on the equivalent model of M-Automata (M-FMA). Thus, the FMA
are first converted to M-FMA, which in fact already causes an exponential
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growth, as described on Table 1. The M-FMA resulting from the translations
use approximately the same number of registers. However, the loss of the injec-
tivity constraint in M-FMA causes an explosion in the number of states required
to simulate the correct (i.e., injective) use of registers. The duplication of transi-
tions follows from the duplication of states. Perhaps surprisingly the exponential
growth is also present when translating back to FMA (which could perhaps be
avoided by keeping a little bit more structural information in M-FMA). But as
it is, none of the regular constructions proposed for FMA has polynomial size.

Concatenation. Table 2 represents the sizes of the automata constructed for
concatenation. The constructions for the three models try to duplicate that of
the finite state automata by keeping the structures of the two automata and by
adding transitions allowing access to the initial state of the suffix automaton at
the end of the prefix automaton path.

Table 2. Sizes of constructions for concatenation L(A1) · L(A2)

♯states ♯transitions

M-FMA |Q1| + |Q2| |Δ1| ∗ 2|M2| + |Δ2| ∗ 2|M1|

HRA (|Q1| + |Q2|) ∗ 2|Σ2|∗|M2| (|Δ1| + |Δ2|) ∗ (|Σ2| + 1) ∗ 2|Σ2|∗|M2|

LaMA |Q1| + |Q2| 2 ∗ |Δ1| + |Δ2|

♯registers

M-FMA |M1| + |M2|

HRA max(|M1|, |M2|) + |Σ2|

LaMA |M1| + |M2|

In M-FMAs, the constructed automaton uses all the registers of the two
concatenated automata, as well as their initial valuations. However, due to the
nature of the transitions, similar to that of the HRA, it becomes necessary to
duplicate all the transitions for each subset of registers of the other automaton.
Thus, this leads to a combinatorial explosion in the number of transitions in the
automaton resulting from the construction.

In the HRA, before the construction is carried out, all the letters initially
associated with the histories of the suffix automaton are extracted from the two
automata. These letters are each associated with a new history. This preserves
the initial value of the suffix automaton memory when transiting the prefix one.
However, when these values are extracted, it is necessary to add transitions in
order to preserve the language of the automaton. Thus, in the resulting automa-
ton, the transitions leading to the initial position of the suffix automaton reset
all the histories except those containing the extracted letters.

Kleene Star. Table 3 presents the sizes of constructions for Kleene star. The
construction used in the LaMA is inspired from that of M-FMA. Thus, the sizes
are of the same order.
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Table 3. Sizes of constructions for the Kleene star L(A)∗.

♯states ♯transitions ♯registers

M-FMA |Q| ∗ 2|M| |Δ| ∗ 22∗|M| 2 ∗ |M |

HRA |Q| ∗ 2|Σ|∗|M| |Δ| ∗ 2|Σ|∗|M| ∗ (|Σ| + 1) |M | + |Σ|

LaMA |Q| ∗ 2|M| |Δ| ∗ 22∗|M| (2 ∗ |M |) + |L|

For the Kleene star, the construction in the HRA consists first of all in
extracting all the letters initially stored in the histories and in storing them
in new dedicated histories, as in the construction for concatenation. It is again
necessary to duplicate the transitions and the states so that the automaton
always recognizes the same language. So at the end of each iteration it suffices
to reset all the other histories in order to reset the memory to its initial value.

As a summary, the constructions proposed for LaMA are in most cases more
compact than the ones proposed for FMA (and M-FMA) and HRA. This is not
shown here but the situation is the same for all the regular operators. In fact, all
constructions are polynomial for LaMA with the notable exception of the Kleene
star. To address this issue, we propose in [2] a variant of LaMA with a transfer
mechanism that allows to copy all the letters associated with a variable from one
layer to another layer. This allows to “dump” the memory from the layers in L to
the layers in Ls in the final transitions of an iteration, enabling an exponential
reduction in the number of required states and transitions. However this new
mechanism is quite “powerfull”, causing a loss of several “good” properties of
the model (if only the closure properties). However, it is shown in [2] that this
alternative model is conservative wrt. the membership problem, which explains
why we use it in practice.

6 Conclusion

In this paper we introduced the model of LaMA, characterized by the lay-
ered structure of their memory, and the fact that this memory is not bounded.
We mostly discussed the quasi-regular constructions (insisting on quantitative
aspects) and language inclusion links with related models. Beyond such (impor-
tant) theoretical considerations, we find important to emphasize the fact that
the LaMA were also designed with practical applications in mind. This is the
main reason why we emphasized so much the “compactness” of the quasi-regular
constructions, the layered architecture playing a significant role here.

For future works, we intend to study two more aspects of the model. First,
we know that the class of deterministic LaMA is strictly less expressive than
the non-deterministic ones. However, this class is still worth studying given the
fact that the membership problem becomes much easier in this case. Second, we
would also like to investigate the relationship between subclasses of MSO and
language classes recognizable by LaMA, or a restricted version (without reset
for example) as it is done for DA wrt. ∃MSO.
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A Examples of Regular Constructions (Complement
to Sect. 3)

q0 q1 q2A1 :
νX1, X1 ε, νX1

p0 p1A2 :

νY 2, Y 2, X3

X3, νX3

q0p0 q1p1 q2p1A1∩2 :

ν{X1, Y 2}, X1, Y 2, X3

νX1, X1, X3, νX3

ε, νX1

Fig. 5. Intersection construction

In this appendix, we give some more details about the constructions correspond-
ing to the intersection and iteration of LaMa, as a complement to Sect. 3.

Intersection. Figure 5 illustrates the synchronized product of two LaMA on the
left, A1 and A2, used to produce the LaMA recognizing the intersection of the
languages of A1 and A2. The resulting LaMA A1∩2, on the right of the Figure,
contains only the states reachable by transitions from the initial states. The
construction is thus quite similar to the usual construction for finite automata.
One notable difference relates to then handling of observable transitions. In fact,
only observable transitions are synchronized together, while non-observable ones
are not. The reason is the firing of non-observable transition does not consume
letters, and are thus “transparent” wrt. language intersection.

Iteration. Figure 6 illustrates the Kleene star construction, with on top a LaMA
A, recognizing language L(A), and below the LaMA A∗ constructed such that
L(A∗) = L(A)∗.

The construction is in principle close to the equivalent construction for finite
automata. However, the handling of memory layers requires some care. To illus-
trate this, the automaton A in the figure uses two layers, 1 and 2. To simulate the
reset, two so-called “shadow layers”, resp. 3 and 4, are added in A∗. A variable Ω

is added on the layers 1 and 2 (even if not used on 2) to check the layer freshness
without altering the values initially associated with their other variables.

The states of A are duplicated in A∗ where they are annotated with the
variables that were reset since the beginning of an iteration. These annotations
are used in the construction to create the outgoing transitions. When the variable
X1 is consulted by a transition in A, the matching transitions in A∗ are going to
consult both X1 and X3 if X1 was never reset before. However, if X1 was reset,
then only X3 is consulted as the values associated with X1 should have been
deleted. When the variable X1 is modified by a transition of A, the matching
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q0A : q1 q2

νX1, X1

νX1

X1, Y 2

q

qε

q0, ∅A∗ : q1, ∅ q2, ∅

q0, {X1} q1, {X1} q2, {X1}

ε

ε

ε

ν{Ω1, X3}, Ω1, X3

νΩ1

X1, Y 2

X3, Y 2

X1, Y 4

X3, Y 4

νX
3

ν{Ω1, X3}, Ω1, X3

νΩ1

νX3, X1, X3

νX3

X3, Y 2

X3, Y 4

Fig. 6. Kleene star construction

transition in A∗ will modify X3 and it will also check if the value is fresh on
layer 1, using Ω1. However, if X1 is supposed to have been reset earlier in the
iteration, then the transition is duplicated to check if the letter is associated
with X1 instead, as the values it is associated with are supposed to be fresh.
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