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Coordinated PSO-PID based longitudinal control with LPV-MPC based
lateral control for autonomous vehicles

Yassine Kebbati'*, Naima Ait-Oufroukh!, Vincent Vigneron' and Dalil Ichalal

Abstract— Autonomous driving is achieved by controlling the
coupled nonlinear longitudinal and lateral vehicle dynamics.
Longitudinal control greatly affects lateral dynamics and must
preserve lateral stability conditions, while lateral controllers
must take into account actuator limits and ride comfort. This
work deals with the coordinated longitudinal and lateral control
for autonomous driving. An improved particle swarm optimized
PID (PSO-PID) is proposed to handle the task of speed tracking
based on nonlinear longitudinal dynamics. An enhanced linear
parameter varying model predictive controller (LPV-MPC) is
also designed to control lateral dynamics, the latter is formu-
lated with an adaptive LPV model in which the tire cornering
stiffness coefficients are estimated by a recursive estimator. The
proposed LPV-MPC is enhanced with an improved cost function
to provide better performance and stability. Matlab/Carsim co-
simulations are carried out to validate the proposed controllers.

Index Terms— Autonomous driving, Particle swarm opti-
mization, Model predictive control, Adaptive control.

I. INTRODUCTION

Autonomous vehicle technology has recently been the
subject of significant research and development, due to its
numerous advantages compared to conventional vehicles.
Among its advantages are a reduced accident and fatality
rate, better and smoother traffic, energy and time efficiency.
Automated driving systems consist of several modules that
work together in a coordinated manner. First, there is a
perception module made up of a variety of sensors, including
cameras, LIDAR, RADAR, GPS and IMU. Several algo-
rithms are used by this module to detect the environment
and extract relevant information. Second, a planning and
decision-making module (speed and path planners) that ex-
ploits the perceived information to make decisions and plan
future actions such as changes in vehicle speed and direction.
Then comes the control system that executes the decisions
taken by the previous module. Automatic control is the final
step and one of the most important tasks in autonomous
driving systems. The latter is divided into longitudinal and
lateral control, where longitudinal control ensures precise
speed tracking and lateral control handles the steering task.
Extensive research has been done to address both tasks and
reasonable progress has been made in the field. For instance,
paper [1] developed an MPC controller for low velocity
tracking in advanced driver-assistance systems (ADAS); it
has been compared to PID and neuro-fuzzy inference system
(ANFIS) controllers. Simorgh et al. [2] worked on adaptive
PID control for speed. regulation systems; they used the
inverse model theory to adapt the PID gains. Good speed
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tracking has been obtained under adverse trajectory condi-
tions and aerodynamic effects, but this approach depends
on the reference model which is generally less accurate due
to linearizations and simplified assumptions. Other works
exploit the advantage of Artificial Intelligence to improve
classical controllers such as Nie et al. [3] who used radial
basis function to adapt the PID gains online (RBF-PID),
which improved the tracking accuracy and driving comfort.
In a similar way, Jin et al. [4] developed a fuzzy-PID
for maintaining low speeds while driving downhill. Kebbati
et al. [5] developed a self-adaptive PID controller for the
speed tracking task. They used genetic algorithms and neural
networks to tune and optimize the PID gains for better
tracking and disturbance rejection.

Several papers worked also on lateral control. In [6], an
adaptive MPC controller has been designed for automatic
lane-keeping. The developed controller was able to handle
steering offsets learned from measured data by using a mem-
bership function approach. Overall, the results showed signif-
icant improvement provided that the vehicle lateral dynamics
were perfectly known. Paper [7] also addressed lane-keeping,
where an LPV-MPC was developed for steering control, and
a dual rate extended Kalman filter (DREKF) was used for
state estimation. The simulation results demonstrated accept-
able performance. Likewise, Yang er al. [8] addressed the
longitudinal control by designing a sliding mode controller
(SMC) with a conditional integrator. They coupled it with
an LPV-MPC for lateral guidance and then with an active
disturbance rejection controller (ADRC). SMC suffers from
the chattering phenomenon. ADRC showed good robustness
against parametric uncertainties, but LPV-MPC achieved
much more accurate tracking performance. Nevertheless,
most of the previously mentioned papers only consider con-
stant longitudinal speeds, while variable speeds greatly affect
lateral control performance. Study [9] developed an adaptive
MPC for the path tracking task; they proposed an improved
PSO algorithm to optimize the MPC parameters and used
a lookup table approach to adapt these parameters online.
Despite the optimal results for time-varying longitudinal
velocities, this strategy cannot cover all possible situations
and the lookup table method requires certain approximations
which reduce the overall control precision. However, the
same authors improved their controller design in [10] by
using neural networks and adaptive neuro-fuzzy inference
systems to learn the optimal MPC parameters and replace
the lookup table approach. The idea was to adapt the MPC
controller to varying working conditions and external dis-
turbances. The obtained results showed significant tracking
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improvements, but this approach still requires long offline
optimizations.

However, research on coupled longitudinal and lateral con-
trol is less abundant. Attia et al. [11] developed a combined
lateral and longitudinal control strategy for autonomous
driving. Nonlinear model predictive control (NLMPC) was
used to manage lateral guidance and longitudinal control was
based on Lyapunov theory. The control strategy achieved
good results, but NLMPC requires very expensive com-
putations. Although nowadays it can be applied in real-
time, it requires expensive hardware. Chebly et al. [12]
also addressed coupled lateral and longitudinal control. A
multi-body formalism was used to accurately model the four-
wheeled vehicle, and the control laws were developed based
on Lyapunov function, then on the immersion and invariance
with sliding mode approach. Robust speed and trajectory
tracking were achieved with both methods. The immersion
and invariance based controller showed better performance
then its rival since it is less model-dependent. However, the
design of this type of controllers is a difficult task and its
practical implementation is not guaranteed.

The contributions of this work are threefold; First, an
improved LPV-MPC with a simple and precise prediction
model is developed for handling the vehicle lateral dynamics.
Second, recursive least squares algorithm (RLS) is used to
estimate the cornering stiffness coefficients online and adapt
the MPC prediction model iteratively. Third, an improved
PSO algorithm is used to optimize a PID controller (PSO-
PID) for handling the longitudinal dynamics which is coor-
dinated with the lateral controller while ensuring lateral sta-
bility. This paper is organized as follows: Section II presents
the modeling of the longitudinal and lateral dynamics of the
vehicle and the parameters estimation with recursive least
squares algorithm. The design of the coordinated longitudinal
and lateral control is detailed in section III. Section IV
presents and analyzes the obtained results. Finally, section
V concludes the work and gives some perspectives.

II. VEHICLE MODELING

The vehicle dynamics are highly nonlinear, where the
longitudinal and lateral dynamics are coupled. In this paper
a nonlinear longitudinal model that accounts for nonlinear
power-train and tire longitudinal dynamics is developed and
coupled with a linear parameter varying bicycle model for
the lateral dynamics.

A. Longitudinal Dynamics Modeling

The longitudinal dynamics of a vehicle consist of several
subsystems that represent the chassis, the engine, the trans-
mission, the wheels, the tires and the brakes. Vehicle body
dynamics can be modeled by the following equation [5]:

F = m% + %pCdAf(U + vy)? + mgCh cos O 4+ mgsind (1)

where F}, m, v and v,, are the drive force, the vehicle mass,
the vehicle velocity and the wind velocity respectively. Ay,
Cy and Cr are the vehicle cross sectional area, the drag
and rolling resistance coefficients respectively. g, p and 6

represent the gravity, air density and road elevation angle.
The propulsion system of electric vehicles is composed of
the motor and the transmission. The motor can be modeled
statically using the motor efficiency map and the transmis-
sion is modeled as a single speed gearbox as in equations
(2) and (3) respectively [5]:

Te = Te—ref
Tew 2
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with T. s, T and Ty being the engine reference torque
(obtained from the efficiency map), the engine torque and
the gear torque respectively. Similarly, w. and w, are the
engine and the gear angular speeds. kg, I, and u; represent
the gear ratio, the current and the voltage drawn from the
battery. 7 is the motor efficiency where the exponent k£ = 1
if Towy, > 0, otherwise k& = 0. The wheels can be modeled
by equations (4) under the assumption of negligible slip [5],
and the tires are modeled by the magic formula given in (5):
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where I’ and T are either the drive or the braking force
and torque respectively, w,,, R, and v represent the wheel
angular velocity, the wheel radius and the vehicle linear
velocity. I,, and By are the wheel moment of inertia and
damping coefficient. Equation (5) is the Pacejka tire model
[13] where F; can be either the longitudinal or the lateral
tire force, F, is the normal tire force, k is the slip angle
and {B,C, D, E} are experimental fitting coefficients. The
torque of the brake system is governed by equation (6)
where B, and R,, are the actuator diameter and the brake
pad mean radius. P and f, are the brake pressure and the
friction coefficient. These subsystems are modeled using the
the powertrain-blockset of MATLAB.
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B. Lateral Dynamics Modeling

The vehicle lateral dynamics are modeled using an LPV
version of the standard bicycle model where the motion
accounts for translation on the y-axis and rotation around
the z-axis. By applying Euler-Newton’s formalism to the
model in (Fig. 1), using small angle approximations and
linearized tire model, the full model can be summarized in
the following equations [9]:

=2
Vg,
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where v, /,, ¥ and ¢ are the longitudinal/lateral velocities,
the heading angle and the steering angle respectively. cy .,
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Fig. 1: Bicycle dynamic model

a and b represent the cornering stiffness coefficients of
front/rear tires and the distances from rear and front wheels
to the vehicle gravity center (GC), and I, is the vehicle
inertia moment. The corresponding affine LPV state space
representation is given by:

(v

where X = [j ¢ ¢ y|T, Y = [y ¥]T and u = §; represent
the state vector, the output vector and the control signal
respectively. The system matrices A and B depend on an
LPV scheduling vector p(t) = [v, = £= ¢f]7. All the
parameters are bounded and the system matrices are affine
with respect to the parameters of the scheduling vector, the
matrices are defined by:

= Ai(p)X + Ba(p)u

— X ®)

ai1(p) 0 aiz(p) 0
A— 0 0 0 1
azi(p) 0 ag(p) 0 |7
1 ag2(p) 0 0
b11(p)
0 00 0 1
B blg(p) ’ C[O 1 0 0:|
0
where the terms of A and B are defined as follows:
ai(p) = —205:;?, aiz(p) = —vz — %,
—aC,. 2 " 2
az1(p) = —QL}:%C , ags(p) = —28 0

a12(p) = Vg b11(p) = 2L, biz(p) = T,

Parameters c¢ and c, are obtained by using a recursive least
squares (RLS) estimator. The estimator uses the linear tire
cornering stiffness equations:

Iy

F,

The RLS algorithm given in equation (10) uses the
above mentioned equations as a parameter identification form
where z(k) is the measured value, ¢(k) is a regression vector,

0(k) represents the estimated parameters and e(k) is the
identification error. These are defined in equations (11):
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The values of z(k) and ¢(k) are obtained from the vehicle
simulator (Carsim) and are fed to the RLS estimator, but in
reality the lateral forces and side-slip angle are very hard
to measure and they are usually estimated: The estimation
process of these parameters is well studied in the literature
[14], [15] and is not in the scope of this study. Table (I)
summarizes the parameters used for both models.

TABLE I: Model parameters.

m 1575kg Cy 0.29 a 1.6m
Cr 0.007 5 3.4 b 1.2m
Ag 1.6m? Ry  0.329m  I. 2875N.m
p  1.222kg/m3 R, 01778m I, 0.8kg.m?
1o 0.9 By 0.001/s> 7 95%

III. CONTROLLER DESIGN

The coupled lateral and longitudinal control strategy must
preserve the lateral stability when performing lateral maneu-
vers. In this regard, both road geometry and lateral dynamics
are to be considered [11]. The road information is used
by the speed planner to estimate the maximum allowable
longitudinal speed for the steering maneuver, the cruise speed
has to be reduced in function of the curvature and must
respect the following condition:

N
max ——
Pr 1- (br,u

with g, u, ¢, and p, being the gravity, the adhesion co-
efficient, the camber angle and the curvature respectively.
This criterion is used as a predictive measure to guarantee
admissible speeds before initiating lateral maneuvers. How-
ever, additional criteria related to lateral dynamics must be
validated and in particular, the side slip angle (3) must obey
criterion (13):

12)

w2
40
The latter can be reformulated in terms of steering angle and

implemented as a constraint on the control signal. According
to [16], the side slip angle can be expressed by:

B<10- (13)

(14)

= t
B arcan< P>

btan d, —|—atan(5f>
where the rear wheel steering angle can be set to zero as
only the front wheels are steerable (J, = 0). Hence, using
equation (14), criterion (13) can be reformulated into :

b)tan(10 — T
|07| < arctan <(a+ Jtan( 40 )> (15)
a



A. PSO-PID Control

For the speed tracking task, an optimized PID controller
is proposed. PID control is commonly used in the industry,
it achieves good performance whilst being relatively simple
to design compared to other methods. The general formula
of a PID controller is provided in equation (16):

u(t) = Kpe(t) + Ki/e(r)dT + Kdd%(tt)

(16)
where e(t) is the error between the reference and the output,
and {K,, K;, K4} are gains for the proportional, integral and
derivative actions, which are often hard to tune. Therefore,
the three parameters are optimized through an improved
particle swarm optimization algorithm (PSO), which is a well
established stochastic optimization technique [17], [18]. The
algorithm relies on the principle of swarm social behaviour,
where a swarm contains multiple particles which represent
potential solutions. Each particle has a position p; and a
velocity v;, and the idea is to find the velocity that moves
particles towards the global optimal position. The algorithm
is governed by:

’Ui(k? + 1) = wvi(kz) + ClT‘l(Pbi(kJ) — xl(k))
—l—Cg’I‘g(Gb(k) — l‘z(k‘)) 17
zi(k+1)= z;(k)+vi(k+1)

where w, c¢; and cy are known as inertia weight, cognitive
and social accelerations respectively, and r1 5 € [0,1] are
random constants. Gb and Pb are the global best position
of the whole swarm and the local best position in a single
swarm generation. The inertia weight, social and cognitive
accelerations are prefixed constants in the classic algorithm.
However, in the improved version of this work they are
dynamic according to equations (18,19) which improves the
PSO search performance:

€xp (wmax -\ (wmax + ov’min)%)

W = Wnin " (18)
alk+1)=ck)+a
Cg(k‘ + 1) = Cg(k‘) + 5
a=-28=0.085 for & <30% 19)
a=-L=0045 for 30% < & < 60%
a==2=-0025 for 60% < % < 8%

a=—f3=-0.0025 for & >85%

Parameters g and G are the actual and the last genera-
tions respectively. Ay o are constants adjusted to ensure an
exponential decrease from wpax tO wpyin Which are maxi-
mum and minimum inertia weights. The advantage of this
PSO improved version compared to other improved versions
is that it enhances the overall search capabilities of the
algorithm, the exponential decrease of w accelerates the
convergence towards the global best solution. On the other
hand, increasing c¢; pulls the particles towards Pb and
enhances the exploration phase, while increasing co, speeds
the convergence towards Gb which enhances the exploitation
phase and vice versa. The proposed PSO is used to optimize
the PID gains {K,, K;, K} using the longitudinal model

Switc Wg o
E Controller

Brake
dp b

Fig: 2: PSO-PID approach.

discussed in section II. The approach is illustrated in (Fig. 2)
where the mean squared error (MSE) is used as the fitness
function of the PSO algorithm. The switch module in the
figure decides whether the control signal is a braking or an
acceleration command based on its sign, the switching logic
sends the command either to the braking system or to the
engine at a time [3].

B. LPV-MPC Control

The lateral control performs the position and orientation
tracking, an LPV-MPC formulation is proposed for this task.
Model (8) is discretized using sampling time 7, and used
as the MPC prediction model, where Ay = I + T, A and
B, = T,B. The principle relies on using the prediction
model to predict the behaviour of the vehicle along a pre-
diction horizon NV, then solving the resulting optimization
problem along a control horizon N.. The goal is to find
a control sequence that minimizes the error between the
predicted vehicle behavior and the desired behaviour. At
each iteration, a new adapted instance of the LPV model
is used for the MPC predictions which improves the overall
prediction accuracy. Moreover, constraints are imposed on
the control signal, its rate and system states to account for
actuator limits and ride comfort. In addition to optimality,
the possibility to handle constraints is a major advantage of
model predictive control. The standard optimization problem
is given in equations (20-24):

min J = (Y, = Y,)TQ(Y, —Y,) + AUTRAU  (20)
st:x(k+1) = Aq(p)x(k) + Ba(p)Au(k) (21)
Atmin < Au(k) < Aumax (22)
Umin < U(K) < Umax (23)
Tmin < (k) < Tmax (24)

where AU, Y, and Y, represent the respective control
sequence, the predicted and the reference trajectories, and )
and R are weighting matrices that penalize the tracking error
and control effort. The constraints on the control and rate of
control signal ensure a comfortable ride and impose actuator
limits in addition to the lateral stability criterion given in
equation (15). To improve the optimization, an enhanced
cost function is proposed by adding a relaxation factor () to
avoid the infeasibility of strict constraints. An exponential
weight (87%) is also included, the latter decreases with
iteration k. This decreasing weight ensures that the first
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Fig. 3: Structure of the control approach

control input increments are more important in the sequence
[19]. Therefore, immediate actions are favoured to penalize
immediate tracking errors more than future tracking errors
since MPC is based on the receding horizon principle. The
cost function is then reformulated into equation (25):

Np pei . .
J = Zj:]lvﬁ lye (k + 41k) = yp(k + R
+32550 B Au(k + k)| + pe?

The LPV-MPC is coded in MATLAB using Yalmip platform
and solved using Gurobi optimization solver. The algorithm
runs at 20H z on an Asus Rog G17 with 2.6Ghz 17 10750H
and 32G B of DRAM. The coordinated control strategy is im-
plemented and tested in Matlab/Carsim co-simulations
as shown in Fig. 3, where o, and «ay, represent the throttle and
brake signals, vg, Y.y and ¥,y are the desired longitudinal
velocity, the lateral position and the heading trajectories. The
desired velocity is generally obtained via a speed planner
and must verify condition (12). The LPV-MPC and PSO
parameters are tuned iteratively until the desired performance
is obtained. These are given in table (II).

(25)

TABLE II: Model parameters.

Np 9 Q diag(35 3.25) R 1.25
P 15 € 0.5 B 3.5_
Ts 0-15 AUmax % AUpin — %
Umax % Umin - % G 25
Wmax 1 Win 0.1 cil 2.2
)\1 3 )\2 30 Ci2 2.2

IV. RESULTS AND DISCUSSION

The proposed control strategy is evaluated for a double
lane-change maneuver where the velocity varies between 50
and 65 km/h, and the vehicle is exposed to lateral and
longitudinal wind disturbances. The test road is flat asphalt
with and adhesion coefficient © = 0.95. For this test, the
PSO optimization generated the PID triplet {K, = 5.52,
K; = 0.0547, K4 = 0.469}. The LPV-MPC with regular
cost function (20) is compared to the one with the enhanced
cost function (25), they are denoted 'MPC’ and "E-MPC’
respectively. Fig. 4 shows the wind speed (with variable
direction), the speed tracking performance and control sig-
nals. The results show smooth speed tracking with adequate
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Fig. 4: Wind profile, speed tracking and control signals.
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accuracy, with an MSE=0.0213. Fig. 5 shows the lateral
tracking performance, the advantage of E-MPC is obvious in
both position and yaw tracking with smoother steering which
results in a more comfortable ride. The accuracy is measured
by the MSE value for position and orientation tracking,
where E-MPC scored 2.118e~* against 0.601 for MPC with
standard cost function. For the orientation tracking, E-MPC
scored 1.228¢~* against 6.756e~*. The highest position
tracking error of E-MPC does not exceed 5cm.

Furthermore, the effectiveness of E-MPC is verified for
a general trajectory (see Fig. 6) with different bends and
a varying velocity profile. The same road characteristics
were maintained and external wind disturbances were also
applied. The PSO optimization in this test produced the PID
triplet {K, = 1.884, K; = 0.048, K4 = 0.325}. The wind
profile, speed tracking performance and control signals are
respectively shown in Fig. 7, where the observed perfor-
mance is similar to the previous test, the tracking accuracy
is indeed acceptable (MSE=0.0187) and the controls are
smooth. The respective lateral tracking performance along
with the corresponding steering control are shown in Fig.
8. Despite the challenging trajectory and speed profile with
imposed wind disturbances, the proposed LPV-MPC showed
good performance overall and was able to track both position
and orientation with a resulting MSE of 0.32 and 6.56e~*
for position and orientation tracking respectively.
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V. CONCLUSIONS

This paper addressed the coordinated longitudinal and
lateral control for autonomous driving. A nonlinear model
is used to account for power-train and vehicle longitudinal
dynamics, and an optimized PSO-PID is developed to ensure
accurate speed tracking, where the PID gains were optimized
by a new improved PSO algorithm. An LPV-MPC with an
enhanced cost function is designed for the lateral control
task, the proposed controller takes into account the varying
longitudinal velocity and cornering stiffness coefficients. A
recursive least squares estimator is used to estimate the
tire cornering stiffness coefficients. The proposed controllers
were validated in Matlab/Carsim co-simulations for a
double lane-change scenario and a general trajectory tracking
problem. The results showed satisfactory performance for
both lateral and longitudinal tracking while being relatively
robust against wind disturbances. Future research shall ad-
dress the development of an enhance LPV-MPC that handles
both lateral and longitudinal control simultaneously.

REFERENCES

[1] M. Marcano, J. A. Matute, R. Lattarulo, E. Marti, and J. Pérez, "Low
Speed Longitudinal Control Algorithms for Automated Vehicles in
Simulation and Real Platforms,” Complexity, vol. 2018,

A. Simorgh, A. Marashian, and A. Razminia, ”Adaptive PID Control
Design for Longitudinal Velocity Control of Autonomous Vehicles,”
Proc. - 2019 6th Int. Conf. Control. Instrum. Autom. ICCIA 2019, pp.
1-6, 2019,

[2]

Heading (rad)

Steering (rad)

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

Yref
- Yvehicle

ref

—T

0 10 20 30

Fig. 8: Tracking performance and Steering control.

40 Time (s) 50 60 70 80 90

L. Nie, J. Guan, C. Lu, H. Zheng, and Z. Yin, “Longitudinal speed
control of autonomous vehicle based on a self-adaptive PID of radial
basis function neural network,” IET Intell. Transp. Syst., vol. 12, no.
6, pp. 485-494, 2018,

L. Jin, R. Zhang, B. Tang, and H. Guo, A Fuzzy-PID scheme for low
speed control of a vehicle while going on a downhill road,” Energies,
vol. 13, no. 11, pp. 1-18, 2020,

Y. Kebbati, N. Ait-Oufroukh, V. Vigneron, D. Ichalal and D. Gruyer,
”Optimized self-adaptive PID speed control for autonomous vehicles,”
2021 26th International Conference on Automation and Computing
(ICAC), 2021, pp. 1-6.

M. Bujarbaruah, X. Zhang, H. E. Tseng, and F. Borrelli, ”Adaptive
MPC for Autonomous Lane Keeping,” 2018, [Online]. Available:
http://arxiv.org/abs/1806.04335.

J. M. S. Ducajd, J. J. S. Llobregat, A. Cuenca, and M. Tomizuka,
”Autonomous ground vehicle lane-keeping Ipv model-based control:
Dual-rate state estimation and comparison of different real-time control
strategies,” Sensors, vol. 21, no. 4, pp. 1-17, 2021,

X. Yang, L. Xiong, B. Leng, D. Zeng, and G. Zhuo, "Design, vali-
dation and comparison of path following controllers for autonomous
vehicles,” Sensors (Switzerland), vol. 20, no. 21, pp. 1-24, 2020,

Y. Kebbati, V. Puig, N. Ait-Oufroukh, V. Vigneron and D. Ichalal,
”Optimized adaptive MPC for lateral control of autonomous vehicles,”
2021 9th International Conference on Control, Mechatronics and
Automation (ICCMA), 2021, pp. 95-103.

Y. Kebbati, N. Ait-Oufroukh, V. Vigneron and D. Ichalal, "Neural
Network and ANFIS based auto-adaptive MPC for path tracking
in autonomous vehicles,” 2021 IEEE International Conference on
Networking, Sensing and Control (ICNSC), 2021, pp. 1-6.

R. Attia, R. Orjuela, and M. Basset, "Combined longitudinal and
lateral control for automated vehicle guidance,” Veh. Syst. Dyn., vol.
52, no. 2, pp. 261-279, 2014,

A. Chebly, R. Talj, and A. Charara, “Coupled longitudinal/lateral
controllers for autonomous vehicles navigation, with experimental
validation,” Control Eng. Pract., vol. 88, no. May, pp. 79-96, 2019,
H. B. Pacejka, (2008). Vehicle System Dynamics : International
Journal of Vehicle Mechanics and Mobility. International Journal of
Vehicle Mechanics and Mobility, (August 2012), 37-41.

Y. F. Lian, Y. Zhao, L. L. Hu, and Y. T. Tian (2015). Cornering stiffness
and sideslip angle estimation based on simplified lateral dynamic
models for four-in-wheel-motor-driven electric vehicles with lateral
tire force information. Int.J Automot. Technol. 16, 669-683

G. Baffet, A. Charara, and D. Lechner, (2009). Estimation of vehicle
sideslip, tire force and wheel cornering stiffness. Control Engineering
Practice, 17(11), 1255-1264.

R. Rajamani, Vehicle dynamics and control. Springer Science and
Business Media, 2011

B. Song, Z. Wang, and L. Zou, ”"An improved PSO algorithm for
smooth path planning of mobile robots using continuous high-degree
Bezier curve,” Appl. Soft Comput., vol. 100, p. 106960, 2021

Y. Xie and W. Zhang, A novel tuning method for PID controller
based on improved PSO algorithm for unstable plants with time delay,”
Chinese Control Conf. CCC, vol. 2019-July, pp. 42704275, 2019
B. Zhang, C. Zong, G. Chen, and B. Zhang, “Electrical Vehicle Path
Tracking Based Model Predictive Control with a Laguerre Function
and Exponential Weight,” IEEE Access, vol. 7, pp. 17082-17097, 2019



	Introduction
	Vehicle Modeling
	Longitudinal Dynamics Modeling
	Lateral Dynamics Modeling

	Controller Design
	PSO-PID Control
	LPV-MPC Control

	Results and Discussion
	Conclusions
	References

