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Abstract—Multi-modal scene parsing is a prevalent topic in
robotics and autonomous driving since the knowledge of different
modalities can complement each other. Recently, the success of
self-attention-based methods has demonstrated the effectiveness
of capturing long-range dependencies. However, the tremendous
cost dramatically limits the application of this idea in multi-modal
fusion. To alleviate this problem, this paper designs a multi-
modal cross-fusion block (AC) and its elegant variant (EAC)
based on an additive attention mechanism to capture global
awareness among different modalities efficiently. Moreover, a
simple yet efficient transformer-based trans-context block (TC)
is also presented to connect the contextual information. Based
on the above components, we propose light HCFNet, which
can explore long-range dependencies of multi-modal information
while keeping local details. Finally, we conduct comprehensive
experiments and analyses on both indoor (NYUv2-13, -40) and
outdoor (Cityscapes-11) datasets. Experiment results show that
the proposed HCFNet achieved 66.9% and 51.5% mIoU on
NYUv2-13 and -40 classes settings, which outperform current
start-of-the-art multi-model methods. Our model also shows a
competitive mIoU of 80.6% on the Cityscapes-11 dataset. The
code will be available at https://github.com/Superjie13/HCFNet.

I. INTRODUCTION

As a fundamental task, semantic segmentation has received
a broad range of attention in the computer vision community
and industry. Depth information as an auxiliary provides shape
and geometry cues of the surroundings that complement the
RGB data, thus introducing depth information to improve
the model’s performance has become a trend in robotics and
autonomous driving. To this end, a series of networks with
RGB-D as input appeared. These methods directly concatenate
RGB and Depth images [1]–[3] or treat them in two branches
[4]–[7].

Recently, self-attention-based transformer architecture has
attracted attention in the computer vision community due to
its flexibility in long-range modeling dependencies and its
remarkable success in natural language processing (NLP).
Therefore, well-designed transformer block (TB) or their
variants are introduced to replace the region-wise convolu-
tion structure [8], [9], and their results have shown that a
global view brought by self-attention helps draw a better
performance. However, the tremendous computation severely
restricts its application in computer vision, especially on some
resource-limited and low-latency systems. To alleviate this
shortcoming, some works were designed to process images
at a low resolution [8], [10] or using a sliding window [9],
[11]; others borrowed the idea from CNN-like architecture

and introduce pyramid structure [12], [13]. Although various
solutions for building long-range dependencies of individual
RGB image reasoning emerged, the exploration of fusing RGB
and Depth data for scene parsing is very limited. Existing
multi-modal methods mainly deploy TB in a hybrid structure,
i.e., mixing CNN and transformer, to ingest the advancement
of both convolution and TB. The mainstream combinations
of CNN and TB operations are (1) cascade: convolution
operations are used to process high-resolution data and then
followed by TBs to process low-resolution data. (2) parallel:
CNNs are used as the backbone network for feature extraction,
while TBs are independent modules to address the data fusion
and exchange between different modalities. For example, [14]
introduces the TB into the last two layers of the encoder in U-
Net [15], reducing the calculation amount. [16] treat TB as an
independent part and stack multiple self-attention modules to
incorporate the global attention of the 3D scene. Compared
with parallel structure, cascade structure fails to capture a
larger context at the shallow level, and all existing methods
rudely use the TB, so they inevitably bear the burden of the
TB, i.e., the tremendous calculation.

We argue that the global attention founded by TB is the
crucial reason for the success of Transformer. Recently, [17]
proposed an efficient Transformer variant based on additive
attention to achieve global attention modeling in linear com-
plexity. Inspired by this, we propose a well-designed additive-
attention-based cross-fusion block (AC) to incorporate depth
information into RGB and form long-range dependencies
between depth and RGB features. Besides, we present EAC
block, an efficient variant of AC, which efficiently builds
global contexts while maintaining fine-grained shape details.
On the other hand, we offer a simple yet efficient trans-context
module (TC) to enrich contextual information and capture
a global context from fused features. Based on the above
modules, we design a hybrid cross fusion network (HCFNet),
as shown in Figure 1. With all the ideas, our method benefits
from building global awareness while significantly reducing
computational consumption. The formed global awareness
crosses RGB and depth, bringing integrated information from
different modalities. We report the experimental results on two
commonly used datasets, namely NYUv2(-13, -40) [18] and
Cityscapes-11 [19], to verify the effectiveness of the proposed
method in both indoor and outdoor scenarios.

The main contributions of this paper are summarized as
follows:
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Fig. 1. Structure of HCFNet. This network takes two inputs, i.e., RGB and Depth. 7 × 7, S2 means convolution with kernel size 7 and stride 2, and BN
denotes batch normalization.

• We propose an efficient hybrid RGB-D data fusion
network called HCFNet for semantic segmentation.

• We propose a light data fusion block named addi-
tive attention cross fusion block (AC), and its variant
(EAC), to form long-range dependencies cross depth
and RGB features. Moreover, we offer a simple yet
efficient trans-context module (TC) based on TB to
build a global view of fused features.

• We experimentally validate the proposed HCFNet on
indoor and outdoor datasets, including NYUv2(-13, -
40) and Cityscapes-11. Results show that our method
achieves 66.9% mIoU on NYUv2-13, 51.5% mIoU on
NYUv2-40, and 80.6% mIoU on Cityscapes-11 dataset,
which is quite competitive compared with state-of-the-
art RGB-D fusion methods.

II. RELATED WORK

A. Global attention and Transformer

Transformer was firstly proposed by [20] for NLP tasks. The
core component is built upon multi-head self-attention, which
can model the long-range dependencies within a sequence. A
similar idea was introduced by [21] in computer vision to de-
sign a non-local block to build the global relationship between
pixels. [22] proposed a full attention block based on a non-
local block that computes global attention along both channel
and spatial dimensions. As a pioneer of visual Transformer,
[10] used pure Transformer structure to classify images and
achieved promising results. [8] extended the work in [10] to
semantic segmentation. Then, [9], [11] calculate self-attention
in sub-windows to alleviate the resolution disaster, and apply
Transformer structure to dense segmentation. [12], [13], [23]
employed a pyramid or hierarchical Transformer structure to
improve the computational efficiency of the model for segmen-
tation. Moreover, [24] proposed a ‘transposed’ self-attention

that computes global attention across feature channels so that
the computational complexity is linear. Recently, [17] offered
a variant of Transformer, in which additive attention replaces
self-attention to establish global awareness. Compared with
other global attention mechanisms, the calculation of additive
attention is more efficient, so this article establishes a more
general cross-modal fusion attention mechanism based on
additive attention.

B. RGB-D semantic segmentation

With a more affordable depth sensor, semantic segmentation
leveraged by the complementary geometric information of
depth has drawn attention. However, the large noise in depth
and the asymmetry between RGB and depth data make it
challenging to integrate RGB and depth features effectively.
In general, existing semantic segmentation structures include
two stages: encoding and decoding. Concretely, input data
are first encoded to form contextual feature embeddings then
decoded to recover semantic information [25]. Some work
[3], [26], [27] redesigned the convolution operation based on
the characteristics of RGD-D data. [28] presented depth-aware
operations to leverage depth similarity between pixels. [3] pro-
posed a shape-aware convolutional layer. This convolutional
layer is composed of two independent learnable components
in the learning phase, and all the learnable parameters in the
inference phase can be re-weight into a standard convolution
operation. [26] introduced malleable 2.5D convolution to learn
the receptive field along the depth axis. In contrast, most
approaches are proposed to feed RGB and depth to two
parallel branches [4], [5], [7], [29], [30]. For example, [31]
employed two separate encoder-decoders to process RGB and
depth, respectively, during which the manually designed gated
fusion layer is used to fuse information from different streams.
[32] used skip-connection to transmit the encoded multi-
modal information to the decoder. [5]–[7] fuse the features
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Fig. 2. Structure of the additive attention block

at different stages of the encoding process. Recently, [30]
applied a shallow encoder and factorized convolutions to create
a lightweight model for real-time operations.

Unlike the above methods, we design a hybrid cross fusion
network that takes advantage of long-range dependencies in
the Transformer while maintaining the model’s efficiency.

III. METHOD

A. Overview of the method

An overview of our hybrid cross fusion network (HCFNet)
is presented in Figure 1. The structure is derived from a general
and classical multi-modal semantic segmentation paradigm,
i.e., two encoders for extracting features from RGB and Depth
and one decoder for reconstructing features from embeddings.
Similar to [5], [30], we use independent modules to achieve
data fusion of different modalities and pass features to the
decoder via skip-connections. The decoder is divided into
multiple stages. In each stage, feature maps are first treated
by a series of residual blocks [33] and then upsampled by a
factor of 2. The final output of the decoder is upsampled by
the factor of 4 to recover the original resolution. Our network
uses shallow encoders (i.e., ResNet-34 [33]) as the backbone
for feature extraction of both RGB and Depth streams to
reduce the footprint at runtime. In addition, we introduce
additive attention cross fusion blocks (AC) and EAC to fuse
valuable information efficiently during encoding and trans-
context block (TC) to enrich contextual features at the end
of the encoder.

B. AC block and its variant EAC

1) Additive attention: Additive attention was first intro-
duced in [17], which brings an effective global attention
mechanism to recalibrate the features within a sequence. A
basic form of additive attention is depicted in Figure 2. We
first summarize each token (Ti, i ∈ [1 . . . N ]) into an attention
scores by a linear transformation and a scale factor of

√
d,

where d is the number of channels in a token. Then each
obtained attention score is normalized by a softmax operation
to get As

i . The process can be formulated as:

As
i =

exp(Wa
TTi/

√
d)∑N

j=1 exp(Wa
TTj/

√
d)

, (1)
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Fig. 3. Structure of the proposed AC block in Figure. Add-Attn is the additive
attention shown in Figure 2

where N refers to the number of tokens and i ∈ [1 . . . N ],
Wa ∈ Rd is learnable weights of linear transformation. The
final global attention is obtained by weighted sum:

Ag = f(T ) =

N∑
i=1

As
i · Ti. (2)

Note that additive attention has multiple heads as in the
standard self-attention.

2) AC block: As shown in Figure 3, the Additive attention
Cross fusion block (AC) adopts a symmetrical structure.
Mi ∈ Rd×N , i ∈ [1, 2] denote the inputs from two encoders.
Concretely, M1 and M2 are first processed by four linear
transformation (LT) units, respectively:

M
tj
i = Wj

i

T
Mi, (3)

where Wj
i ∈ Rd×d refers to learnable parameters in LT,

i ∈ [1, 2], j ∈ [1, 2, 3, 4]. For the left part, M t1
1 is fed

into additive attention blocks to get a global attention score
Ag1

1 ∈ Rd and then element-wise multiplied by M t2
2 to

integrate attention score of M1 to the feature map of M2.
Then, in the same way, we build attention scores Ag2

1 , and
Ag3

1 while only considering the feature map of M1. For the
right part, we use the same way to get Ag3

2 . Meantime, we also
introduce the information from M1 as an additional reference.
Note that we use the knowledge from another modality to
calibrate the long-range dependencies building process in the
current modality. This strategy makes it easier for AC block
to establish cross attention from one modality to another. This
process can be formalized as:

Ag3
i = f

(
f
(
f(M t1

i )⊗M t2
3−i

)
⊗M t3

i

)
, (4)



TC

1×
1,

 S
1

T
B

T
B…

1×
1,

 S
1

× N

TB Transformer Block

AC

 𝑀  𝑀

Shape Extraction

𝑀 𝑀 𝑀𝑀

Upsampling

EAC

Element-wise Add

EfficientAdditive attention Cross fusion Block

1 2 3 4

6 7 8 9

11 12 13 14

16 17 18 19

-3 -2 -3 -2

2 3 2 3

-3 -2 -3 -2

2 3 2 3

4 6

14 16

Shape

Mean

1×1, S1
1×1 1×1

Conv + BN + ReLU

Fig. 4. Structure of the proposed EAC block

where i ∈ [1, 2], f denotes additive attention operation
(see equation 2) and ⊗ denotes element-wise multiplication
operation.

At the same time, M t1
1 and M t1

2 are respectively transferred
into two bypass branch modules to get M c

1 and M c
2 . The

bypass branch module is designed similar to the classical
channel attention (CA) mechanism, which can be described
as:

M c
i = Softmax(M t

i )⊗M t1
i

M t
i = Wc

i
TMa

i

Ma
i = AvePooling(M t1

i ),

(5)

where i ∈ [1, 2], Wc
i ∈ Rd×d are the parameters of LT,

AvePooling is average pooling operation along tokens.
Next, the generated Ag3

1 and Ag3
2 are respectively element-

wise multiplied by M t4
1 and M t4

2 , and then concatenated along
channel axis to get Mrc

f . Finally, after a linear transformation,
Mrc

f is element-wise added with M c
1 and M c

2 to get the final
output Mf :

Mf = M c
1 +M c

2 +Mrc
t

Mrc
t = WrcTMrc

f ,
(6)

where Wrc ∈ R2d×d are parameters of LT and + refers to
element-wise addition operation.

The idea behind this design is very intuitive. We use the
global attention from M1 to calibrate the features in M2.
Then the calibrated feature map of M2 regenerates new global
attention, which is further used to re-calibrate the features
in M1, and vice versa. Therefore, the block fully evaluates
the interrelationship between different modalities to achieve a
better efficient fusion. Note that AC block can also perform
cross-feature fusion in sub-windows for more flexible analysis
of local features.

3) EAC block: Efficient Additive attention Cross fusion
block (EAC) is a variant of AC (section III-B2), designed to
puzzle out the excessive consumption of building long-range
dependencies under large resolution input. We consider that
establishing global context information under full-resolution
input will introduce redundancy, which leads to unnecessary
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TABLE I
CONFIGURATION OF AC OR EAC BLOCKS IN FIGURE 1

block (c1, c2) im scale sw sub w heads
EAC (64, 64) 1/2 (8, 8) (2, 2) 8
EAC (64, 64) 1/4 (4, 4) (2, 2) 8
AC (128, 128) 1/8 - (4, 4) 16
AC (256, 256) 1/16 - (h/16, w/16) 32
AC (512, 512) 1/32 - (h/32, w/32) 64

h and w refer to the height and width of original resolution, c1 and
c2 denote channels of each modality, im scale denotes the ratio of
the current input size to the original image size, sw denotes the size
of sliding window in EAC block, sub w denotes the size of sub-
windows in AC block, and heads denotes the number of head in
additive attention.

calculations. In addition, fine-grained shape information is es-
sential for establishing target contours. Accordingly, we decou-
ple the process of establishing global context information and
contour information. To do so, we design a shape extraction
module in EAC block. An example for demonstrating the
shape extraction module is shown in Figure 5. For each input,
briefly, we compute the mean value of each local area by a
sliding window with a certain stride which is equal to the
size of the sliding window, to obtain the mean map. Then, the
mean value in each local window is removed to obtain the
shape map. Thanks to the parallel computing of Pytorch [34],
this process can be implemented very efficiently.

EAC block is shown in Figure 4, we first build the mean
map Mm and the shape map Ms of the input M1 and
M2 through a shape extraction module. The extracted mean
information Mm

1 and Mm
2 are input to the AC block to

get the global context attention, and then followed by an
upsampling operation to recover the resolution. The extracted
shape information is processed by a pixel-wise convolution.
Finally, mean information and shape information are integrated
by element-wise addition. Table I shows the configuration of
AC or EAC blocks at every encoding stage.
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TABLE II
PERFORMANCE OF DIFFERENT METHODS ON NYUV2 TEST SET.

Model BackBone
mIoU (%)

FPS
NYUv2-13 NYUv2-40

FuseNet [29] Vgg-16 54.6 - 15.1
RedNet [5] ResNet-50 64.0 - 24.2
ACNet [7] ResNet-50 64.8 48.3∗ 17.9
ESANet† [30] ResNet-34 65.1 50.3∗ 39.7
ESANet [30] ResNet-50 65.9 50.5∗ 44.6
ShapeConv [3] ResNext-101 65.1∗ 51.3∗� 12.3

HCFNet(Ours) ResNet-34 65.8 49.9 36.2
HCFNet†(Ours) ResNet-34 66.7 50.7 31.7
HCFNet(Ours) ResNet-50 66.9 51.5 22.5

∗ denotes that we report the result from the original paper, † denotes that
the BasicBlock is replaced by NBt1D [35], and � refers to multi-scale
testing strategy.

C. TC block

As shown in Figure 6, the Trans-Context block is composed
of convolution and transformer blocks. Specifically, we first
project the input channels through a 1×1 convolution, and then
several TBs are applied to obtain complex context. Finally,
we restore the number of input channels through another
1 × 1 convolution. The whole process is straightforward but
very convenient. Note that the TB in our TC block can
utilize existing well-designed methods, such as [10], [11]. We
reimplement and employ TB of [17] in our TC block.

IV. EXPERIMENTS

A. Datasets and Implementation Details

1) NYUv2: NYUv2 is a popular dataset for indoor scene
analysis. It contains 1449 indoor finely annotated RGB-D
images, in which 795 are used for training and 654 for testing.
All images are provided with a resolution of 640 × 480. We
follow [3] using the train/test splits as provided by the dataset
and report results on the 13 and 40 classes [18] settings.

2) Cityscapes: The Cityscapes dataset is a large-scale
database for urban street scene parsing. It contains 5000 finely
annotated images captured from 50 cities with 19 semantic
object categories, in which 2875 images are used for training,
500 images and 1525 images are used for validation and
testing separately. All images are provided with a resolution
of 2048 × 1024. We report results on the reduced 11 classes
[4] setting.

3) Implementation Details: We implement our network
based on Pytorch [34], and all experiments are run on a Nvidia
RTX3090 GPU with 24GB memory. For the network, we take
Resnet-34 initialized with the pre-trained weight on ImageNet
[36] as the backbone of both encoders. We train our model for
500 epochs with a mini-batch size of 8 for the NYUv2 dataset
and 300 epochs with a mini-batch size of 16 for the Cityscapes
dataset. As for optimization, NYUv2 dataset is trained on SGD
optimizer with a initial learning rate of 0.015 and Cityscapes
dataset is trained on Adam optimizer with an initial learning
of 0.0001. Following [30], we employ a one-cycle learning

TABLE III
PERFORMANCE OF DIFFERENT METHODS ON CITYSCAPES-11 VAL SET.

Model BackBone mIoU (%) FPS Latency
RedNet [5] ResNet-50 79.6 26.1 0.038
ACNet [7] ResNet-50 80.0 19.6 0.051
ESANet [30] ResNet-34 77.8 47.6 0.021
ESANet† [30] ResNet-34 78.5 42.1 0.024
HCFNet (Ours) ResNet-34 78.4 39.0 0.025
HCFNet† (Ours) ResNet-34 78.9 35.2 0.028
HCFNet (Ours) ResNet-50 80.6 25.3 0.039

∗ denotes that we report the result from the original paper and †
denotes that the BasicBlock is replaced by NBt1D [35].

rate policy. Moreover, we set the number of TB in TC block
(N ) as 3. The image input size is set to 640 × 480 on the
NYUv2 dataset and 768×384 on the Cityscapes dataset. If not
otherwise noted, the inputs of all models are RGB and depth
images. Note that before training on the Cityscapes dataset,
we follow the official guide to generate a depth map from
the original disparity data [19]. Random scaling, cropping,
and flipping are applied for data augmentation to increase the
number of training samples further. We evaluate our model
based on mean intersection over union (mIoU). In addition,
we still care for the frame per second (FPS) rate because of
the computational burden.

B. Comparative results

1) Results on NYUv2: Table II compares the performance
of our proposed methods with start-of-the-art methods. For
a comprehensive comparison, we re-implement the prevalent
multi-modal fusion methods based on their official repository
and report the results on NYUv2-13 setting. Besides, we
report our results on the commonly used NYUv2-40 setting.
For the methods tested in the original paper, we use the
reported results directly. We then follow [30] to modify
our model by replacing BasicBlock with Non-Bottleneck-1D-
Block (NBt1D) [35]. In our experiments, we also pay attention
to FPS since they reflect the actual operating efficiency of
the model. All FPS are executed at the input resolution of
640×480 on a laptop with Intel i7-9750 CPU and Nvidia RTX
2080 8G GPU. We noticed that the model based on NBt1D
runs slower than the original model, which is inconsistent
with the report in [30]. We consider this is because the 3× 3
convolution is fully optimized in the computer environment. In
table II we can see that our model outperforms current state-of-
the-art methods on both NYUv2-13 and -40 classes settings
while keeping a fast inference time. In addition, we found
that our method is capable of capturing overall contextual
information while extracting valuable details. Please refer to
the supplementary material for some qualitative results.

2) Results on Cityscapes: To exhibit the capabilities of
our model in outdoor scenarios, we evaluate our model on
the Cityscapes-11 dataset. Specifically, we resize the input
image to a resolution of 768 × 384. All models are trained
and evaluated at the same resolution. Note that all models are



configured to the same training strategy, unless a different set-
ting is provided in the original implementation. We observed
that the Cityscapes dataset is very sensitive to the backbone,
and a well pre-trained backbone can significantly improve the
performance. As shown in Table III, our model yielded a very
comparable result when using ResNet34 as backbone, and
improved the segmentation results when using ResNet50 as
backbone.

C. Ablation Analysis

To verify the functionality of the components of our model,
we conduct an ablation study on the NYUv2-13 dataset. We
use the network architecture in Figure 1 as the basic struc-
ture. For a fair comparison, network architecture and hyper-
parameters in different experiments are fixed. In ablations,
we first evaluate the influence of different fusion methods,
namely Add, ACM, SE, which have been used in recent
start-of-the-art models. Specifically, Add [5], [29] simply adds
the data of different modalities directly. ACM [7] and SE
[30] calculate each modality’s attention through the Attention
Complementary module (ACM) and Squeeze-and-Excitation
module (SE) before fusion. Then we estimate the impact of
the TC block on performance. Table IV summarizes the results
of this ablation study on HCFNet.

From Experiment 1 to Experiment 3, we use different
fusion methods to replace AC and EAC blocks of the original
HCFNet while removing the TC block. As we can see, the
proposed AC method is superior to other fusion methods
by a large margin. Figure 7 visualized the feature maps of
the output of different fusion methods at different stages in
HCFNet. Specifically, in B1 and B2, we use the EAC blocks.
We can see that EAC can remove redundant facts in the scene
without losing valuable information. In B3-B5, AC blocks
are deployed. It can be seen that the targets of interest are
effectively activated, and it has a more extensive range and
more accurate position than other fusion methods. This further
verifies that the global awareness obtained in the AC module
helps the model understand the scene. Please refer to the
supplementary material for additional analysis of the AC/EAC
block.

In addition, after deploying the TC block, the performance
of our model is significantly improved (+0.6%), which reveals
that it is practical to further establish long-range dependencies
in the fused features. In the final experiment, we replaced the
EAC block in Table I with the AC block, which caused a
decrease in model performance. This echoes our previous ar-
gument that the context contains much redundant information
under large-resolution input, which will lead to unnecessary
calculations and confusion. In contrast, our proposed AC
block can efficiently establish long-range awareness, and with
the help of the EAC block, redundant information can be
eliminated without destroying local details while significantly
reducing the amount of calculation. Finally, the proposed TC
block can further coordinate information fusion and establish
a more significant receptive field.

TABLE IV
COMPARISON OF DIFFERENT FUSION METHODS AND COMPONENTS.

Model Fusion Context mIoU (%)
1

HCFNet

Add [5] None 63.3
2 ACM [7] None 64.1
3 SE [30] None 63.9
4 AC? (Ours) None 65.2
5 AC? (Ours) TC 65.8
6 AC (Ours) TC 65.1

? denotes we follow Table I to configure AC and EAC
blocks.

Add SE AC (ours)ACM

B2

B3

B4

B1

B5

Input

Fig. 7. Visualization of feature maps of different fusion methods. B1-B5
refers to the output of different fusion blocks in the encoding part of Figure
1. Note that the sample comes from the NYUv2 test set, and all outputs are
resized to a resolution of 640×480 for a best of view.

V. CONCLUSION

In this paper, we designed a novel multi-modal visual data
fusion method, which can efficiently integrate data from differ-
ent modalities. It also ensures that the model retains valuable
local details after fusion while having a global receptive field.
Precisely, we customized a multi-modal fusion block named
AC block based on the additive attention mechanism, which
assists form global awareness inter- and inner-modalities.
Then, we proposed the EAC block, an efficient variant of
the AC block, to efficiently build global attention and keep
details under high-resolution input. On the other hand, based
on the transformer block, we offered a simple yet effective
context fusion block called trans-context (TC) block for further
connecting the context output from the encoder. Together with
the proposed well-designed components, we present HCFNet
for semantic segmentation of indoor and outdoor scenarios. Fi-
nally, comprehensive experiments and ablation studies verified
the effectiveness of our network and different components.

In the future, we will further optimize the structure of the
model and exploit the possibilities of our model on different
other modalities such as infrared or polarimetry.
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