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A finite element model is proposed permitting prediction of elastic wave bandgaps of periodic composite microplates incorporating flexoelectric effect. In this model, we applied curvaturebased flexoelectricity and Mindlin plate theories and derived a finite element formulation that has been implemented for bandgap analysis. The finite element model utilizes a three-node triangle element with 30 degrees of freedom satisfying Mindlin kinematics assumptions. It is based on a non-conforming interpolation scheme which provides nodal C 1 continuity and ensures compatibility with curvature-based flexoelectricity. The approach accounts for microstructure effects and, owing to the triangular element topology, can be used to assist the design of microplates with complex microstructures. Validation of the approach is performed through comparison with both analytical and numerical models, in which the effect of flexoelectricity on the bandgap is studied based on cases demonstrating size dependence. In the end, an application of the proposed model is provided where bandgap properties of an anti-tetrachiral metastructure are investigated.

Introduction

Bandgap materials [START_REF] Hsu | Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates[END_REF] refer to a class of natural or artificially designed materials that present unusual characteristics in attenuating wave propagation as function of frequency. Among such materials, an important number is composed of composite microplates with periodic  Corresponding author. E-mail: yu.cong@univ-evry.fr (Y. Cong)  Corresponding author. E-mail: gust@cqu.edu.cn (S. T. Gu) 2 microstructures [START_REF] Kushwaha | Acoustic band structure of periodic elastic composites[END_REF][START_REF] Sigalas | Elastic waves in plates with periodically placed inclusions[J][END_REF] and has been increasingly investigated for advanced applications such as vibration controllers, energy harvesters, micro scale waveguides etc. [START_REF] Baravelli | Internally resonating lattices for bandgap generation and lowfrequency vibration control[END_REF][START_REF] Yoon | Elastic wave localization and harvesting using double defect modes of a phononic crystal[END_REF][START_REF] Laude | Guided waves along a domain wall of a water wave crystal[C]//Workshop on Seismic Metamaterials: From Optics to Geophysics[END_REF].

On small scales, the design of composite microstructures increasingly involves integration of functional materials with electromechanical coupling, for which flexoelectricity, a two-way coupling [START_REF] Yudin | Fundamentals of flexoelectricity in solids[END_REF][START_REF] Zubko | Flexoelectric effect in solids[END_REF][START_REF] Nguyen | Nanoscale flexoelectricity[END_REF] between polarization and strain gradient [START_REF] Lam | Experiments and theory in strain gradient elasticity[J][END_REF], represents a general phenomenon in all dielectrics. Despite its weak influence on behaviors of bulk materials, flexoelectricity may significantly impact the behaviors of micro-to nano-scale structures for which the sizedependent effect of strain gradient becomes non negligible. In the area of finite element modelling, integration of flexoelectricity usually requires implementation of higher-order theories of elasticity since second-order derivatives of displacement is involved. Successful implementations using this strategy include the application of strain gradient theories (e.g., [START_REF] Yvonnet | A numerical framework for modeling flexoelectricity and Maxwell stress in soft dielectrics at finite strains[END_REF][START_REF] Deng | Mixed finite elements for flexoelectric solids[J][END_REF][START_REF] Deng | A three-dimensional mixed finite element for flexoelectricity[END_REF][START_REF] Liu | Effect of flexoelectricity on band structures of one-dimensional phononic crystals[END_REF][START_REF] Yang | On band structures of layered phononic crystals with flexoelectricity[END_REF]) and couple stress theories (e.g., [START_REF] Qu | A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I-reconsideration of curvature-based flexoelectricity theory[END_REF][START_REF] Zhang | Band gaps in a periodic electro-elastic composite beam structure incorporating microstructure and flexoelectric effects[END_REF]). In this regard, Yvonnet et al. [START_REF] Yvonnet | A numerical framework for modeling flexoelectricity and Maxwell stress in soft dielectrics at finite strains[END_REF] investigated a 2-D numerical framework for characterizing the flexoelectric effect in soft dielectrics with finite strains by using Argyris triangular element [START_REF] Argyris | The TUBA family of plate elements for the matrix displacement method[END_REF] that provides C 1 element continuity. Deng et al. developed 2-D [START_REF] Deng | Mixed finite elements for flexoelectric solids[J][END_REF] and 3-D [START_REF] Deng | A three-dimensional mixed finite element for flexoelectricity[END_REF] mixed finite elements that offer an alternative solution to satisfy the continuity requirement. In the area of layered structures, modelling of flexoelectric effect has been investigated based on strain gradient elasticity [START_REF] Liu | Effect of flexoelectricity on band structures of one-dimensional phononic crystals[END_REF][START_REF] Yang | On band structures of layered phononic crystals with flexoelectricity[END_REF]. However, difficulties subsist in determining strain gradient-based flexoelectric constants. To remedy this issue and provide a flexoelectric model with minimal additional parameters, many efforts have been made recently to elaborate couple stress based flexoelectric models. These efforts have led to the theory of curvature-based flexoelectricity [START_REF] Qu | A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I-reconsideration of curvature-based flexoelectricity theory[END_REF][START_REF] Zhang | Band gaps in a periodic electro-elastic composite beam structure incorporating microstructure and flexoelectric effects[END_REF], yet only analytical models have been proposed with limited applications involving simple problem geometries.

Therefore, a finite element implementation of the curvature-based flexoelectricity theory would be of particular interest, permitting simulations of microstructures with complex geometries on the small scale.

In this paper, we base our work on a three-node triangle Mindlin plate finite element with 27

DOFs. Recently investigated by Xia et al. [START_REF] Xia | A non-classical couple stress based Mindlin plate finite element framework for tuning band gaps of periodic composite micro plates[END_REF], this element utilizes non-conforming interpolation and provides nodal C 1 continuity that ensures compatibility with curvature-based flexoelectricity.

An additional set of three DOFs for the discretization of electric potential field requires to be implemented to meet the requirements of flexoelectric constitutive relations. Upon implementation of the finite element model, we will explore the influence of flexoelectric effects on bandgap properties of composite microplates, which has not been investigated in the literature.

Contents of this paper is organized as follows: we briefly review in Section 2, the curvaturebased flexoelectricity theory and describe the basic equations in terms of Mindlin kinematics assumptions and electric potential relations. Based on these relations, weak form of the equilibrium permitting calculation of eigenfrequencies will be given. In Section 3, we describe finite element discretization and introduce the relations regarding the transfer matrix method.

Bloch boundary conditions allowing for unit cell bandgap calculations will be given. In Section 4, we present four numerical examples to validate the proposed model: first, we validate the model by comparing with analytical calculations and confirm the presence of flexoelectric effects on composite microplates. We then study its dependence on the microstructure and upon validation of the model, an application is provided where bandgap properties of an antitetrachiral metastructure are investigated. Finally, the work presented in the paper will be summarized in Section 5.

Theoretical framework

Curvature-based flexoelectricity theory

Let us consider an electro-elastic centrosymmetric cubic material continuum that occupying a volume Ω and exhibiting microstructure and flexoelectric effects. 
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where σ and m are the Cauchy stress and couple stress tensors, respectively. D refers to the electric displacement vector, and dV the elementary volume. Then, the strain tensor ε, curvature tensor χ, and electric field intensity vector E are, respectively, expressed as follows:
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where u is the displacement vector, φ is the electric potential, and θ is the rotation vector defined by

1 2   θ u . (3) 
The corresponding constitutive equations with small deformation for centrosymmetric cubic materials can be written as : , , : ,
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where C e are the fourth-order elastic stiffness tensors, f is the third-order flexoelectric coefficient tensor, and e is the second-order dielectric tensor. The matrices C e , f and e are given in Appendix A.

The kinetic energy for the volume Ω can be given by
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where ρ is the mass density. Furthermore, the overhead "•" and "••" represent, respectively, the first-and second-time derivatives.

Basic equations

In this part, we focus on the basic kinematics equations for a Mindlin-type microplate continuum with uniform thickness h, as shown in Fig. 1. A three-dimensional Cartesian coordinate system (x, y, z) is employed to describe the plate geometry, with its thickness direction along the z-axis and the middle plane (z = 0) lying on the x-y plane. 

where w(x, y, t) is the deflection of the middle plane. x(x, y, t) and y(x, y, t) are the rotation components of the middle plane shown in Fig. 1 
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where βx(x, y, t) and βy(x, y, t) denote shear angles around x-and y-axis, respectively.

Substituting Eq. ( 6) into Eqs. ( 2) and (3) yields

ˆ,   ε S ε (8a) ˆ.   χ S χ (8b) 
The electric potential φ in microplate can be assumed by [START_REF] Zhang | Band gaps in a periodic electro-elastic composite beam structure incorporating microstructure and flexoelectric effects[END_REF][START_REF] Zhang | Magnetically induced electric potential in first-order composite beams incorporating couple stress and its flexoelectric effects[J][END_REF] ( , , , ) ( , , ) x y z t z x y t

   , (9) 
where φ' is the first-order electric potential.

From Eqs. ( 2) and ( 9), the electric field intensity vector E is expressed as
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)
Note that Sε, , Sχ, , SE and in Eqs. (8a, b) and [START_REF] Lam | Experiments and theory in strain gradient elasticity[J][END_REF] are listed in Appendix B.

Weak form

According to variational principle [START_REF] Zhang | Band gaps in a periodic electro-elastic composite beam structure incorporating microstructure and flexoelectric effects[END_REF][START_REF] Zhang | Magnetically induced electric potential in first-order composite beams incorporating couple stress and its flexoelectric effects[J][END_REF], based on Eqs. ( 1), ( 4), ( 5), (8a, b) and [START_REF] Lam | Experiments and theory in strain gradient elasticity[J][END_REF], the weak form of the current microplate can be summarized as follows:
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where S is the projected area of the corresponding microplate, dS is the area element, ,),( ,,),( ,,)} x y w x y t x y t x y t    u is the transformed displacement vector of the Mindlin plate, and is also provided in Appendix B. Besides, the generalized constitutive matrices C , f , e are as follows:
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where C m is the elastic stiffness matrix in Mindlin plate theory, and it is given in Appendix A.

Considering the time-harmonic displacements, Eq. ( 11) can be written as

  T T T T 2 T ˆˆˆˆˆ( ) d d 0 S S S S                ε Cε χ f E E fχ eE u ρ u + (13)
where ω is angular frequency. Eq. ( 13) will be used to obtain the eigenfrequencies.

Finite element discretization

Implementation of triangular microplate

Meshing a microplate over the projected area S with three-node triangular elements as shown in Fig. 2, where Гd and Гf are, respectively, displacement (also called essential) boundary conditions and force (also called natural) boundary conditions, Li(i = 1, 2, 3) refers to area coordinates. 
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where the shape functions Ni, N s i and N t i are listed in Appendix C. Furthermore, the element nodal displacement vector can be expressed as 
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Substituting Eq. ( 15 

For electric field, the first-order electrical potential φ' is approximated by

3 1 e i i i N        ,
where the element nodal electrical potential vector is

  T 1 2 3 , , e         φ
, and the shape functions

N e
i are listed in Appendix C. The static electric field vector can be obtained as follows:
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)
Note that Bε, Bχ, BE are shown in Appendix C.

Substituting Eqs. ( 16) and ( 17) into Eq. ( 13), the element dynamic matrix equations can be written as 
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where the components matrices M11, K11, K12, K21, and K22 are given in Appendix C.

Bloch-periodic boundary conditions

Based on Bloch's theorem, the displacement field of elastic wave propagation can be written in a harmonic function as

, ( 19 
)
where k is the wavevector, r is the coordinate vector of the unit cell, uk(r) is a periodic function consistent with the periodicity of the structure. To implement the Bloch boundary conditions, it is convenient to divide the unit cell boundary nodal variables into nine subsets by distinguishing the edges and corners. As shown in Fig. 3, we note therefore:  Q q q q q q q q q q with respect to the independent DOF vector T ˆ{ , , , }

I L B BL  Q q q q q
. Therefore, the Bloch boundary conditions applied to the periodic unit cell can be expressed as:

 Q PQ , (22) 
where the transfer matrix P that defines the periodic conditions is given as: . Assembling the entire system and using Eq. ( 22), Eq. ( 18) can be further expressed as
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This is the final form of the unit cell governing equation of free vibration with the account for Bloch boundary conditions. For a given wave vector k, the corresponding eigen-frequencies ω can be obtained by performing modal analysis based on Eq. ( 23). The real-valued wave vector k that is not in the range of ω will be identified as bandgaps.

Numerical results

Flexoelectric effect describes the coupling between non-uniform deformation and the induced electrical responses. It is a common phenomenon in all dielectric materials, however, its observation is most obvious in centrosymmetric dielectric materials [START_REF] Yudin | Fundamentals of flexoelectricity in solids[END_REF][START_REF] Zubko | Flexoelectric effect in solids[END_REF][START_REF] Nguyen | Nanoscale flexoelectricity[END_REF]. In this section, we consider centrosymmetric cubic materials in the O class of crystals and investigate their bandgap properties. The material composition of the unit cell is distinguished between Phases I and II, based on PbS and epoxy, respectively, whose properties are given in Table 1.  20 mesh perfectly agrees with the PWE result to the third decimal, suggesting that the 20  20 mesh refinement is sufficient for obtaining converged solution. 

Size effect of the flexoelectric model in bandgap analysis

In this section, we the unit cell microstructure of Section 4. To make meaningful comparison that confronts bandgap predictions (Fig. 7) with dynamic response simulations, we prescribe a harmonic excitation to the composite microplate and compare the dynamic responses by considering both the flexoelectric and classical elasticity models. Specifically, we consider a problem configuration with h = 0.2 μm, which has shown significant size effect as reported in Fig. 7(a). We then apply an excitation signal with ω=67 

Effect of volume fraction on bandgaps

In Section 4.2, we investigated the size dependence of flexoelectric effect in bandgap calculations and proposed a dynamic response simulation in time domain to confirm the effectiveness of our approach. In this section, we continue with the same unit cell microstructure and further study the influence on the bandgap behaviors by the volume fraction of the inclusion.

We recall the dimension of the unit cell given by L  L, with L = 20h. Since the inclusion Consequently, results depicted in Fig. 10 (a) and (b) can be used to assist the design of the biphase microstructure, leading to tunable bandgap behaviors with the account for size-dependent flexoelectric effects.

Bandgap of an anti-chiral metastructure with flexoelectric effects

In the previous examples, we confirmed the accuracy of the proposed numerical model via comparison with PWE solutions. The cases we investigated only involve basic square geometries due to the limitations of the PWE method, which requires building shape functions specific to each model and is therefore ineffective in treating complex geometries. To illustrate the versatility and capacity of the proposed numerical model in dealing with complex microstructures, we investigate in this example bandgap properties of an anti-tetrachiral metastructure ( [START_REF] Qi | Bandgap and wave attenuation mechanisms of innovative reentrant and anti-chiral hybrid auxetic metastructure[END_REF][START_REF] Wu | Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review[END_REF]). As shown in Fig. 11(a), the anti-tetrachiral unit cell is composed of circular nodes connected by straight ligaments that are tangent to them. The circular nodes are of radius r and the ligaments are of length a. The structure wall thickness is d with depth h.

The bi-phase material consists of PbS for Phase I and Epoxy for Phase II, whose properties are given in Table 1. The unit cell geometry parameters are defined with respect to h as: 2a = 20h, As shown in Figs. 12(a-c), three mesh densities containing 1140, 1592 and 3248 elements, respectively, have been considered to evaluate the mesh convergence properties of the proposed model. The obtained band diagrams are reported in Fig. 12(d-f), where we can observe good convergence of the band structure with respect to mesh refinement. Taking the case with h = 0.2 μm as an example, the second bandgap frequency range obtained with the three cases are coarse, medium and fine mesh refinements, respectively. We observe therefore stabilized result that begins with the medium mesh. Besides, the shape of the band frequency curves is equivalent for the three cases, suggesting negligible mesh dependence. Hence, the test cases lead to confirmed stability and mesh convergence of the proposed model. In the following, the fine mesh configuration is adopted to study the property of size dependence due to flexoelectric effects.

Fig. 12 The three mesh refinements, with fine mesh (a), medium mesh (b), and coarse mesh (c). The bandgap diagrams calculated using the fine mesh (d), medium mesh (e) and coarse mesh (f).

Based on the fine mesh configuration which presents confirmed mesh convergence, we investigate the flexoelectric effect via the induced size dependence on bandgap properties.

Therefore, we prescribe two groups of tests with different problem sizes. The first group consists of cases with thickness ranging from 0.2 μm to 0.9 μm, and the second group consists of significantly larger problems, with the thickness ranging from 20 μm to 90 μm. For both situations, we compare the size of the first bandgap by considering models with and without flexoelectric effects, and we report the results in Fig. 13. 

Summary

In this work, a high-order finite element model is proposed to predict elastic wave bandgaps of composite microplates involving flexoelectric effects. A three-node triangle plate element with 30 DOFs is implemented to accommodate the formulation of curvature-based flexoelectric theory, and we applied Bloch's theorem for the bandgap calculation based on the composite's periodic unit cell. In terms of numerical implementation of the flexoelectricity theory, our model has been validated via comparison with analytical PWE method and its application on an antitetrachiral metastructure has proved its adaptability on problems involving complex geometries.

Then, regarding the physical interpretation of the simulations, our investigations revealed that the size-dependent flexoelectric effect cannot be neglected for problems of submicron level, whereas it does not present significance on structures larger than the micrometer level. Future extensions of the work should include investigation of flexoelectric effects on soft dielectric materials, and integration of other size-dependences such as surface effects etc. [START_REF] Deng | Flexoelectricity in soft materials and biological membranes[J][END_REF][START_REF] Chen | Effects of strain stiffening and electrostriction on tunable elastic waves in compressible dielectric elastomer laminates[END_REF][START_REF] Wu | Tuning elastic waves in soft phononic crystal cylinders via large deformation and electromechanical coupling[END_REF][START_REF] Wu | On free vibration of piezoelectric nanospheres with surface effect[END_REF][START_REF] Wu | Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates[END_REF][START_REF] Wang | A finite element model for the bending and vibration of nanoscale plates with surface effect[END_REF][START_REF] Liang | Effects of surface and flexoelectricity on a piezoelectric nanobeam[END_REF]. 
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where k11 and k22 are in-plane shear correction parameters, and they are both 5/6.

Flexoelectric coefficient matrix
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Appendix B

The expressions of , , , : 
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where the corresponding strain-displacement matrixes Bε, Bχ and BE are expressed as: 
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with the shape function matrix N and N e : 

Appendix D

The motion balance equations of the proposed curvature-based flexoelectricity Mindlin microplate are as follows: 
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Fig. 1

 1 Fig.1 Geometry of the Mindlin-type microplate in Cartesian coordinates Based on the classical geometry assumptions of Mindlin plate, the displacement field of the microplate can be described as ([21], Gao and Zhang 2016): ( , , , ) ( , , ), ( , , , ) ( , , ), ( , , , ) ( , , ),

Fig. 2 A

 2 Fig.2 A microplate discretized by a 3-noded plate triangle with 30 DOFs A three-node plate triangle with 30 DOFs shown in Fig.2 is implemented to solve the flexoelectric problem that is the coupling between polarization and strain gradients. For displacement field, the components of are approximated by3

  ) into Eqs. (B.2) and (B.4), respectively, the generalized strain and curvature vectors are expressed by

Fig. 3

 3 Fig.3 (a) Periodic 2D material, and (b) nine sets of the nodal variable [23] in the referenced unit cell (surrounded by a red border) Nodal variables on the right and top boundaries qR and qT are related to those on the left and bottom boundaries qL and qB, respectively. Therefore,

Fig. 4

 4 Fig. 4 (a) The geometry of the unit cell structure (b) Representation of the irreducible first Brillouin zone in the reciprocal space Based on this unit cell, the results of the proposed flexoelectric model using two mesh densities depicted in Fig.5 are considered to compare with predictions by plane wave expansion method (PWE) involving flexoelectric effect. Equations implemented in this example for PWE calculations are given in Appendix D. Plane wave expansion of order 25 is used to ensure the accuracy of the result. The obtained band diagrams are plotted in Fig. 6.

Fig. 5

 5 Fig. 5 Two mesh refinements based on triangular elements: (a) 10  10, (b) 20  20 From Fig. 6, it is observed that the result of the proposed flexoelectric model approaches the PWE result with increased mesh refinement, as expected. Bandgap computed using the 20

Fig. 6

 6 Fig. 6 Compared to PWE, the band structures obtained by the proposed model with (a) meshing density of 10 10 (b) meshing density of 20 20

  1 and investigate the size dependence of bandgap properties using the flexoelectric model. Therefore, we perform a series of bandgap calculations based on a range of problem sizes for which size effects will gradually emerge. The calculations are carried out using both the proposed flexoelectric model and classical elasticity model. Results from the two models are expected to diverge with the emergence of size effects since only behaviors of flexoelectricity are size-dependent. The problem size we have considered varies first within submicron range with the unit cell thickness h = 0.2 ~ 0.9 μm, then with h = 20 ~ 90 μm. The frequency range of the first bandgap is plotted as function of h, for both the flexoelectric and classical elasticity models, in Fig.7.

Fig. 7

 7 Fig. 7 Bandgap frequency ranges corresponding to different plate thickness: (a) the range of thickness h = 0.2 ~ 0.9 μm (b) the range of thickness h = 20 ~ 90 μm Significant difference can be noticed on the bandgap frequency range calculated with the flexoelectric and classical elasticity models according to Fig.7(a), especially on small problem sizes with h approaching 0.2 μm. Distinct bandgaps can be observed at h = 0.2 μm, with the frequency ranges [63.66 MHz, 70.43 MHz], and [54.12 MHz, 61.73 MHz], obtained by flexoelectric and classical elasticity models, respectively. This difference can be explained by the fact that only the effect of flexoelectricity is size-dependent. Therefore, size effect which is most significant on sub-micron problems has been accounted for only by the flexoelectric model. For the same reason, with larger problem sizes, the two models gradually converge with h approaching 0.9 μm. Significance of size effects becomes negligible with h going beyond the micron meter level, thus in Fig.7(b) which depicts the cases with h = 20 ~ 90 μm, the flexoelectric and classical elasticity models completely agree with each other.

Fig. 8 A

 8 Fig.8 A spatial periodic composite microplate structure composed of n unit cells To study the effectiveness of the bandgap calculation, we further perform dynamic response analysis in time domain using Newmark implicit integration based on a real scale composite microplate structure. The structure is composed of n unit cells periodically arranged along x axis, as shown in Fig. (8). Application of Newmark integration allows calculating the dynamic response of the structure following an input excitation prescribed as function of time. For reasons of convenience, we consider n=3 and set point O as the coordinate origin (i.e., x=0, y=0). A harmonic excitation signal F=F0sin(ωt) is prescribed at the point (x, y) = (0, -L/2), where F0=1x10 -7 N. Other boundary conditions involve fixed constraints at the points (x, y) = (3L, 0) and (x, y) = (3L, -L). Measurement of the dynamic response is performed at the point (x, y) = (3L, -L/2).

Fig. 9

 9 Fig.9 Dynamic response of proposed model and classical model in Time Domain: (a) thickness h = 0.2 μm and the frequency of harmonic excitation signal ω=67 MHz; (b) thickness h = 20 μm and the frequency of harmonic excitation signal ω=550 kHz;

  Fig.7(b) does not demonstrate visible size effect. We then prescribe on the microplate an input excitation of frequency ω=550 kHz, which belongs to the bandgap of both the flexoelectric and classical elasticity models. This times, we observed concordant dynamic responses, which both attenuate with time. This observation complies with the theoretical prediction, since input waves within the bandgap get attenuated during propagation and, since the problem size does not involve microstructure effect, the flexoelectric and classical theory models present equivalent dynamic behaviors.

(

  Phase I) is defined by variable volume with the volume fraction denoted by VI = c 2 /L 2 , we prescribe a series of bandgap calculations by considering VI that evolves on the range VI = 0.05 ~ 0.5. Additionally, we perform two groups of tests by considering distinct problem sizes with the unit cell thickness h = 0.2 μm and 20 μm, respectively. Therefore, significant size-dependent flexoelectric effect can be expected on the submicron h = 0.2 μm case.

Fig. 10

 10 Fig. 10 The bandgaps corresponding to different volume fraction V1:(a) h = 0.2 μm (b) h = 20 μm

  d = 0.5h and r = 2.5h. Bandgap calculation is performed by considering the boundary of the irreducible first Brillouin zone (Fig. 11(b)), indicated by the path Г-X-M-N-M and defined in the reciprocal space of the unit cell.

Fig. 11 (

 11 Fig. 11 (a) The unit cell of the anti-tetrachiral metastructure ([30]) (b) Irreducible first Brillouin zone in the reciprocal space.

[

  48.75 MHz, 130.70 MHz], [47.62 MHz, 127.62 MHz] and [46.28 MHz, 124.83 MHz], for the

Fig. 13

 13 Fig. 13 First bandgap frequency range as function of the plate thickness: (a) cases in the thickness range h = 0.2 ~ 0.9 μm, (b) cases in the thickness range h = 20 ~ 90 μm.

  bj = yj  yk, cj = xk  xj, Li refers to area coordinates shown in Fig.2, with i, j, k are cyclic permutation indices.

  are different integrals of electric displacement along the thickness direction of plate, and

Table 1

 1 Material parameters of PbS and epoxy ([START_REF] Lam | Experiments and theory in strain gradient elasticity[J][END_REF][START_REF] Park | Bernoulli-Euler beam model based on a modified couple stress theory[END_REF][START_REF] Anderson | Theory of dislocations[END_REF][START_REF] Nag | Empirical formula for the dielectric constant of cubic semiconductors[END_REF][START_REF] Qu | A microstructure-dependent anisotropic magneto-electroelastic Mindlin plate model based on an extended modified couple stress theory[END_REF])

		Material	PbS	Epoxy
		3 (kg / m )	7600	1180
		11 c (GPa)	127	4.889
		12 c (GPa)	29.8	2.408
		44 c (GPa)	24.8	1.241
	11 ò	9 2	2	

Appendix C

The components of mass matrix and stiffness matrix: