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Introduction

Sustainable development has received extensive attention in recent years owing to the wide awareness of saving non-renewable resources and protecting the environment.

As an important branch of sustainable industries, the remanufacturing industry aims to create new economic, social, and environmental values by appropriately managing end-of-life (EOL) products. Disassembly is an important process in remanufacturing industries, and it widely exists in many recovery industries. Many vehicle companies, such as BMW, have disassembled EOL vehicles to remanufacture high-value components such as engines, starter motors, and alternators for many years [START_REF] Thierry | Strategic issues in product recovery management[END_REF]. Some electronic manufacturers, such as Apple and Dell, have set up disassembly lines for remanufacturing the multiple EOL electric products [START_REF] Xu | The influence of big data system for used product management on manufacturing-remanufacturing operations[END_REF][START_REF] Ndubisi | Managing sustainability tensions in global supply chains: specific investments in closed-loop technology vs blood metals[END_REF].

Increasing demand for customized products results in various new products, and the scale of EOL products and their variants is rapidly expanding in the recycling market. Thus, the traditional single-product disassembly line is inappropriate and uneconomical to disassemble such increasing EOL product variants. In the latest review, Özceylan et al. (2019) point out that the researchers are expected to concentrate more on the consideration of multi-product to be disassembled in the future. Moreover, with the increasing variety of end-of-life products entering the recycling streams, [START_REF] Paksoy | Mixed model disassembly line balancing problem with fuzzy goals[END_REF] state that investigating multi-product disassembly lines can offer better insight into practical disassembly issues. In addition, [START_REF] Fang | Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations[END_REF] point out that multi-product line satisfies variant disassembly demand and reduces line building and maintaining costs. In the real application, Apple developed a disassembly line called Daisy to dismantle 9 iPhone variants and recycle high-quality components and metal materials in 2016 [START_REF] Ndubisi | Managing sustainability tensions in global supply chains: specific investments in closed-loop technology vs blood metals[END_REF]. These multiple EOL products may have identical components that can be disassembled by the same machine or workstation to save material resources and improve disassembly line performance. For example, the Engine Electronic Control Unit (ECU) is one of the most valuable electronic devices of EOL vehicles [START_REF] Cucchiella | Scrap automotive electronics: A mini-review of current management practices[END_REF]. In Figure 1, there are two types of ECUs (A and B). They have 4 identical parts, i.e., front plastic casing (1), left metal piece (2), right metal piece (3), rear metal casing (4), and different printed circuit boards (5 or 6). Because of the complicated and uncertain disassembly environments for EOL products and their variants, the designing of flexible disassembly lines that simultaneously consider multiple products, their identical parts and uncertainty during disassembly is a great challenge, although disassembly line balancing problems have been studied for two decades.

Approximately 96% of related studies in the literature concentrate on the singleproduct disassembly line balancing problem (DLBP) according to Özceylan et al. (2019). Multi-product DLBPs, also called mixed-model DLBP in most existing studies, have been investigated for the last 10 years. A mixed-model disassembly line means a disas- sembly line that can handle more than one type of EOL product [START_REF] Paksoy | Mixed model disassembly line balancing problem with fuzzy goals[END_REF]. Some of these studies examine deterministic multi-product DLBPs [START_REF] Ilgin | Disassembly line balancing using linear physical programming[END_REF][START_REF] Fang | Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations[END_REF]. Some works investigate multi-product DLBPs with uncertainty. Agrawal et al. ( 2008) study a stochastic mixed-model DLBP and sequencing problem, in which the uncertain task processing time follows a normal distribution, but disassembly scheme selection is ignored. Fang et al. (2020a) address a stochastic mixed-model DLBP with parallel robots in each workstation, in which only the interval of task processing time is given, and the disassembly scheme is predetermined. [START_REF] Liu | Distributionally robust and risk-averse optimisation for the stochastic multi-product disassembly line balancing problem with workforce assignment[END_REF] investigate a stochastic multi-product DLBP with limited distributional information of task processing time. Compared with our study, 1) They assume that one workstation can only dismantle one type of product, while one workstation can dismantle multiple products in our study. 2) They assume that the first two moments of task processing times are known, while in our study, the mean, standard deviation and upper bound of task processing times are known. 3) They formulate the problem by a distributionally robust model with a CVaR constraint, while we formulate the problem by a joint chance constraint. 4) In terms of solution method, they develop a cutting-plane method and an approximation method, while in our study, a lifted cut-and-solve method is proposed. In addition, these studies do not consider identical parts of EOL products, except the study with a deterministic environment [START_REF] Ilgin | Disassembly line balancing using linear physical programming[END_REF]. Pioneering works have advanced multi-product DLBP related research, but the characteristics of flexible multi-product disassembly lines, such as disassembly scheme selection, identical parts of EOL products and uncertainty during disassembly, have not been considered simultaneously.

The present study investigates a new flexible multi-product disassembly line balancing problem in which 1) disassembly schemes need to be selected, 2) a workstation and a disassembly scheme are capable of disassembling multiple EOL products, 3) identical parts of multiple products can be treated as identical tasks, and 4) only partial probability distribution information of processing times is known. This study focuses on proposing a novel approach to disassembly multiple EOL products, which aids oper-ation managers in decision-making and improving the performance of the disassembly process. For the problem, an integrated approach is designed, which is composed of an appropriate chance-constrained program, an approximated distribution-free model, efficient valid inequalities, and a lifted cut-and-solve method. The developed approach is tested on an illustrative example, 10 instances based on realistic products and 480 randomly generated instances. The experiment results show that the approach can solve large-scale instances with up to 20 products, 400 tasks, and 86 workstations. The results of the present study provide the following main contributions.

-A new flexible multi-product DLBP is investigated, in which disassembly scheme selection, identical parts of EOL products and uncertain processing time are considered simultaneously;

-An integrated approach according to the problem characteristics is designed to solve the studied problem. Notably, the experimental results show that valid inequalities save approximately 75% of computational time on average, and the average computational time of the lifted cut-and-solve method is only approximately 17.5% of the time needed by the commercial solver CPLEX version 12.9;

-The proposed approach can solve large-scale instances with up to 20 EOL products, 400 tasks, and 86 workstations.

The remainder of this paper is organized as follows. Section 2 provides a literature review. Section 3 describes the studied problem and proposes a new joint chanceconstrained program. Based on problem properties, the proposed model is approximately transformed into a distribution-free model and valid inequalities are developed in Section 4. An exact lifted cut-and-solve method is proposed in Section 5. Numerical experiments are conducted in Section 6 to evaluate the performances of the distribution-free model, the valid inequalities, and the lifted cut-and-solve method. Section 7 provides conclusion and future research directions.

Literature review

DLBP has been widely studied in the last two decades, and most existing works address the single-product DLBP [START_REF] Altekin | Profit-oriented disassembly-line balancing[END_REF][START_REF] Bentaha | A sample average approximation method for disassembly line balancing problem under uncertainty[END_REF][START_REF] Ren | An improved gravitational search algorithm for profit-oriented partial disassembly line balancing problem[END_REF][START_REF] Li | A branch, bound, and remember algorithm for the simple disassembly line balancing problem[END_REF][START_REF] Kucukkoc | Balancing of two-sided disassembly lines: Problem definition, MILP model and genetic algorithm approach[END_REF][START_REF] Edis | Constraint programming approaches to disassembly line balancing problem with sequencing decisions[END_REF]. Because this work studies the multiproduct DLBP, we focus on multi-product DLBP related studies in the literature.

First, the multi-product DLBP is classified into two categories, deterministic and uncertain. For deterministic multi-product DLBP, [START_REF] Ilgin | Disassembly line balancing using linear physical programming[END_REF] examine a multiobjective mixed-model DLBP in which the same parts of different EOL products are disassembled by so-called common tasks with processing times that may be different between EOL products. Their study assumes that the disassembly schemes of EOL products are predetermined. A mixed-integer linear programming model is proposed for the problem. Then a linear physical programming method is proposed to solve their problem. [START_REF] Fang | Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations[END_REF] investigate a robotic mixed-model DLBP with parallel robots in each workstation to simultaneously minimize four objectives, the cycle time, total energy consumption, peak workstation energy consumption and the number of robots used. Identical parts of multiple EOL products are not considered in their study. A mixed-integer linear program is proposed to formulate the studied problem, and a knowledge-leveraging evolutionary algorithm is designed to solve it. Moreover, they extend their study by considering energy resource constraints [START_REF] Fang | Evolutionary optimization using epsilon method for resource-constrained multi-robotic disassembly line balancing[END_REF]. A mixed-integer linear programming model is constructed for the problem, and an εconstraint method based NSGA-II algorithm is proposed to solve it.

For the uncertain multi-product DLBP, [START_REF] Altekin | Profit-oriented disassembly-line balancing[END_REF] study a stochastic multiobjective mixed-model U-shaped DLBP where the task processing time follows a normal distribution. The authors assume that the EOL products have no identical parts and that the disassembly schemes are predetermined. A non-linear stochastic programming model is formulated for the problem. A collaborative ant colony optimization algorithm is proposed to solve the problem. [START_REF] Paksoy | Mixed model disassembly line balancing problem with fuzzy goals[END_REF] investigate a multi-objective mixed-model DLBP with fuzzy objectives, in which EOL products have no identical parts. For the problem, a mixed-integer linear programming model is proposed and solved using the commercial solver LINGO 11.0. Two different fuzzy programming approaches, binary fuzzy goal programming and fuzzy multi-objective programming, are applied to address multiple objectives. Fang et al. (2020a) recently investigate a stochastic multi-objective mixed-model DLBP with bounded task processing time, in which products are disassembled by parallel robots in each workstation. However, the disassembly scheme selection and identical parts of EOL products are not considered in their study. A mixed-integer linear program is proposed for the problem, where the stochastic task processing times are represented by interval numbers. An evolutionary simulated annealing algorithm is developed to solve the problem. [START_REF] Liu | Distributionally robust and risk-averse optimisation for the stochastic multi-product disassembly line balancing problem with workforce assignment[END_REF] study a stochastic multi-product DLBP with workforce assignment. The uncertain task processing time is represented by partial information of the probability distribution, i.e., the mean and covariance matrix. Each workstation in their study can only handle one type of EOL product. A stochastic program with conditional value-at-risk constraints is developed for the problem. Valid inequalities are proposed to reduce the solution space, but their efficiency is not evaluated. An exact cutting-plane method is proposed to solve this problem. [START_REF] Yin | Mixed-integer programming model and hybrid driving algorithm for multi-product partial disassembly line balancing problem with multi-robot workstations[END_REF] recently study a multi-product partial DLBP with parallel robots in each workstation to minimize the cycle time, energy consumption, and improved hazardous index. In their study, the uncertain task processing times are described by interval numbers. But the disassembly schemes of EOL products are predetermined, and identical parts of EOL products are not considered. A mixed-integer programming model is established for the studied problem. Then, a multi-objective hybrid driving algorithm is proposed to solve the problem. Table 1 summarises the related studies on multi-product DLBPs and shows the differences between existing works and the present study. We can find that (1) the stochastic multi-product DLBP with partial distributed information is rarely studied, (2) the main characteristics of a flexible disassembly line are not simultaneously considered, and (3) most constructed models are solved using commercial solvers or metaheuristics, but few studies develop exact methods.

Problem description and formulation

This section states and formulates the flexible multi-product DLBP using a joint chance-constrained program.

Consider that a set of EOL products have to be disassembled. The disassembly of identical parts of these products should be accomplished using identical tasks. To depict the studied problem, we use the ECU example mentioned in the Introduction. In Figure 2, the two products (denoted by A and B) have two alternative disassembly schemes that are represented by different colors, red and blue for A, and black and green for B. The underlined parts 5 and 6 are printed circuit boards and are assumed to be hazardous. A disassembly task and a subassembly (disassembly state) are represented by and , respectively. I and N represent the sets of disassembly tasks and subassemblies, respectively. Specifically, N 1 and N 2 denote the initial subassemblies of A and B, and N F A and N F B represent the final states of A and B, respectively. T k i means that task i can be executed k times because it belongs to k products. For example, T 2 10 , and T 2 13 are identical tasks and maybe executed twice because of identical parts of A and B. Moreover, tasks 6, 7, 11, 12 with gray color are assumed to be hazardous because they handle hazardous parts 5 and 6. For the studied problem, the basic assumptions are summarized as follows: (1) EOL products may have identical parts, and the disassembly of these identical parts can be accomplished by identical tasks;
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(2) An EOL product can have several disassembly schemes that are known in advance, but only one scheme can be selected;

(3) During disassembly, the given task precedence relationships in a disassembly scheme must be respected;

(4) Task processing times are assumed to be mutually independent and uncertain, and only their limited probability distribution information is available, i.e., the mean, standard deviation and upper bound;

(5) A predetermined cycle time C must be respected with a given risk level α, i.e., the probability that the task processing times of all workstations exceed the cycle time is less than α;

(6) One workstation can disassemble several tasks of multiple EOL products, and workstations are independent and homogeneous.

(7) Some parts are assumed to be hazardous and need specific treatments with a supplementary cost (McGovern & Gupta, 2007a;[START_REF] Bentaha | Second order conic approximation for disassembly line design with joint probabilistic constraints[END_REF], and the hazardous tasks are independent of disassembly schemes.

The flexible multi-product DLBP consists of optimal selection of a disassembly scheme for each EOL product, determination of the workstations to be opened and assignment of tasks to opened workstations respecting task precedence relationships and cycle time within a given risk level. The objective is to minimize the total disassembly cost, including the open workstation cost and cost of handling hazardous tasks.

Before the problem formulation, the related notations are presented as follows:

Indices: i : index of disassembly tasks; j, j ′ : index of workstations; n : index of subassembly nodes;

Parameters: J : set of workstations; I : set of disassembly tasks; H : set of hazardous tasks and H ⊂ I; N 0 : set of initial subassembly nodes; N : set of subassembly nodes including initial subassembly nodes, N 0 ⊂ N ; P n : set of immediate predecessors of subassembly node n, where n ∈ N ; S n : set of immediate successors of subassembly node n, where n ∈ N ; t i : stochastic processing time of task i, where i ∈ I; k i : the maximum number of times that task i can be executed, where i ∈ I; C : the cycle time of all workstations; α : a given risk level (probability) that the task processing time exceeds the cycle time for all workstations;

C F : the cost for opening a workstation; C H : the cost for handing a hazardous task.

Decision variables:

x ij : non-negative integer variable, number of times of task i is assigned to workstation j, where i ∈ I, j ∈ J; y j : binary variable, equal to 1 if workstation j is open, 0 otherwise, where j ∈ J.

For the problem, a joint chance-constrained program P1 is formulated as follows:

P1: min C F j∈J y j + C H i∈H j∈J x ij (1) s.t.
i∈Sn j∈J

x ij = 1, ∀n ∈ N 0 (2) j∈J x ij ≤ k i , ∀i ∈ I (3) i∈Sn j∈J x ij = i∈Pn j∈J x ij , ∀n ∈ N \N 0 (4) i∈Sn j ′ j=1 x ij ≤ i∈Pn j ′ j=1 x ij , ∀n ∈ N \N 0 , ∀j ′ ∈ J (5) i∈I x ij ≤ i∈I k i y j , ∀j ∈ J (6) y j-1 ≥ y j , ∀j ∈ J\{1} (7) P r i∈I t i x ij ≤ C, ∀j ∈ J ≥ 1 -α (8) y j ∈ {0, 1}, ∀j ∈ J (9) x ij nonnegative integer, ∀i ∈ I, j ∈ J (10) 
Objective (1) minimizes the total cost, including the workstation opening cost and the extra cost for handling hazardous tasks. Constraints (2) mean that only one task is selected at the beginning of disassembly for each EOL product. Constraints (3) indicate that task i may be executed at most k i times. Constraints (4) ensure the flow conservation of each subassembly, i.e., equality of the executed times of preceding tasks and succeeding tasks of each subassembly. Naturally, constraints (2) and (4) can guarantee that only one disassembly scheme is selected for each EOL product. Constraints (5) respect the precedence relationships of tasks. Constraints (6) guarantee that a task may be assigned to a workstation only when the workstation is opened. Constraints (7) number the opened workstations from small to large and avoid empty workstations. Constraint (8) ensures the joint probability that the task processing time does not exceed the cycle time for all workstations is greater than or equal to 1-α. Constraints ( 9) -( 10) define the domains of decision variables.

The above-mentioned joint chance-constrained model P1 is stochastic and non-linear because of its stochastic task processing time t i , i ∈ I, and the joint chance constraint (8). To efficiently solve the studied problem, P1 is approximately transformed into a distribution-free model P2 in Section 4.

Distribution-free model and valid inequality

In this section, based on problem analysis, the joint chance-constrained programming model P1 is transformed into a distribution-free model P2 and valid inequalities are proposed to tighten its solution space.

Distribution-free model

To transform P1 into an approximated distribution-free model, the joint chance constraint (8) in P1 needs to be transformed into individual chance constraints based on the assumption that workstations are independent of each other and task processing times are mutually independent in Section 3. To this end, β j is introduced to represent the individual risk level for respecting the cycle time of workstation j, ∀j ∈ J, and the joint chance constraint ( 8) can be equivalently transformed to ( 11) and ( 12) as follows:

P r i∈I t i x ij ≤ C ≥ 1 -β j , ∀j ∈ J (11) j∈J (1 -β j ) = 1 -α (12) 
where 0 ≤ β j ≤ 1, ∀j ∈ J. Constraints (11) mean that the workload of workstation j respects the cycle time with at least a possibility of 1-β j . Constraint (12) establishes the relationship between β j and α. According to the commonly used method for determining the value of individual risk level [START_REF] Bentaha | Second order conic approximation for disassembly line design with joint probabilistic constraints[END_REF][START_REF] Zheng | A new distribution-free model for disassembly line balancing problem with stochastic task processing times[END_REF], which assumes equality of all individual risk levels, parameter β j is calculated by

β j = 1 -|J| √ 1 -α, ∀j ∈ J,
where |J| is the number of workstations.

With given information of the stochastic task processing time t i , the mean µ i = E[t i ], the standard deviation σ i and the upper bound µ i (1+b i ), where b i is the limited deviation ratio to the mean, and similar to [START_REF] Ng | Distribution-free vessel deployment for liner shipping[END_REF] and [START_REF] Zheng | A new distribution-free model for disassembly line balancing problem with stochastic task processing times[END_REF], the stochastic task processing time can be expressed as:

t i = µ i (1 + Z i ), ∀i ∈ I (13
) where Z i is the deviation ratio to the mean of the task processing time and is limited by b i , i.e., Z i ≤ b i .

Therefore, the individual chance constraints (11) are reformulated as:

P r i∈I µ i (1 + Z i )x ij ≤ C ≥ 1 -β j , ∀j ∈ J (14)
To construct the distribution-free model, constraints ( 14) are approximately transformed to the following constraints:

i∈I (µ i + ν i )x ij ≤ C, ∀j ∈ J (15)
where ν i is an auxiliary parameter that reflects the uncertainty of task processing time t i , which will be explained later.

Then, distribution-free model P2 is proposed as follows.

P2:

min C F j∈J y j + C H i∈H j∈J x ij s.t.
(2) -( 7), ( 9), ( 10), ( 15)

As long as the value of ν i is determined, P2 becomes a mixed-integer linear program that may be solved using a commercial solver, such as CPLEX, at least for small-sized instances. If the following proposition is true, ν i can be pre-determined.

Proposition 4.1. As long as any ν i satisfies the following equation

f (ν i ) := min λ i >0 e -λ i ν i /µ i 1 + E[Z 2 i ] b 2 i (e λ i b i -λ i b i -1) -β j = 0 (16)
then, any solution of P2 must satisfy the individual chance constraints ( 14).

Proof. See Appendix A.

The value of ν i can be obtained by solving equality (16). To determine ν i , Algorithm 1 is presented.

Algorithm 1 Calculation of the value of ν i Input: µ i , b i , σ 2 i , ν i = 0, λ i = 0.001 1: f value = f (ν i , λ i ) = e -λ i ν i /µ i 1 + E[Z 2 i ] b 2 i (e λ i b i -λ i b i -1) -β j ; 2: while f value > 0.001 do 3: if f ≤ 1 then 4: λ i = λ i + 0.001; 5: f value = f (ν i , λ i ); 6: else 7: ν i = ν i + 0.1; 8: λ i = 0.001; 9: f value = f (ν i , λ i ); 10:
end if 11: end while Output: The value of ν i

The basic idea of the algorithm is to determine a combination of (ν i , λ) that satisfies f (ν i , λ i ) = 0. Although P2 is a mixed-integer linear programming model once ν i is fixed, P2 is still NP-hard because the deterministic single-product DLBP is NP-hard (McGovern & Gupta, 2007b). Therefore, effective valid inequalities to improve P2 are proposed in the next section.

Improved distribution-free model

This section presents two valid inequalities to tighten the solution space of model P2.

Valid inequality 1

The first valid inequality attempts to limit the number of workstations to be opened. 

station num = 1, i = 1, T = C; 6: while (i ≤ |I p l |) do 7: if c i ≤ T then 8: T = T -c i , i = i + 1; 9:
else 10: 

station num = station num + 1, T = C;

Valid inequality 2

The second valid inequality determines the workstations to which disassembly tasks cannot be assigned due to their precedence relationships. The task precedence relationship implies that a task cannot be executed before its predecessors and after its successors. For simplicity, let P T l i and ST l i denote the sum of processing times of the predecessors and successors of task i in disassembly scheme l, respectively, where l ∈ L i and L i is the disassembly scheme set containing task i. Consequently, the minimum numbers of workstations for predecessors and successors of task i, n pi and n si may be determined by the following formulas: n pi = min l∈L i ⌈P T l i /C⌉ and n si = min

l∈L i ⌈ST l i /C⌉ ,
recall that C is the cycle time and ⌈x⌉ is the smallest integer greater than or equal to x. Without loss of generality, the second valid inequality can be analyzed via the case illustrated in Figure 3, in which tasks are numbered and represented by . The illustrated EOL product has two disassembly schemes that contain 11 tasks, and the corresponding processing times (c i = µ i + ν i ) are set as 8, 7, 8, 5, 4, 7, 6, 8, 5, 9, and 7 seconds. With the assumption in Section 3, only one scheme of a product can be selected. For the green scheme (l = 1), task 7 has predecessors {1, 2, 3} and successor {8, 9}, and we obtain P T 1 7 = c 1 + c 2 + c 3 = 23 seconds and ST 1 7 = c 8 + c 9 = 13 seconds. Similarly for the blue scheme (l = 2), we have P T 2 7 = c 4 + c 5 + c 6 = 16 seconds and ST 2 7 = c 10 + c 11 = 16 seconds. We suppose that the cycle time is 10 seconds, and we have J max = 6 according to Algorithm 1. Therefore, n p7 = min(⌈23/10⌉, ⌈16/10⌉) = 2 and n s7 = min(⌈13/10⌉, ⌈16/10⌉) = 2. Task 7 cannot be assigned before workstation n p7 = 2 and after workstation |J max | -n s7 + 1 = 5. Therefore, for model P2, we have x 71 = x 76 = 0 and the following proposition. V I2 :

x ij = 0, ∀i ∈ I, j < n pi , j > p∈P |J p | -n si + 1 ( 18 
)
is a valid inequality for P2.

Valid inequality 2 excludes the task-workstation assignments that are not in a feasible solution of P2. Specifically, task i ∈ I cannot be assigned before workstation n pi and after workstation

p∈P |J p | -n si + 1. Proof. See Appendix C.

Improved distribution-free model

The numerical experiments in Section 6 show that the model with VI1 and VI2 performs best. Therefore, an improved model of P2 is presented:

P3: min C F j∈J y j + C H i∈H j∈J x ij s.t.
(2) -( 7), ( 9), ( 10), ( 15), ( 17), ( 18)

Although the improved model P3 is tighter than P2, it is still time-consuming for large-scale instances. Therefore, an exact lifted cut-and-solve method is proposed in the next section to efficiently solve model P3.

Lifted cut-and-solve method

This section presents an exact improved cut-and-solve (CS) method (termed lifted CS). The CS method is first introduced by [START_REF] Climer | Cut-and-solve: An iterative search strategy for combinatorial optimization problems[END_REF] to solve the asymmetric traveling salesman problem. CS method is a particular branch and bound algorithm. Compared with the branch, bound and remember (BB&R) algorithm [START_REF] Sewell | A branch, bound, and remember algorithm for the simple assembly line balancing problem[END_REF], which is an extension of the branch and bound algorithm that remembers all the searched sub-problems and has a new dominance rule based on the memorized sub-problems, there are the following differences: 1) At each node, the BB&R considers all sub-problems, while the CS needs to consider only two sub-problems; 2) The BB&R memories the information related to all explored sub-problems, but the CS memories only the best solution and its objective value. Hence, the CS method can reduce the size of the search tree and memory required. The CS method has been successfully used to solve many combinatorial optimization problems, such as facility location [START_REF] Yang | A cut-and-solve based algorithm for the singlesource capacitated facility location problem[END_REF][START_REF] Gadegaard | An improved cut-and-solve algorithm for the single-source capacitated facility location problem[END_REF], and lane reservation [START_REF] Fang | An optimal algorithm for automated truck freight transportation via lane reservation strategy[END_REF][START_REF] Wu | Exact and heuristic algorithms for rapid and station arrival-time guaranteed bus transportation via lane reservation[END_REF]. In the following, the basic procedure of the CS method is first presented, and improvements are proposed to solve the studied problem.

The iterative procedure of the CS method is described as follows. At the (i -1)-th iteration, a P iercing Cut (P C i-1 ) is constructed based on the linear relaxed solution of a Dense P roblem (DP i-1 ). At the i-th iteration, P C i-1 cuts the solution space of DP i-1 into two sub-spaces that correspond to a Sparse P roblem (SP i ) and a new Dense P roblem (DP i ). SP i generally has a small solution space and may be exactly solved to yield a new feasible solution of the original problem. The current best upper bound (U B) may be updated. DP i often has a large solution space, and its relaxed problem is generally solved to obtain a lower bound (LB) of the original problem. DP 0 is the original problem. The process continues until the current LB is greater than or equal to the best U B. Then, the solution of the best U B is output as an optimal solution of the original problem.

The efficiency of the CS method primarily depends on the effectiveness of the P C, the quality of the LB and the speed for solving sparse problems. To enhance the performance of the CS method for solving model P3, the present work devises a new lifted CS method.

Particularly, 1) a constructive heuristic (Algorithm 3) is proposed to obtain an initial U B that may be an optimal solution of the original problem, while a traditional CS does not do it. 2) double PCs (P C 1 i-1 , P C 2 i-1 ) based on partially linear relaxation are proposed at each iteration to obtain a better LB, while in the traditional CS, only one P C is proposed at each iteration, and the solution space of SP may still be large and time-consuming. 3) SP is further divided into two sub-problems (SP 1 i , SP 2 i ) by a second P C for an efficient resolution, whereas SP is solved directly in the classical CS. The framework and search tree of the lifted CS method are outlined in Figures 4 and5, respectively.

The next sections present the heuristic for obtaining an initial UB, the double PCs and the formulations of sparse and dense problems. 

Iteration 1 DP0=P3 DP1 SP1 SP1 1 SP1 2 Iteration i SPi SPi 1 SPi 2 DPi . . . - - - - PC0 1 PC0 2 PCi-1 1 PCi-1 2 ≤ ≤ - - DPi-1 . . .

Figure 5:

The search tree of lifted cut-and-solve method

Heuristic to determine an initial UB

The main purpose of the proposed heuristic is to select a disassembly scheme with the minimum sum of task processing times for each EOL product, open workstations for product p one at a time, p = 1, ..., |P |, and assign the related tasks to workstations respecting task precedence relationships and cycle time constraints.

Note that I l p denotes the ordered task set in which the precedence relationships of tasks are respected for l ∈ L p , and L p is the disassembly scheme set of product p. Recall that c i = µ i + ν i denotes the processing time of task i, ∀i ∈ I. The proposed heuristic is summarised as follows. 

if c IP [i] ≤ T then 12: T = T -c IP [i] ;
13:

x IP [i]j = 1, i = i + 1; x ij ;

Output: An U B and its corresponding solution Algorithm 3 consists of two parts. Lines 1 to 8 select the disassembly scheme with the minimum sum of task processing times for each EOL product, and Lines 9 to 18 decide the workstations to be opened and assign the selected tasks to the opened workstations.

Double piercing cuts

Existing CS methods generally define one PC, and the corresponding SP may still be difficult to solve. The double PCs (P C 1 i-1 , P C 2 i-1 ) at the (i -1)-th iteration are designed based on an optimal solution of linear relaxation of DP i-1 in this study, denoted as ( x ij , y j ). Note that the objective function value is primarily determined by the number of workstations to be opened, i.e., j∈J y j . Because the cost of handling hazardous tasks is the same regardless of which disassembly scheme is selected. A better LB may be obtained with the partial relaxation of DP i-1 . Preliminary experiments show that task i has a larger probability of being assigned to workstation j in the optimal solution of P 3 when x ij has a large value. Therefore, we propose 1) a partial relaxation strategy for DP i-1 , 2) the first PC with the value of y j , 3) the second PC with the value of x ij .

At the (i -1)-th iteration, with an optimal solution of the relaxed DP i-1 , the first piercing cut, P C 1 i-1 , can be defined as follows.

y j ∈Ω 1 i-1 y j = 0 (19)
where Ω 1 i-1 = {y j | y j = 0, ∀j ∈ J}. Let I i-1 denote the set of tasks whose values of x ij are fractions. For any task i ∈ I i-1 , the combination of task i assigned to workstation j, i.e., (i, j) corresponding to the largest values of x ij is presented below:

Ψ i-1 = (i, j)|(i, j) = arg max i∈I i-1 ,j∈J { x ij } (20)
Consequently, the second piercing cut P C 2 i-1 can be defined as follows:

x ij ∈Ω 2 i-1 x ij ≤ l i-1 -1 (21)
where

Ω 2 i-1 = {x ij |(i, j) ∈ Ψ i-1
} and l i-1 is an integer that takes the value of

(i,j)∈Ψ i-1 ⌈ x ij ⌉.
The first piercing cut (P C 1 i-1 ) divide the current DP i-1 into two sub-problems DP i and SP i . The second piercing cut (P C 2 i-1 ) further divide SP i into two sub-problems SP 1 i and SP 2 i . The formulations of sparse and dense problems are presented below.

Sparse and dense problem formulations

According to the above defined double PCs, the formulations of the dense problem (DP i ) at the i-th iteration can be presented as follows.

DP i : min C F j∈J y j + C H i∈H j∈J x ij s.t.
(2) -( 7), ( 9), ( 10), ( 15), ( 17), (18)

y j ∈Ω 1 i-1 y j ≥ 1 (22)
Two sparse problems SP 1 i and SP 2 i are defined as follows:

SP 1 i : min C F j∈J y j + C H i∈H j∈J x ij s.t.
(2) -(7), ( 9), ( 10), ( 15), ( 17), (18)

y j ∈Ω 1 i-1 y j = 0 (19) x ij ∈Ω 2 i-1 x ij ≥ l i-1 (23) SP 2 i : min C F j∈J y j + C H i∈H j∈J x ij s.t.
(2) -( 7), ( 9), ( 10), ( 15), ( 17), (18)

y j ∈Ω 1 i-1 y j = 0 (19) x ij ∈Ω 2 i-1 x ij ≤ l i-1 -1 (21)
To better understand the proposed method, the ECU example mentioned in the Introduction is given below. In the example, there are 2 products and 14 tasks with processing times (in seconds) of {30, 35, 45, 35, 35, 20, 18, 35, 31, 38, 50, 20, 25, 25}. The costs of opening a workstation (C F ) and handling a hazardous task (C H ) are 3 and 2 dollars, respectively. There are 6 workstations available, and the cycle time C is 90 seconds. The detailed process of the lifted cut-and-solve method is depicted below in Figure 6. Step 1: Call heuristic to obtain a feasible solution

T9 1 T12 1 T1 1 T5 1 T3 1 T7 1 T10 2 T13 2
workstation 1 workstation 2 workstation 3 workstation 4

Cost=16 dollars, open 4 workstations (y1=y2=y3=y4=1)

Step 2: Relax decision variables xij, call cplex to solve relaxation model (DP0)

T9 1 T12 1 T1 1 T5 1 T10 2 T13 2
workstation 1 workstation 2 workstation 3

Cost=13 dollars, open 3 workstations (Note: y1=y2=y3=1,x31=0.4,x32=0.6,x71=0.4,x72=0.6) T3 1 T7 1 T3 1 T7 1

Step 3: Formulate the first piercing cut (PC1): y4+y5=0; the second piercing cut (PC2): x32+x72≤1;

Step 4: Add two constraints (based on piercing cuts) y4+y5=0, x32+x72≥ 2; call cplex to solve the model (SP1 1 )

Note: No feasible solution

Step 5: Add two constraints (based on piercing cuts) y4+y5=0, x32+x72≤ 1; call cplex to solve the model (SP1 2 )

T6 1 T7 1 T2 1 T3 1 T10 2 workstation 1 workstation 2 workstation 3 T10 2 T13 2 T13 2
Cost=13 dollars, open 3 workstations (Note: the obtained cost equals the cost of relaxed model, which means the optimal solution is found)

Call Algorithm 3 to get an upper bound (UB) UB=16 LB=13

Step 1

Step 2

Step 3

Step 4

Step 5

√

Figure 6: The detailed process of the algorithm for solving the instance Next, to evaluate the performance of the proposed lifted CS method, numerical experiments are performed, and the results are presented in Section 6.

Numerical experiments

Numerical experiments are performed on an illustrative example, 10 instances based on realistic products and 480 randomly generated instances to evaluate the performance of the proposed integrated approach. The program is coded using the C++ programming language in Microsoft Visual Studio 2019. All numerical experiments are performed on a personal computer with Core I5 and 3.20 GHz CPU with 12GB RAM. All models in Sections 6.1, 6.3, 6.4 and model P3 in Section 6.5 are solved using the CPLEX solver version 12.9. The CPLEX code and instance data are available on https : //www.researchgate.net/publication/359266654 Instance data and cplex code.

An illustrative example

In this part, the example of the engine ECU mentioned in the Introduction is investigated to test our models and methods. The disassembly schemes of the two ECUs are shown in Figure 2, which contain 14 tasks and 12 subassemblies. The mean task processing times (in seconds) are {30, 35, 45, 35, 35, 20, 18, 35, 31, 38, 50, 20, 25, 25}. The upper bound, standard deviation and risk level are 0.1, 0.01 and 5%, respectively. The costs of opening a workstation and handling a hazardous task are 3 and 2 dollars, respectively. Assume that there are 6 workstations available, and the cycle time C is 90 seconds.

Figure 7 reports the results of the illustrative instance. In the optimal solution, 3 workstations are opened, and the total cost is 13 dollars. For product A, the selected disassembly scheme contains tasks {1, 5, 9, 12}, and the selected disassembly scheme of product B contains tasks {3, 7, 10, 13}, corresponding to the blue and black lines in Figure 2, respectively. 

Instance data and parameter setting

This paper is the first to study the multi-product DLBP with identical parts and stochastic task times. Since there is no standard data set that can be directly used, we generate 10 instances based on 7 realistic EOL products from previous literature (see Table 2) by emerging different EOL products to generate the multi-product instances, which is similar to [START_REF] Fang | Evolutionary optimization using epsilon method for resource-constrained multi-robotic disassembly line balancing[END_REF] and [START_REF] Liu | Distributionally robust and risk-averse optimisation for the stochastic multi-product disassembly line balancing problem with workforce assignment[END_REF]. The basic information of these multi-product instances is summarized in Table 3, where each instance scale is primarily determined by three parameters, i.e., the number of products |P |, the number of tasks |I|, and the number of available workstations |J|. Moreover, to thoroughly evaluate the performances of the integrated method, 96 problem sets, each with 5 instances, for a total of 480 instances are randomly generated. For each EOL product, 20% of tasks are set as identical tasks, and 20% are set as hazardous tasks. The mean task processing times (µ i ) (in seconds) are randomly generated from [10, 50] consistent with [START_REF] He | A multi-objective distribution-free model and method for stochastic disassembly line balancing problem[END_REF]. Similar to [START_REF] Ng | Distribution-free vessel deployment for liner shipping[END_REF], the upper bound and standard deviation of the task processing time (b i , E[Z 2 i ]) are set as (0.1, 0.01), (0.2, 0.05) and (0.3, 0.10) to represent different uncertainty levels. As in [START_REF] Bentaha | Second order conic approximation for disassembly line design with joint probabilistic constraints[END_REF] and [START_REF] He | A multi-objective distribution-free model and method for stochastic disassembly line balancing problem[END_REF], the unit fixed cost of a workstation C F and the unit cost for handling hazardous task C H are set as 3 and 2 dollars, respectively. The risk level α and the cycle time C are set as 5% and 90 seconds, respectively. The input parameters are summarized in Table 4. 

Evaluation of the distribution-free model

The approximated distribution-free model P 2 (solved via CPLEX) is evaluated by comparison with the corresponding deterministic model (DM)(solved via CPLEX) and a sampling average approximation (SAA) method (see Appendix D for its presentation). The task processing times of the DM are set as the means of the stochastic ones in P2. The task processing times in SAA are assumed to follow normal distributions, in which their means and standard deviations are identical to these values in P2. The number of samples is set to 20 based on preliminary experiments. Numerical experiments are first performed on the realistic EOL products instances.

Tables 5-7 report the computational results of realistic EOL product instances under 3 uncertainty levels, where Obj DM , T DM , Obj SAA , T SAA and Obj P 2 , T P 2 denote the average objective values and computational times of DM, SAA and P2, respectively. Specially, the computational time unit is seconds denoted by s. We can observe that the average objective value of the DM is the smallest, which takes the value of 29.5, and the objectives of SAA and P2 are almost the same. On the other hand, the SAA requires more computational time than P2 and DM. Moreover, with the increase of the uncertainty, the objective values and the computational times also increase. Therefore, in general, more workstations are needed to deal with the uncertain task times.

To have an observation of the performances on different methods, experiments are further conducted on random instance sets with up to 6 products, 120 tasks and 30 workstations. Computational results are illustrated in no uncertain factors. Based on Tables E1-E3, the average gaps of the objective values between DM and P2 can be calculated by the formula (Obj P 2 -Obj DM )/Obj DM ×100%.

The gaps under the 3 uncertainty levels are 7.72%, 16.44% and 24.83%, respectively, which indicate that the gaps increase with levels of uncertainty. Sub-figures (b) shows that the curves of the computational times of P2 and DM almost overlap, and the computational time of SAA increases sharply. The average computational times of the SAA are 474, 313 and 258 times of those needed by P2 under 3 different uncertainty levels. These results indicate that DM and P2 perform better than SAA in terms of computational time. Moreover, we utilize the Wilcoxon signed-rank test, a flexible non-parametric sta- (b) Computational time tistical hypothesis test [START_REF] García | A study on the use of nonparametric tests for analyzing the evolutionary algorithms behaviour: a case study on the cec2005 special session on real parameter optimization[END_REF], to compare the performance of the three methods. The principle of the Wilcoxon signed-rank test is to calculate the differences between the two compared methods and analyze these differences to test if they are statistically significantly different. We prefer the Wilcoxon test because it does not assume the normality of the samples [START_REF] Chica | Multiobjective constructive heuristics for the 1/3 variant of the time and space assembly line balancing problem: ACO and random greedy search[END_REF] and it has already been demonstrated to help analyze the behavior of evolutionary algorithms, and it has been well adopted in (b) Computational time the disassembly line balancing problems [START_REF] Fang | Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations[END_REF][START_REF] Li | A fast branch, bound and remember algorithm for disassembly line balancing problem[END_REF].

The null-hypothesis H 0 is that the compared two methods have equal performance. The significance level considered in all the tests to be presented is p = 0.05. A p-value is smaller than 0.05, denoting a rejection of the null-hypothesis, i.e., the compared two methods perform significantly differently. The results of the Wilcoxon test are illustrated in Table 8. We can obtain that DM outperforms P2 and SAA statistically because the pvalues are smaller than 0.0001. In comparison, P2 and SAA are not statistically different in terms of the objective values according to the p-value of 0.3047. 

Evaluation of valid inequalities

To evaluate the proposed valid inequalities, numerical experiments are performed on realistic EOL products instances and randomly generated instance sets with up to 10 products, 200 tasks and 46 workstations.

Table 9 reports the computational results of realistic EOL product instances, in which columns 2 and 3 represent the instance parameters and objective values. Columns 3-6 represent the computational times of model P2, P2 with valid inequality 1 (P2+VI1), P2 with valid inequality 2 (P2+VI2) and P2 with valid inequalities 1 and 2 (P2+VI1+VI2), which are denoted by T P 2 , T P 2+V I1 , T P 2+V I2 , and T P 2+V I1+V I2 , respectively. From Table 9, we can see that the average computational times of these 4 models are 2.56, 1.75, 1.74, and 1.46 seconds, respectively. It indicates that the proposed two inequalities are valid. Moreover, the results of random instances are reported in Figure 11 and Table E4 in Appendix E. Specifically, the curves in Figure 11 represent the computational time ratios that are calculated via the formula R i = T i /T P 2 × 100%, where i = P 2, P 2 + V I1, P 2 + V I2 and P 2 + V T I1 + V I2. The results show that each proposed inequality can save computational time, and P2+VI1+VI2 (P3) is the most efficient. Specifically, the average computational time ratios of P2+VI1, P2+V2 and P2+VI1+VI2 (P3) are only 33.93%, 33.80% and 25.17%, respectively. Therefore, the performance of model P3, i.e., P2+VI1+VI2 (P3), is verified. 

Evaluation of the lifted CS method

The proposed lifted CS method is first tested on realistic EOL product instances, and then tested on 20 small-scale instance sets with up to 10 products, 200 tasks and 46 workstations and 20 large-scale instance sets with up to 20 products, 400 tasks and 86 workstations. The proposed method is compared with P3 solved by CPLEX (version 12.9) and a classic CS method.

Table 10 reports the results on instances based on realistic products. Columns 3-5 illustrate the computational times of the CPLEX, the classic CS method and the lifted CS method, which are represented by T P 3 , T CS and T LCS , respectively. From Table 10, we can observe that all instances are solved within a short time, and the average computational times of CPLEX, classic CS method, and lifted CS method are 1.46, 0.71, and 0.55 seconds, respectively. It implies that the lifted CS method can efficiently solve the instances and can reduce 62.3% of the computational time required by CPLEX on average. The experimental results on random instances are illustrated in Figure 12, and subfigures (a) and (b) report the results of small-scale and large-scale instances, respectively. Sub-figure (a) shows that the computational times of all methods are less than 40 seconds and the curves of T CS and T LCS are below the T P 3 curve in most cases, except for instances 1-4. Table E5 in Appendix E indicates that the average computational times of CPLEX, classical CS method and lifted CS method are 7.79, 3.64 and 1.84 seconds, respectively. This result signifies that the lifted CS method globally outperforms CPLEX and the classical CS method. For large-scale instances, sub-figure (b) shows that the computational times of all 3 methods increase with instance set size, but the computational time of the lifted CS method increases much slowly than the classical CS method and CPLEX. Notably, CPLEX and the classical CS method cannot propose feasible solutions for instance sets 37-40 and instance sets 39-40 within 50,000 seconds.

The computational times of these instances are presented by dotted lines. Table E6 in Appendix E shows that the average computational times of CPLEX, the classical CS and the lifted CS methods are 6356.84, 1657.09 and 673.23 seconds, respectively. For instance sets 1-36, the lifted CS method needs only 17.53% and 40.65% of the computational times required by the CPLEX and the classic CS method, respectively. In summary, the proposed lifted CS method is more efficient than CPLEX and the classical CS method, particularly for large-scale instances.

Conclusions and future research work

This paper examines a new flexible multi-product DLBP by considering identical parts of multiple products and uncertain task processing times, in which only partial information of their probability distribution is known. To efficiently solve the problem, an integrated approach is devised in which 1) the problem is formulated using an appropriate joint chance-constrained model, 2) a distribution-free model is proposed based on problem analysis, 3) efficient valid inequalities are developed to reduce the solution space of the distribution-free model, and 4) a new lifted CS method is provided to solve the problem. Numerical experiments demonstrate the high performance of the integrated approach.

In this study, we consider uncertain task processing times in the disassembly line balancing problem but ignore that uncertain hazardous risk of a component may coexist in reality. We focus on the line balancing problem, while the sequences of tasks that may result in operation direction changes are ignored. Consequently, the cost of operation direction changes are not considered. Due to the NP-hardness of the problem, the proposed exact method is still time-consuming for large-size instances. Therefore, one future research direction is to consider uncertain task times and the hazardous risk of a component. Another possible research direction is integrating the sequence of disassembly tasks into the line balancing problem. In addition, developing metaheuristics or problem-specific heuristics may be another promising direction. Besides, the constraint programming (CP) model, as one of the powerful paradigms for solving combinatorial optimization problems, may be applied to solve the studied problem. In the table, ′ -′ means that the optimal solution has not been found within 50000 seconds. Hence, the average value is obtained from sets 21 to 36.
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 1 Figure 1: The example of two Toyota Vitz ECUs (Environmental Affairs Division, 2017)
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 2 Figure 2: Disassembly schemes of products A and B

  p∈P |J p |. Therefore, the number of opened workstations in an optimal solution of P2 does not exceed p∈P |J p |. Proof. See Appendix B. To determine p∈P |J p |, Algorithm 2 is proposed below. L p (indexed by l), I p l and T are the disassembly scheme set of product p, the task set of disassembly scheme l in L p and the available time of a workstation, respectively. |J l p | denotes the number of open workstations of disassembly scheme l of product p. Let c i = µ i +ν i denote the processing time of task i, ∀i ∈ I. Recall that µ i is the mean task processing time and ν i reflects the uncertainty of task processing time. Algorithm 2 Upper bound determination for opened workstations p∈P |J p | Input: Disassembly schemes of EOL products (L p , ∀p ∈ P ), task processing times (c i , ∀i ∈ I), cycle time C 1: p = 1; 2: while (p ≤ |P |) do 3: l = 1, |J p | = 0; 4: while (l ≤ |L p |) do 5:

Figure 3 :

 3 Figure 3: An illustration of valid inequality 2

Call-Figure 4 :

 4 Figure 4: The framework of lifted cut-and-solve method

Algorithm 3

 3 The heuristic to obtain an upper bound Input: c i , ∀i ∈ I l p ; I l p , ∀l ∈ L p , p ∈ P 1: Set p = 1; 2: while p ≤ |P | do 3: for l = 1 → |L p | do Set j = 0, T = 0, IP = p∈P I * p ; 10: while (i ≤ |IP |) do 11:
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 7 Figure 7: The result of the illustrative example

  Figures 8-10, in which sub-figures (a) and (b) report the objective values and computational times of DM, SAA and P2, respectively. The detailed results are presented in Tables E1-E3 in Appendix E. Figures 8-10 show that the curves of the objective values of P2 and SAA almost overlap, and they are superior to the values of DM. This result indicates that the solution qualities of P2 and SAA are nearly identical, and DM proposes a better solution because there are
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 9 Figure 9: Comparison results with (bi = 0.2, E[Z 2 i ] = 0.05)
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 10 Figure 10: Comparison results with (bi = 0.3, E[Z 2 i ] = 0.1)
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 11 Figure 11: Comparison of valid inequalities

  Figure 12: Comparison with P3 and the classic CS method

Table 1 :

 1 Comparisons of related studies on multi-product DLBP

	Existing work	Problem setting	Modelling	Valid	Solution
		Deterministic Stochastic Fuzzy DSS MIP ODM	method	inequality	method
	Ilgin et al. (2017)		MIPM		LPP+Solver
	Fang et al. (2019)		MIPM		Metaheuristic 1
	Fang et al. (2020b)		MIPM		Metaheuristic 2
	Paksoy et al. (2013)		MIPM	BFGP+FMOP+Solver
	Altekin et al. (2008)	ND	SPM		Metaheuristic 3
	Fang et al. (2020a)	Interval	MIPM		Metaheuristic 4
	Liu et al. (2022)	MCM	DRM-CVaR		Exact method 1
	Yin et al. (2022)	Interval	MIPM		Metaheuristic 5
	This work	MDU	DFM-C		Exact method 2
	ND: Normal distribution of task processing time; MCM: the mean and covariance matrix of task processing time; MDU: the mean, standard deviation
	and upper bound of task processing time; DSS: Disassembly schemes selection; ODM: One workstation can disassemble multiple products; MIP: Multiple
	products have identical parts; MIPM: Mixed integer linear programming model; SPM: Stochastic programming model; DFM-CVaR: Distributionally robust
	model with CVaR constraint; DFM-C: Distribution-free model with chance constraint; BFGP: Binary fuzzy goal programming; FMOP: Fuzzy multi-
	objective programming; LPP: Linear physical programming; Metaheuristic 1 : Knowledge-leveraging evolutionary algorithm; Metaheuristic 2 : ε-constraint
	method based NSGA-II algorithm; Metaheuristic 3 : Collaborative ant colony optimization algorithm; Metaheuristic 4 : Simulated annealing; Metaheuristic 5 :
	Multi-objective hybrid driving algorithm; Exact method 1 : Cutting-plane method; Exact method 2 : Lifted cut-and-solve method.	

  To propose the valid inequality, we relax the assumption that one workstation can execute several tasks of different EOL products in model P2 to form its relaxed model P2

′ , in which one workstation executes the tasks of only one EOL product. P (indexed by p) denotes the set of EOL products and |J p | denotes the number of workstations required for product p in a feasible solution of P2 ′ . p∈P |J p | denotes the total number of workstations of the feasible solution of P2 ′ . The following proposition is formulated. Proposition 4.2. Let j∈J y j be the number of opened workstations in a feasible solution of P2, then the following inequality:

V I1 : j∈J y j ≤ p∈P |J p | (

17

)

is a valid inequality for P2.

Valid inequality 1 shows that a feasible solution of model P2 exists in which the number of open workstations is not greater than

  Algorithm 2 contains three loops: Lines 6 to 12 calculate the number of workstations of disassembly scheme l of product p in a feasible solution of P2

	11:	end if
	12:	end while
	13: 14: 15: 16:	|J l p | = station num ; if |J l p | > |J p | then |J p | = |J l p |; end if
	17:	l = l + 1;
	18:	end while
	19:	p = p + 1;
	20: end while
	Output: The value of

p∈P |J p | ′ , Lines 4 to 18 determine |J p | = max l∈Lp |J l p | , and Lines 2 to 20 obtain p∈P |J p |.

Table 2 :

 2 Information of realistic EOL products

	Number	EOL product	Reference
	1	Hand light	Tang et al. (2002)
	2	Compass	Bentaha et al. (2012)
	3	Ballpoint pen	Lambert (1999)
	4	Sample product	Koc et al. (2009)
	5	Piston and connecting rod Bentaha et al. (2013)
	6	Radio set	Lambert (1999)
	7	Automatic pencil	Ma et al. (2011)

Table 3 :

 3 Information of the multi-product instances based on realistic EOL products

	Number Products |P | |I| |J|
	1	1,2	2	20	10
	2	1,3	2	30	10
	3	1,2,3	3	40	15
	4	2,3,4	3	53	15
	5	1,2,3,4	4	63	20
	6	2,3,4,5	4	78	20
	7	1,2,3,4,5	5	88	25
	8	2,3,4,5,6	5	108 25
	9	1,2,3,4,5,6	6	118 30
	10	2,3,4,5,6,7	6	145 30

Table 4 :

 4 Input parameters of random instances

	Parameters

Table 5 :

 5 The results of realistic EOL product instances with (bi = 0.1, E[Z 2 i ] = 0.01) DM (s) Obj SAA T SAA (s) Obj P 2 T P 2 (s)

			DM			SAA	P2	
	Instance Obj DM T 1 (P, I, J) (2,20,10) 14.2	0.10	14.2	0.20	14.8	0.09
	2	(2,30,10)	19.0	0.19	20.8	1.05	21.4	0.16
	3	(3,40,15)	22.8	0.35	24.0	2.29	24.0	0.36
	4	(3,53,15)	22.8	0.43	25.6	17.60	25.6	0.66
	5	(4,63,20)	29.6	2.35	30.2	18.78	31.4	2.69
	6	(4,78,20)	27.8	1.14	29.6	305.60	29.6	1.21
	7	(5,88,25)	34.0	2.83	37.0	2411.27	37.0	2.68
	8	(5,108,25)	36.4	4.47	37.4	2782.47	39.4	11.99
	9	(6,118,30)	43.8	4.99	45.8	3626.41	47.4	8.40
	10	(6,145,30)	44.8	8.72	50.8	4837.71	54.0	17.50
	Average	-	29.5	2.56	31.5	1400.35	32.5	4.58

Table 6 :

 6 The results of realistic EOL product instances with (bi = 0.2, E[Z 2 i ] = 0.05) DM (s) Obj SAA T SAA (s) Obj P 2 T P 2 (s)

			DM			SAA	P2	
	Instance Obj DM T 1 (P, I, J) (2,20,10) 14.2	0.10	16.0	0.30	15.4	0.10
	2	(2,30,10)	19.0	0.19	23.2	2.41	22.6	0.22
	3	(3,40,15)	22.8	0.35	25.8	12.77	26.4	0.41
	4	(3,53,15)	22.8	0.43	28.2	153.42	27.6	0.88
	5	(4,63,20)	29.6	2.35	32.6	6824.53	33.2	0.87
	6	(4,78,20)	27.8	1.14	30.8	119.36	32.6	11.04
	7	(5,88,25)	34.0	2.83	38.5	2333.57	40.0	3.33
	8	(5,108,25)	36.4	4.47	43.0	5148.70	41.2	11.56
	9	(6,118,30)	43.8	4.99	49.8	6283.63	49.8	32.48
	10	(6,145,30)	44.8	8.72	51.7	7218.16	54.0	15.26
	Average	-	29.5	2.56	34.0	2209.69	34.3	7.61

Table 7 :

 7 The results of realistic EOL product instances with (bi = 0.3, E[Z 2 i ] = 0.1) DM (s) Obj SAA T SAA (s) Obj P 2 T P 2 (s)

											DM		SAA						P2			
		Instance Obj DM T 1 (P, I, J) (2,20,10) 14.2	0.10	16.6			0.33	17.2			0.11
			2		(2,30,10)	19.0			0.19	24.4			3.19	24.4			0.16
			3		(3,40,15)	22.8			0.35	27.0		34.31	28.2			0.63
			4		(3,53,15)	22.8			0.43	28.6		115.71	28.6			0.73
			5		(4,63,20)	29.6			2.35	36.2	1528.23	36.2			2.91
			6		(4,78,20)	27.8			1.14	33.2		233.04	33.2			2.79
			7		(5,88,25)	34.0			2.83	42.0	4097.66	42.4		134.70
			8		(5,108,25)	36.4			4.47	44.0	5444.01	43.6		68.44
			9		(6,118,30)	43.8			4.99	54.0	7874.54	53.3		15.27
			10		(6,145,30)	44.8			8.72	56.7	9235.37	55.5		100.11
		Average		-			29.5			2.56	36.3	2856.64	36.3		32.58
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Table 8 :

 8 Results of Wilcoxon signed-rank test for three different methods

		Negative difference Positive difference Equal difference	
		(A > B)		(A < B)		(A = B)		p-value
	Compared pairs	Number	Ranks	Number Ranks Number Ranks	
	A = DM, B = P 2	0	0	34	595	2	-	< 0.0001
	A = DM, B = SAA	0	0	35	630	1	-	< 0.0001
	A = P 2, B = SAA	5	31	4	31	27	-	0.3047
	DM: deterministic model solved via CPLEX; P2: P2 model solved via CPLEX; SAA: sampling average
	approximation method						

Table 9 :

 9 Computational results of valid inequalities on realistic EOL product instances

	Instance	(P, I, J)	Obj T P 2 (s) T P 2+V I1 (s) T P 2+V I2 (s) T P 2+V I1+V I2 (s)
	1	(2,20,10) 14.2	0.10	0.09	0.07	0.05
	2	(2,30,10) 19.0	0.19	0.10	0.10	0.11
	3	(3,40,15) 22.8	0.35	0.24	0.17	0.19
	4	(3,53,15) 22.8	0.43	0.31	0.22	0.22
	5	(4,63,20) 29.6	2.35	1.58	1.98	1.09
	6	(4,78,20) 27.8	1.14	0.75	0.53	0.50
	7	(5,88,25) 34.0	2.83	1.55	1.51	1.45
	8	(5,108,25) 36.4	4.47	2.40	1.68	1.66
	9	(6,118,30) 43.8	4.99	3.83	4.51	3.45
	10	(6,145,30) 44.8	8.72	6.66	6.70	5.92
	Average	-	29.5	2.56	1.75	1.74	1.46

Table 10 :

 10 Computational results of lifted cut-and-solve method on realistic EOL product instances

	Instance set	(P, I, J)	Obj T P 3 (s) T CS (s) T LCS (s)
	1	(2, 20, 10) 14.2	0.05	0.11	0.06
	2	(2, 30, 10) 19.0	0.11	0.16	0.11
	3	(3, 40, 15) 22.8	0.19	0.27	0.10
	4	(3, 53, 15) 22.8	0.22	0.30	0.19
	5	(4, 63, 20) 29.6	1.09	1.08	0.81
	6	(4, 78, 20) 27.8	0.50	0.38	0.35
	7	(5, 88, 25) 34.0	1.45	0.89	0.50
	8	(5, 108, 25) 36.4	1.66	0.70	0.69
	9	(6, 118, 30) 43.8	3.45	1.07	0.87
	10	(6, 145, 30) 44.8	5.92	2.19	1.78
	Average	-	29.5	1.46	0.71	0.55

Table E .

 E 2: The results of random instances with (bi = 0.2, E[Z 2 i ] = 0.05) DM (s) Obj SAA T SAA (s) Obj P 2 T P 2 (s) DM (s) Obj SAA T SAA (s) Obj P 2 T P 2 (s) Table E.4: Computational results of valid inequalities on random instances Instance (P, I, J) Obj T P 2 (s) T P 2+V I1 (s) T P 2+V I2 (s) T P 2+V I1+V I2 (s)Table E.5: Computational results for random instances with |P | = 2 -10, |I| = 20 -200 and |J| = 6 -46 Table E.6: Computational results for random instances with |P | = 12 -20, |I| = 120 -400 and |J| = 46 -86

			DM			SAA	P2	
	Instance Obj DM T 13 (P, I, J) (2,20,6) 17.8	0.08	19.6	0.14	20.2	0.12
	14	(2,20,10)	17.8	0.10	20.2	0.25	20.2	0.12
	15	(2,40,10)	14.8	0.13	17.2	0.41	17.2	0.17
	16	(2,40,14)	14.8	0.10	17.2	0.42	17.2	0.13
	17	(4,40,14)	29.6	0.41	35.6	28.69	35.6	0.40
	18 19 20 21 22 23 24 Average Instance set (4,40,18) (4,80,18) (4,80,22) (6,60,22) (6,60,26) (6,120,26) (6,120,30) -Table E.3: The results of random instances with (bi = 0.3, E[Z 2 29.6 0.50 35.0 35.44 29.0 0.92 33.8 261.50 (P, I, J) Obj T P 3 (s) T CS (s) T LCS (s) 35.0 33.8 29.0 0.92 33.8 348.12 33.8 45.6 2.02 52.8 4641.25 52.2 45.6 2.57 52.2 6717.90 52.2 42.0 3.58 49.2 8182.52 49.2 42.0 5.93 49.2 9236.56 49.2 29.8 1.44 34.7 2454.44 34.7 i ] = 0.10) DM SAA P2 Instance (P, I, J) Obj DM T 25 (2,20,6) 17.8 0.08 20.8 0.18 20.8 26 (2,20,10) 17.8 0.10 21.4 0.24 20.8 27 (2,40,10) 14.8 0.13 17.8 0.34 19.0 28 (2,40,14) 14.8 0.10 19.0 0.34 19.0 29 (4,40,14) 29.6 0.41 38.6 99.29 38.6 1 (2,20,6) 17.8 0.14 0.12 0.07 Instance set (P, I, J) Obj T P 3 (s) T CS (s) T LCS (s) 21 (12, 120, 46) 88.2 171.59 18.67 18.64 2 (2,20,10) 17.8 0.15 0.11 0.11 1 (2, 20, 6) 17.8 0.07 0.15 0.21 22 (12, 120, 50) 88.2 139.83 21.05 18.73 3 (2,40,10) 14.8 0.23 0.14 0.12 2 (2, 20, 10) 17.8 0.10 0.16 0.17 23 (12, 240, 50) 82.0 93.57 40.08 7.38 4 (2,40,14) 14.8 0.20 0.12 0.12 3 (2, 40, 10) 14.8 0.11 0.15 0.11 24 (12, 240, 54) 82.0 113.40 38.71 6.22 5 (4,40,14) 29.6 0.61 0.47 0.41 4 (2, 40, 14) 14.8 0.11 0.13 0.11 25 (14, 140, 54) 104.2 92.32 52.35 16.88 6 (4,40,18) 29.6 0.90 0.43 0.42 5 (4, 40, 14) 29.6 0.35 0.26 0.31 26 (14, 140, 58) 104.2 71.42 45.21 13.40 7 (4,80,18) 29.0 1.93 1.05 1.03 6 (4, 40, 18) 29.6 0.35 0.26 0.15 27 (14, 280, 58) 95.0 653.86 165.50 13.64 8 (4,80,22) 29.0 1.98 0.95 1.01 7 (4, 80, 18) 30 0.91 0.37 0.35 28 (14, 280, 62) 95.0 823.88 357.88 13.98 9 (6,60,22) 45.6 4.19 2.71 3.03 8 (4, 80, 22) 30 0.89 0.37 0.44 29 (16, 160, 62) 114.2 563.37 460.63 278.67 10 (6,60,26) 45.6 11.29 2.98 3.25 9 (6, 60, 22) 45.6 2.61 0.66 0.62 30 (16, 160, 66) 114.2 1505.53 722.52 114.81 11 (6,120,26) 42.0 14.81 7.25 6.02 10 (6, 60, 26) 45.6 2.54 0.72 0.89 31 (16, 320, 66) 109.2 3617.95 1299.23 435.62 12 (6,120,30) 42.0 18.21 5.16 6.02 11 (6, 120, 26) 42.0 3.56 1.13 1.96 32 (16, 320, 70) 109.2 3564.20 1875.17 504.30 13 (8,80,30) 62.2 36.12 9.02 7.00 12 (6, 120, 30) 42.0 3.42 1.09 1.03 33 (18, 180, 70) 132.0 3966.16 2315.86 221.47 14 (8,80,34) 62.2 19.50 8.49 9.54 13 (8, 80, 30) 62.2 5.03 3.29 1.54 34 (18, 180, 74) 132.0 5081.14 3153.85 511.58 15 (8,160,34) 56.2 50.19 19.96 15.58 14 (8, 80, 34) 62.2 5.20 3.32 4.62 35 (18, 360, 74) 132.2 18852.11 8524.85 4841.85 16 (8,160,38) 56.2 84.51 16.87 15.95 15 (8, 160, 34) 56.2 12.51 4.16 2.45 36 (18, 360, 78) 132.2 22182.63 7421.85 3754.55 17 (10,100,38) 75.2 36.45 24.45 33.33 16 (8, 160, 38) 56.2 12.73 3.42 2.42 37 (20, 200, 78) 156.2 -26523.11 5527.60 18 (10,100,42) 75.2 44.33 20.29 33.36 17 (10, 100, 38) 75.2 18.60 5.09 4.90 38 (20, 200, 82) 156.2 -30087.80 9526.51 19 (10,200,42) 68.4 139.75 54.01 38.09 18 (10, 100, 42) 75.2 17.81 5.11 3.24 39 (20, 400, 82) 156.0 --10854.60 20 (10,200,46) 68.4 153.52 35.41 34.83 19 (10, 200, 42) 68.4 36.14 21.44 5.78 40 (20, 400, 86) 156.0 --21672.45 Average -44.1 30.95 10.50 10.46 Average -44.18 7.79 3.64 1.84 20 (10, 200, 46) 68.4 32.69 21.49 5.56 Average -107.1 6356.84 1657.09 673.23	0.49 1.34 1.16 7.85 12.35 15.87 53.99 7.83 0.11 0.15 0.16 0.14 1.52 0.07 0.10 0.11 0.11 0.35 0.35 0.91 0.89 2.61 2.54 3.56 3.42 5.03 5.20 12.51 12.73 18.60 17.81 36.14 32.69 7.79
	30	(4,40,18)	29.6	0.50	37.4	59.58	38.6	1.23
	31	(4,80,18)	29.0	0.92	35.6	409.25	36.8	4.56
	32	(4,80,22)	29.0	0.92	36.8	863.36	36.8	9.12
	33	(6,60,22)	45.6	2.02	55.2	4875.63	55.2	11.79
	34	(6,60,26)	45.6	2.57	56.4	9333.72	56.4	18.40
	35	(6,120,26)	42.0	3.58	52.2	12005.20	52.2	20.30
	36	(6,120,30)	42.0	5.93	51.6	12984.24	52.2	90.04
	Average	-	29.8	1.44	36.9	3385.95	37.2	13.13
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Appendix A.

Before demonstrating Proposition 4.1, Lemmas 1 and 2 are introduced (refer to [START_REF] Ng | Distribution-free vessel deployment for liner shipping[END_REF]).

Firstly, Lemma 1 is introduced below to describe the relationship between Z i and b i .

Lemma 1. For any λ > 0, the following inequality must hold:

Proof. By the definition of the mean task processing time, we have

. Thus, it follows that E[Z i ] = 0. Then, e λb i can be expressed as 1

(according to the Taylor series expansion). Because

Next, Lemma 2 is proposed to depict the relationship between E[Z 2 i ] and σ 2 i .

Lemma 2. With the given standard deviation of task processing time σ i , we have

Proof. Let D[t i ] denote the variance of processing time of task i, we have:

Accordingly, the following equation

Now, we provide the proof of Proposition 4.1.

Proof. Given a feasible solution x ij obtained by (15), i.e., i∈I

is conservatively approximated by µ i Z i > ν i , so the following inequality must hold:

Obviously, we have P r (µ i Z i > ν i ) = P r e λZ i > e λν i /µ i . Then, using the Markov inequality

a , where X ≥ 0, and a > 0. Let X = e λZ i and a = e λν i /µ i . With Lemma 1, we have

Since A6 is valid for any λ > 0, the following inequality must holds:

Recall constraints ( 14) that can be rewritten as:

We can always find a λ such that the right sides of (A7) and (A8) to be equal, we can obtain

So any ν i satisfies A9, then any solution x ij of P2 must satisfy the individual chance constraint (14). Appendix D.

The model with SAA method mainly refers to [START_REF] Luedtke | A sample approximation approach for optimization with probabilistic constraints[END_REF] and [START_REF] Qiu | Chance-constrained transmission switching with guaranteed wind power utilization[END_REF]. Before the approximated model, some new parameters are introduced below:

Ω : the set of randomly generated Monte Carlo samples; η : index of each sample; z ηj : binary variable, equal to 1 if the workload of workstation j ∈ J exceeds the cycle time under sample η ∈ Ω, 0 otherwise ; M : a big positive number;

The approximated model using SAA method is proposed in the following:

(2) -( 7), ( 9), ( 10)

Constraints D.1 guarantee that the workloads of all workstations will not exceed the cycle time under all samples by adding a binary variable z ηj . Constraint D.2 restricts the sum value of z ηj , which is determined by the scale of Monte Carlo samples |Ω| and the probability α, where ⌊x⌋ means the largest integer that does not exceed x. Constraints D.3 define the domains of decision variables.

Appendix E.

The detailed computational results for random instances with three uncertainty levels (b i , E[Z 2 i ]) in Section 6.3 are reported in Tables E1-E3. The detailed computational results of valid inequality evaluation in Section 6.4 are reported in Table E4. The detailed computational results for evaluating the lifted cut-and-solve method in Section 6.5 are reported in Tables E5-E6.