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Abstract: Recently, many methods with complex structures were proposed to address image parsing tasks such as image
segmentation. These well-designed structures are hardly to be used flexibly and require a heavy footprint.
This paper focuses on a popular semantic segmentation framework known as encoder-decoder, and points out a
phenomenon that existing decoders do not fully integrate the information extracted by the encoder. To alleviate
this issue, we propose a more general two-branch paradigm, composed of a main branch and an auxiliary
branch, without increasing the number of parameters, and a boundary enhanced loss computation strategy to
make two-branch decoders learn complementary information adaptively instead of explicitly indicating the
specific learning element. In addition, one branch learns pixels that are difficult to resolve in another branch
making a competition between them, which promotes the model to learn more efficiently. We evaluate our
approach on two challenging image segmentation datasets and show its superior performance in different
baseline models. We also perform an ablation study to tease apart the effects of different settings. Finally,
we show our two-branch paradigm can achieve satisfactory results when remove the auxiliary branch in the
inference stage, so that it can be applied to low-resource systems.

1 INTRODUCTION

Semantic segmentation can be formulated as the task
of labeling all pixels in an image with semantic
classes. Most state-of-the-art semantic segmentation
models are based on the encoder-decoder architec-
ture or its variants which can also be unified into two
parts, namely encoder and decoder. Specifically, the
encoder extract information from the original input,
and the decoder integrate previously extracted infor-
mation and recover semantic information from it. In
recent years, researchers have been committed to ex-
ploring different technologies to learn a more general
representation, such as using very large dataset (Sun
et al., 2017; Deng et al., 2009) to train a model, or
designing more complex model(Simonyan and Zis-
serman, 2014; He et al., 2016; Dosovitskiy et al.,
2020). Then efficient feature extractors are selected
as encoders and applied to the image segmentation
task (Badrinarayanan et al., 2017; Zhao et al., 2017;
Chen et al., 2018b; Wang et al., 2020). However, the
more general representation extracted by the encoder,
the more task dependency we need in the decoder to
complete the efficient conversion between the feature
representation and the specific task.

In order to improve the parsing ability of de-
coder to extracted features, DeeplabV3+ (Chen et al.,
2018b) and PSPNet (Zhao et al., 2017) through pyra-
mid pooling integrate the contextual information at
multiple scales. U-Net (Ronneberger et al., 2015)
and FCN (Long et al., 2015) use skip-connection to
fuse feature maps of different layers. Some other
models try to explore the interrelationships between
features through attention mechanisms (Oktay et al.,
2018; Li et al., 2019; Li et al., 2018). It is worth
noting that some works have appeared recently to
explore the two-branch structure in the decoder (Fu
et al., 2019; Yuan et al., 2020). They capture mean-
ingful information by carefully designing different
branches. Unfortunately, existing two-branch struc-
tures were elaborately designed and are difficult to
port to other types of decoders and the degradation
of model performance caused by removing a branch
is also unacceptable, or they were just designed for
post-processing and are difficult to train end-to-end.
On the other hand, with the continuous improvement
of the encoder’s representation ability, how to make
full use of the information extracted by the encoder is
still an open question. Therefore, we have reason to
suspect that the existing encoder-decoder-based mod-



els do not fully integrate the information extracted by
the encoder. And we verified this view through exper-
iments.

To alleviate these problems, we propose a more
general two-branch paradigm, composed of a main
branch and an auxiliary branch for improving the
structure of the decoder. At the same time, we de-
sign a simple yet efficient branch that can be flexi-
bly integrated into existing encoder-decoder seman-
tic segmentation systems to verify the effectiveness of
the proposed two-branch structure. In order to enable
two branches to learn complementary information, we
customize a loss calculation method to supervise the
learning process of each branch. With these ideas,
different branches can learn complementary informa-
tion adaptively instead of explicitly indicating the spe-
cific learning elements of different branches. In addi-
tion, learning complementary information can make
the two branches compete with each other to a cer-
tain extent during the learning process which further
improves the performance. To the best of our knowl-
edge, the approach we proposed is the first to use the
general two-branch paradigm to improve the analyt-
ical capabilities of the model. Moreover, compared
with the counterpart of the original model, the ame-
liorated two-branch version reduces or maintains the
number of parameters while improving performance.

Our main contributions can be summarized as fol-
lows:

• We propose a general two-branch paradigm to en-
hance the capability of decoder to parse the infor-
mation extracted by the encoder without increas-
ing the number of parameters.

• We propose the BECLoss that can supervise two-
branch decoders to learn complementary informa-
tion adaptively instead of explicitly indicating the
specific learning elements to each branch.

• We design a simple yet efficient branch which
can be flexibly integrated into existing encoder-
decoder framework to form a two-branch struc-
ture.

• The ameliorated two-branch version outperform
its original encoder-decoder counterpart by a
large margin in Cityscapes dataset (Cordts et al.,
2016) and Freiburg Forest dataset (Valada et al.,
2016). Moreover, even if the auxiliary branches
in the trained two-branch model are removed,
our results are still far superior than the original
encoder-decoder model.

2 RELATED WORK

Encoder-decoder and variants. As a general struc-
tural paradigm, encoder-decoder is widely used in the
field of image segmentation. Such a structure usu-
ally extracts features from the input to a latent fea-
ture space by an encoder which utilized some popu-
lar classification networks as the backbone. Then, the
spatial resolution is gradually restored while different
tricks are employed to integrate the extracted features
by a decoder. U-Net (Ronneberger et al., 2015) ex-
plored the potential relationship between the features
of the encoding phase and their counterpart in the
decoding phase through multiple skip-connections.
SEMEDA (Chen et al., 2020) first learned to convert
the label to an embedding space under the guidance
of the boundary information, and then supervised
the encoder-decoder structure under the learned sub-
space. For better learning the global context represen-
tation, multi-scale pyramid pooling and dilated con-
volution were adapted at different grid scales. PSPNet
(Zhao et al., 2017) and Deeplab family (Chen et al.,
2018b; Chen et al., 2017) introduced dilated convolu-
tion in encoder for increasing the receptive field while
maintaining the resolution, then several parallel pyra-
mid pooling were followed to integrate information
at different scales. Inspired by (Chen et al., 2016;
Hu et al., 2018; Woo et al., 2018), attention mecha-
nism and its variants are adopted in encoders or de-
coders (Li et al., 2019; Chen et al., 2018a; Zhong
et al., 2020) for improving performance. In (Li et al.,
2018; Oktay et al., 2018), attention was deployed in
the decoding stage for re-calibrating the feature maps
with learnable weights. In addition, the application
of self-attention or transformer (Vaswani et al., 2017)
in encoder has gradually become popular due to its
capability of encoding distant dependencies for better
feature extraction. SETR (Zheng et al., 2020) adapted
a pure transformer encoder to extract features from an
image seen as a sequence of patches then followed a
decoder to restore the semantic information.
Multi-branch. Learning different information
through multiple parallel data streams has been
proved to have more advantages for representation
and generalization. Specifically, some existing works
deployed multi-branch structure in the feature ex-
traction stage (Wang et al., 2020; Tao et al., 2020;
Takikawa et al., 2019), and other works deployed
multi-branch to the prediction stage (Huang et al.,
2017; Fu et al., 2019). HRNet (Wang et al., 2020)
repeatedly exchanged the information across differ-
ent resolutions by a series of parallel feature extrac-
tion streams in the encoding process to maintain high-
resolution representations. Based on HRNet, (Tao



Figure 1: Encoder-Decoder paradigm.

et al., 2020) proposed a hierarchical multi-scale at-
tention approach in which each data stream learned
a certain image scale so that the model can consider
the information of multiple input image scales when
predicting. GSCNN (Takikawa et al., 2019) designed
a two-stream structure, one for context information
extraction, another one for boundary-related infor-
mation extraction. Combined with attention, RAN
(Huang et al., 2017) proposed a three-branch structure
that performs the direct, and reverse-attention learn-
ing processes simultaneously. Similarly, DANet (Fu
et al., 2019) used a two-branch encoder to learn the se-
mantic relevance in spatial and channel feature spaces
respectively. Unlike above works, SegFix (Yuan et al.,
2020) proposed a post-processing scheme that pre-
dicted boundary and direction map by means of a two-
branch decoder which were supervised by two bound-
ary related losses.

Encouraged by multi-branch learning, we pro-
pose a more general and easy-to-deploy two-branch
paradigm, in which a new branch can be easily in-
serted into the original decoder to form a two-branch
decoder and as a result improve the discriminating
ability. Different from previous works, we design
a general paradigm and enable different branches to
learn complementary information adaptively instead
of explicitly indicating the specific learning elements
of different branches.

3 METHODOLOGY

In this section, we first systematically describe the
two-branch decoder paradigm, then we design a sim-
ple yet efficient branch that can be applied as a plug-in
to existing encoder-decoder frameworks to turn them
into our proposed two-branch architecture. Finally,
we introduced a new loss calculation method that can
be used to supervise branch learning complementary
information.

3.1 Two-Branch Structure Prototype

In an image segmentation model, the encoder first
converts the texture or color information into ab-
stract high-dimensional embeddings through a series
of non-linear transformations, then the decoder inte-
grates different information and parses the high-level
semantic information. (Badrinarayanan et al., 2017;

Figure 2: Overview of our proposed two-branch architec-
ture. The output of the encoder is divided into two groups,
which are represented by two ‘half arrows’. Then each
group is input to each branch separately and followed by
a residual-liked module to fuse the outputs of two branches.

Chen et al., 2018b) are typical encoder-decoder net-
works. Structurally, existing encoder-decoder archi-
tectures can be simply represented by the diagram
shown in Figure 1. Our proposed encoder-decoder
based two-branch variant is depicted in Figure 2. As
shown in Figure 2 (a) raw data is first input into the
encoder for feature extraction, then encoded features
are input to two branches separately, followed by a
novel residual-liked (He et al., 2016) module to adap-
tively integrate information from different branches.
For the fusion of two branch features, we use the out-
put of the penultimate layer of each decoder instead
of the last layer to retain more information. Specif-
ically, in the residual path, we first concatenate the
output features of two branches, next follow a 1× 1
convolution to reduce the channels, and then features
are combined with the output of the first branch by an
element-wise addition operation. The final output is
up-sampled to recover resolution if needed. We hope
the ameliorated two-branch model can maintain the
original encoder-decoder information stream through
proposed residual-liked combination, while making
additional branch more effective in providing supple-
mentary information. Intuitively, this approach can
easily keep the performance of the original encoder-
decoder model.

3.2 Additional Branch Setting

In this part we design a simple branch which can be
deployed into encoder-decoder framework to form a
two-branch decoder architecture. As shown in Figure
2 (b), the branch takes the encoded features as input.
Similarly to (Zhao et al., 2017), we utilize a paral-
lel average pooling module, each path consisting of
an average pooling operator and a 1× 1 convolution
operator. We concatenate the output of each path to
get a multi-scale feature representation. Features are
then processed by another 1× 1 convolution. In the



end, we get the output of this branch through an up-
sampling operation and a 1×1 convolution operation.
In addition, inspired by grouped convolution (Howard
et al., 2017), we divide the encoded features into two
groups along the channel axis and each grouped fea-
tures is entered into a specific branch. We experimen-
tally found that in this way we can greatly reduce the
number of parameters in the decoder while maintain-
ing the performance of the two-branch structure.

3.3 BECLoss

In supervised learning, loss function plays a crucial
role in the optimization of the network. We fur-
ther propose a novel loss computation strategy which
can optimize this two-branch structure in an efficient
way. Moreover, (Chen et al., 2020; Takikawa et al.,
2019) have proved that introducing boundary infor-
mation in the loss helps to improve the inherent sen-
sitivity of the network to boundary pixels. Thus, we
believe that introducing boundary information in the
proposed loss can also help the model learns bound-
ary features during the training stage. This is verified
in ablation experiments. We name this well-designed
loss BECLoss. Specifically, BECLoss takes three in-
puts, namely outputs of the first branch X1 and the
second branch X2 and ground-truth map GT . And for
simplicity, we assume batch size as 1, thus the shape
of Xk(k = 1,2) is C×H×W and C, H and W indicate
the number of predicted classes, high and width of in-
put images respectively. First, we get the probability
distribution Sk ∈ RH·W×C which can be computed as:

Sk
i =

exp(Xk
i )

∑
C
j exp(Xk

i [ j])
(1)

where i = 0 . . .H×W −1 denotes the index of pixels,
j = 0 . . .C− 1 denotes the index of channels. Then,
we compute the probability map of ground truth label
Pk ∈ RH·W×1 as:

pk
i = Sk

i [gti] (2)

where gti is the ith pixel in GT . Following, we define
a mask M1 for indicating all the pixels whose proba-
bility in P1 is less than a threshold τ. M1 indicates the
pixels that are difficult to predict in the first branch.
With the computed M1 and P2, we filter out all pixels
in X2 whose probability is less than a threshold τ:

M1
i =

{
1 if P1

i < τ

0 otherwise
(3)

where i = 0 . . .H×W −1 denotes the index of pixels.
In order to standardize the loss definition, we use

L1 to indicate the boundary enhanced loss computed

Figure 3: (a) Mis-labeled boundary pixels and (b) Extracted
inner boundary.

from X1, and L2 to indicate a partial loss that we get
from X2. In L1 and L2 we only consider the pixels
which are hard to predict in the first branch in order to
utilize the additional branch to assist in the prediction
of these pixels. In addition, we use a hyperparameter
γ to control the influence of boundary information B∈
RW×H (detailed in 3.4) to the loss of the first branch,
we get L1 ∈ RH·W×1:

L1
i =−log(P1

i )× (1+ γ ·Bi)×M1
i (4)

where i = 0 . . .H×W −1 denotes the index of pixels.
Following, we compute the partial loss L2 ∈RH·W×1:

L2
i =− log(P2

i )×M1
i (5)

Finally, the BECLoss can be written as a weighted
average sum of L1 and L2:

LBEC =
∑i(L1

i +η ·L2
i )

∑M1
i

(6)

where η is a hyperparameter used to control the ratio
of L2 in LBEC.

The two branches can automatically learn comple-
mentary information which helps the proposed model
to further learn a more appropriate way to combine
the outputs of the two branches.

3.4 Ground-Truth Boundary

In this part, we explain how we get ground-truth
boundary map from ground-truth label map. In-
troducing approximate boundary information in the
loss can improve the model’s sensitivity to physical
boundaries which results in an improvement of the
prediction accuracy in boundary area. However, there
are always labeled error pixels in the hand-labeled
ground truth map, which are especially obvious at the
boundary region as shown in Figure 3(a). In order to
alleviate this problem, Figure 4 illustrates the inner



Figure 4: Ground-truth inner boundary extraction process.

boundary extraction process. Specifically, we first ex-
tract the boundary map B∗ from the original ground-
truth label map by a filter f that sets all pixels that
do not have 8 identically-labeled neighbor pixels as
1, and other pixels as 0. Then we thicken the bound-
ary by a 7×7 dilation operator and get boundary map
B∗t . Finally, we get the inner boundary B∗in by applying
the same filter f on B∗t again and followed by another
3×3 dilation operator, as shown in Figure 3(b).

3.5 Joint Loss

The proposed BECLoss is designed for optimizing the
network of two-branch paradigm. The purpose is to
guide the two branches to learn complementary in-
formation. It can naturally be combined with other
losses for training the whole network. Therefore, the
network is trained to minimize a joint loss function:

L = LCE +α ·LBEC1 +β ·LBEC2 (7)

Specifically, LCE is cross-entropy loss, LBEC1 and
LBEC2 are proposed BECLoss for first and second
branch, respectively. α and β are weights parameters
of the two BECLoss.

4 EXPERIMENTAL RESULTS

In this section, we conduct experiments using
Cityscapes dataset (Cordts et al., 2016) and Freiburg
Forest dataset (Valada et al., 2016). In the follow-
ing, we first modify some classic image semantic seg-
mentation algorithms to build their two-branch de-
coder counterpart, then we compare the proposed
two-branch architecture with the original network. Fi-
nally we carry out a series of ablation experiments on
Freiburg Forest dataset. Our models are trained us-
ing Pytorch (Paszke et al., 2019) on one Nvidia Tesla
P100 GPU with mixed precision settings.

4.1 Datasets

Cityscapes. The Cityscapes dataset is a large-scale
database for urban street scene parsing. It contains
5000 finely annotated images captured from 50 cities
with 19 semantic object categories, in which 2875 im-
ages are used for training, 500 images and 1525 im-
ages are used for validation and testing separately. All

Figure 5: Architecture of modified SegNet with two de-
coders (SegNetT).

images are provided with the resolution of 2048×
1024. We followed (Valada et al., 2019) and report
results on the reduced 11 class label set.
Freiburg Forest. The Freiburg Forest dataset is an
unstructured forested environments dataset. It con-
tains 6 segmentation classes: sky, trail, grass, vege-
tation, obstacle and void. The dataset contains over
15000 images and 325 images with pixel level hand-
annotated ground truth map. We follow (Valada et al.,
2019) and use the same train and test splits provided
by the dataset.

4.2 Implementation Details

In order to comprehensively test our proposed
method, we deploy our proposed two-branch decoder
on three classic baseline networks, namely, SegNet
(Badrinarayanan et al., 2017), DeeplabV3+ (Chen
et al., 2018b) and HRNet (Wang et al., 2020). Two-
branch SegNet is shown in Figure 5. We divide the
output of the encoder into two groups, one of which
is input to the original data stream, in our two-branch
implementation the original data stream means the
upper branch of the decoder, and another is input to
the additional data stream, the lower branch of the
decoder. Next, we follow residual-liked module to
fuse the two outputs, meanwhile deploy the BECLoss
and cross-entropy loss during the training. More con-
cretely, we supervise the learning process of the two
branches through LBEC1 and LBEC2, and the combina-
tion of two outputs are guided by the auxiliary LCE .
We follow the same way to implement the counterpart
of DeeplabV3+ and HRNet. Note that we only take
the backbone in the original model as an encoder, and
the rest as the decoder. In practice, we use Res50 (He
et al., 2016), Vgg16 (Simonyan and Zisserman, 2014)
and HRNet-W18 (Wang et al., 2020) as backbones.

We initialize different encoders with the model
pre-trained on ImageNet, this is totally the same as
the original implementations (Badrinarayanan et al.,
2017; Chen et al., 2018b; Wang et al., 2020). In order
to speed up the convergence and reduce the interfer-
ence of the initial learning rate setting, we employ a
cyclical exponent learning rate policy (Smith, 2017)
where the min lr and max lr are set to 1e− 5 and



Figure 6: Qualitative results on the Cityscapes val set with
11 semantic class labels.
Table 1: Improvements with two-branch decoder on
Cityscapes val set with 11 semantic class labels.

Methods BaseNet Mean IoU (%) Parms. (M)

SegNet 75.82 29.4

SegNetT (ours) 80.64 (+4.82) 18.6

DeepLabv3+ 80.31 26.6

DeepLabv3+T (ours) 82.45 (+2.14) 27.5

HRNet-W18 82.34 9.6

HRNet-W18T (ours) 83.9 (+1.56) 9.6

Res50

Hrnet-W18

Vgg16

1e−2, and cycle length and step size are set to 40 and
5 epochs respectively if not specified. Momentum and
weight decay coefficients are set to 0.9 and 0.0005.
Furthermore, we configure the hyperparameter γ and
η in BECLoss as 10.0 and 0.3. The scale α and β

in Equation 7 are simply set to 2.0. For Cityscapes
dataset, we set input image size to 384× 768, thus
random cropping (cropsize 384×768) is applied dur-
ing training, and during testing, we use the original
image resolution of 1024×2048. For Freiburg Forest
dataset, we resize the image to 384×768 during train-
ing and testing. All training images are augmented by
random left-right flipping. We set 160 and 120 train-
ing epochs to Cityscapes datasets and Freiburg Forest
dataset. And for both dataset we use the same mini
batch size as 8. In addition, as we compare the orig-
inal models with their two-branch encoder counter-
part, so we perform the same settings for each com-
parison pair to ensure fairness.

4.3 Experimental Evaluation

In this section, we provide an extensive evaluation of
each component of our framework on two challeng-
ing outdoor datasets, namely Cityscapes dataset and
Freiburg Forest dataset. We use the widely used inter-
section over union (IoU) to evaluate the performance
of our approach.

4.3.1 Results on Cityscapes Dataset

Table 1 summarizes the results of our two-branch
decoder with different baselines. We can see that
our approach significantly improves the mean IoU
Specifically, our approach improves the mean IoU
of original encoder-decoder frameworks namely Seg-
Net, Deeplabv3+ and HRNet by 4.81, 2.14 and 1.56
respectively. Moreover, thanks to the reasonable-
ness of proposed two-branch structure, our decoder
is more efficient then the original decoder. In par-
ticular, our two-branch implementation of SegNet
(SegNetT) greatly reduces the number of parame-
ters while significantly improving the performance.
DeepLabv3+T and HRNet only slightly increases the
parameters (0.9M) or keep the number of parameters
while improving the performance of the model. Our
results also reflect that the original decoder does not
make full use of the information extracted by the en-
coder. In addition, table 2 illustrates the category-
wise comparison between various baselines and their
two-branch variants. We surprisingly find that our
method has a significant improvement in the predic-
tion accuracy of small-scale targets, like ”pole”, ”traf-
fic sign” and ”person”. Several segmentation results
are shown in Figure 6, we can see that our two-
branch variants performs well on those small-size-
object classes in the images compared to the baseline
models. For ”pole” and ”traffic sign” in the images,
the baseline models are more inclined to classify them
as the surroundings and have difficult to distinguish
targets with similar semantic labels. Moreover, dense
targets are often taken as a whole and contain a lot of
noise, and many details are overlooked, like ”person”
in the third row and ”bike” in the fifth row. From
the second, fourth and sixth rows, we can see that
our method can correct these problems. Note that we
may find the optimal hyperparameters to achieve bet-
ter performances through grid search, but this is not
the focus of this work.

4.3.2 Results On Freiburg Forest Dataset

We carry out experiments on the Freiburg For-
est dataset to further evaluate the effectiveness of
our method. Quantitative results of Freiburg For-
est are shown in Table 3. The baselines (Seg-
Net, DeepLabv3+, HRNet) yield mean IoU 69.99%,
77.48% and 78.29%. Our two-branch counterpart
boost the performance to 81.79%, 82.73% and 83%.
We can see that our methods outperforms their base-
lines with notable advantage, especially for the class
of ”obstacle”, which is hardest to segment because
of its serious class imbalance, and ”obstacle” class
consists of various types of objects which are diffi-



Table 2: Comparison in terms of IoU vs different baselines on the cityscapes val set with 11 semantic class labels.

Methods sky building road sidewalk fence vegetation pole vehicle traffic sign person bicycle
SegNet 91.83 88.47 95.52 72.76 40.02 91.22 52.95 89.45 65.57 77.2 68.98
SegNetT (ours) 93.35 (+1.52)90.89 (+2.42)96.65 (+1.13)77.28 (+4.52) 49.72 (+9.7) 92.37 (+1.15)61.54 (+8.59)92.86 (+3.41)75.64 (+10.07)81.61 (+4.41)75.06 (+6.08)
DeepLabv3+ 93.99 90.9 97.29 80.47 54.73 91.92 56.56 93.05 71.78 78.9 73.79
DeepLabv3+T (ours) 93.95 91.99 (+1.09)97.62 (+0.33)82.31 (+1.84)54.85 (+0.12)92.55 (+0.63)62.69 (+6.13)94.17 (+1.12) 77.87 (+6.09) 82.4 (+3.5) 76.59 (+2.8)
HRNet 94.31 92.06 97.67 82.31 54.94 92.59 63.31 94.34 76.37 82.27 75.4
HRNet-T (ours) 94.83 (+0.52)92.68 (+0.62)97.98 (+0.31) 84.3 (+1.99) 56.28 (+1.34)93.06 (+0.47)67.17 (+3.86)94.83 (+0.49) 79.98 (+3.61) 84.35 (+2.08)77.09 (+1.69)

Table 3: Improvements with two-branch decoder on Freiburg Forest val set.

Methods BaseNet Trail Grass Veg. Sky Obst. Mean IoU (%) Parms. (M)
SegNet 84.15 85.55 88.97 91.28 0 69.99 29.4
SegNetT (ours) 88.55 (+4.4) 88.96 (+3.41) 0.91 (+1.94) 2.63 (+1.35) 47.93 (+47.93) 81.79 (+11.8) 18.6
DeepLabv3+ 83.03 86.11 89.96 92.16 36.1 77.48 26.6
DeepLabv3+T (ours) 88.02 (+4.99) 88.93 (+2.82) 91.02 (1.06) 2.83 (+0.67) 52.87 (+16.77) 82.73 (+5.25) 27.5
HRNet 84.79 86.49 89.79 91.96 38.44 78.29 9.6
HRNet-T (ours) 88.74 (+3.95) 89.35 (+2.86) 91.14 (+1.35) 92.6 (+0.64) 53.17 (+14.73) 83 (+4.71) 9.6

Res50

Hrnet-W18

Vgg16

cult to be unified into the same class. Furthermore,
this dataset only contains large-scale targets such as
tree, trail, etc. Therefore, it is difficult to optimize the
segmentation accuracy of these classes through multi-
scale learning. Benefiting from the efficient infor-
mation integration capabilities of our proposed two-
branch decoder paradigm, our method shows impres-
sive advantages on the above issues. Several exam-
ples are shown in Figure 7.

4.4 Ablation Study

4.4.1 BECLoss and Boundary

All two-branch variants are implemented by replacing
the decoder of the original network with our proposed
two-branch decoder, and through our well-designed
BECLoss to explicitly supervise the learning process
of the model, the two branches can learn complemen-
tary information. In addition, we introduce bound-
ary information into BECLoss to improve the inher-
ent sensitivity of our models to boundary pixels. To
verify the validity of our method, we conduct a group
of ablations to analyze the influence of various fac-
tors within our method. We report the results over
the segmentation baseline SegNet on Cityscapes and
Freiburg Forest dataset in Table 4.

As shown in Table 4, two-branch decoder im-
prove the performance remarkably. Compared with
the baseline SegNet, employing two-branch decoder
yields a result of 78.54% mean IoU on Cityscapes
dataset and 78.9% mean IoU on Freiburg Forest
dataset, which brings 2.72% and 8.91% improve-
ment. In addition, when we gradually replaced the
cross-entropy loss CELoss of loss1 and loss2 with
the BECLoss we designed, the performance further
improves to 79.5% and 81.43%. Furthermore, we
notice that when we use only one BECLoss, the re-

Figure 7: Qualitative results on the Freiburg Forest test set.
Table 4: Ablation study on Cityscapes val set and Freiburg
Forest test set. Loss1-Loss3 represent deployed loss in Fig-
ure 2, B indicates BECLoss enhanced by boundary infor-
mation.

Cityscapes Freiburg
SegNet \ \ CE \ 75.82 69.99
SegNetT CE CE CE \ 78.54 (+2.72) 78.9 (+8.91)
SegNetT BEC CE CE N 79.54 (+3.72) 80.48 (+10.49)
SegNetT CE BEC CE N 79.07 (+3.25) 79.9 (+9.91)
SegNetT BEC BEC CE N 79.5 (+3.68) 81.43 (+11.44)
SegNetT BEC BEC CE Y 80.64 (+4.82) 81.79 (+11.8)

Methods Loss1 Loss2 Loss3 B
Mean IoU (%)

sult very slightly exceeds the result of using two BE-
CLoss, as shown in the third row and the fifth row,
the result from 79.54% goes to 79.5% on Cityscapes
dataset. We further introduce boundary information
to BECLoss, performance increased to 80.64%. Re-
sults show that our proposed two-branch decoder and
boundary enhanced BECLoss bring great benefit to
scene parsing.

4.4.2 Single Branch

In many real scenarios, we have difficulties deploy-
ing complex models into practical applications due
to computer resources and run-time limitations. Our
approach can make our two-branch structure decoder
adaptively learn complementary knowledge during



the training process. In addition, the two branches
learn pixels that are difficult for each other to resolve
during the training process, there is a certain competi-
tive relationship between the two branches during the
training process. This is what we expect, because on
the one hand the auxiliary branch can learn comple-
mentary knowledge that can boost the main branch,
on the other hand competition with each other can
make each branch learn more efficiently. As a re-
sult, even if a branch is removed during the infer-
ence process, our results are far better than the origi-
nal encoder-decoder structure and the number of pa-
rameters is less. As shown in Table 5, We use an
extremely simple branch, as shown in Figure 2(b),
retraining on the Cityscapes dataset, and we named
the trained model ‘ED’. Moreover, we test the out-
put results of each branch separately on the trained
two-branch decoder model. Specifically, we take Seg-
Net as an example. In the inference process, we only
keep the upper branch of the model in Figure 5, and
the output result obtained corresponds to ’O∗’. When
we only keep the lower branch, the result corresponds
to ’D∗’. ’O&D’ goes to the result of original two-
branch model. The results of the main branch in
our trained two-branch model are 80.49%, 82.35%
and 83.87%, which is significantly exceed the coun-
terparts of original encoder-decoder models (75.82%,
80.31% and 82.34%) while the number of parameters
used dropped remarkably. Surprisingly, although the
result of the auxiliary branch are sometimes not sat-
isfactory, such as 65.34% with the encoder of Vgg16
or 76.67% with the encoder of Res50. However, we
find that the residual-like module can effectively com-
bine the outputs of the two branches to further im-
prove the final result to 80.64%, 82.61% and 83.9%,
as shown in ’O&D’ columns, which is mean that the
final results are not adversely affected. This once
again shows that our method can make each branch
learns complementary information.

5 CONCLUSION

In this paper, we have presented a general two-branch
decoder paradigm, composed of a main branch and
an auxiliary branch for scene segmentation. This de-
coder paradigm can be directly applied in an encoder-
decoder framework to efficiently refine and integrate
the information extracted by the encoder. With this
two-branch decoder, we further propose a boundary
enhanced complementary loss, named BECLoss. The
insight is that the learning process of each branch
can be supervised by our proposed BECLoss, so that
different branches can adaptively learn complemen-

Table 5: Single branch test on Cityscapes val set with 11
semantic class labels. ’Enc.’ represent encoder, ’Dec.’ rep-
resent decoder. ’O’ indicates the decoder deployed in the
original model. ’D’ the decoder in Figure 2(b), ’T ’ indi-
cates our two-branch decoder. ’O∗’, ’D∗’ and ’O&D’ mean
the result from upper branch, lower branch and final branch
separately.

Methods Enc. Dec.
SegNet O
ED D

80.49 67.34 80.64 18.4 14.9 18.6
DeepLabv3+ O
ED D

82.35 77.3 82.61 25.3 25.7 27.5
HRNet O
ED D

83.87 76.83 83.9 9.6 9.6 9.6HRNet-T (ours) T
Res50

82.34 9.6
81.25 9.7

32.2

75.82
65.34

29.4
15.3

80.31 26.6

DeepLabv3+ (ours)
Res50

T

T

76.67

Mean IoU (%) Parms. (M)

SegNetT (ours)
Vgg16

𝑂∗ 𝐷∗ O&D

𝐷∗ 𝐷∗

𝐷∗

𝑂∗ 𝑂∗

𝑂∗ O&D

O&D O&D

𝐷∗ 𝐷∗𝑂∗ 𝑂∗O&D O&D

tary information without explicitly indicating the spe-
cific learning elements and compete with each other
in the learning process. Moreover, in order to ver-
ify the effectiveness of our proposed methods, we
design a simple yet efficient branch which is de-
ployed as the auxiliary branch in our two-branch
decoder. The comparative experiment shows that
two-branch decoder paradigm and BECLoss can sig-
nificantly improve the performance of the original
encoder-decoder model consistently on challenge out-
door scenes, i.e. Cityscapes and Freiburg Forest
datasets. It is worth mentioning that although we
added an additional branch to decoder, it did not in-
crease the number of parameters significantly. In ad-
dition, In the inference process, even if we delete a
branch, we can still get performance far beyond the
original counterpart. As a perspective for future work,
we would like to design a more universal and general
branch which can be applied in our two-branch de-
coder paradigm.
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