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ABSTRACT  

A finite element model is proposed permitting prediction of elastic wave bandgaps of periodic 

composite microplates incorporating flexoelectric effect. In this model, we applied curvature-

based flexoelectricity and Mindlin plate theories and derived a finite element formulation that 

has been implemented for bandgap analysis. The finite element model utilizes a three-node 

triangle element with 30 degrees of freedom satisfying Mindlin kinematics assumptions. It is 

based on a non-conforming interpolation scheme which provides nodal C1 continuity and ensures 

compatibility with curvature-based flexoelectricity. The approach accounts for microstructure 

effects and, owing to the triangular element topology, can be used to assist the design of 

microplates with complex microstructures. Validation of the approach is performed through 

comparison with both analytical and numerical models, in which the effect of flexoelectricity on 

the bandgap is studied based on cases demonstrating size dependence. In the end, an application 

of the proposed model is provided where bandgap properties of an anti-tetrachiral metastructure 

are investigated. 

 

Keywords: Bandgap; Curvature-based flexoelectricity; Mindlin plate; Wave propagation; 

Metamaterial design; Finite element 

1. Introduction  

Bandgap materials [1] refer to a class of natural or artificially designed materials that present 

unusual characteristics in attenuating wave propagation as function of frequency. Among such 

materials, an important number is composed of composite microplates with periodic 
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microstructures [2-3] and has been increasingly investigated for advanced applications such as 

vibration controllers, energy harvesters, micro scale waveguides etc. [4-6].   

 On small scales, the design of composite microstructures increasingly involves integration of 

functional materials with electromechanical coupling, for which flexoelectricity, a two-way 

coupling [7-9] between polarization and strain gradient [10], represents a general phenomenon 

in all dielectrics. Despite its weak influence on behaviors of bulk materials, flexoelectricity may 

significantly impact the behaviors of micro- to nano-scale structures for which the size-

dependent effect of strain gradient becomes non negligible. In the area of finite element 

modelling, integration of flexoelectricity usually requires implementation of higher-order theories 

of elasticity since second-order derivatives of displacement is involved. Successful 

implementations using this strategy include the application of strain gradient theories (e.g., [12-

16]) and couple stress theories (e.g., [17-18]). In this regard, Yvonnet et al. [12] investigated a 

2-D numerical framework for characterizing the flexoelectric effect in soft dielectrics with finite 

strains by using Argyris triangular element [19] that provides C1 element continuity. Deng et al. 

developed 2-D [13] and 3-D [14] mixed finite elements that offer an alternative solution to satisfy 

the continuity requirement. In the area of layered structures, modelling of flexoelectric effect 

has been investigated based on strain gradient elasticity [15,16]. However, difficulties subsist in 

determining strain gradient-based flexoelectric constants. To remedy this issue and provide a 

flexoelectric model with minimal additional parameters, many efforts have been made recently 

to elaborate couple stress based flexoelectric models. These efforts have led to the theory of 

curvature-based flexoelectricity [17,18], yet only analytical models have been proposed with 

limited applications involving simple problem geometries.  Therefore, a finite element 

implementation of the curvature-based flexoelectricity theory would be of particular interest, 

permitting simulations of microstructures with complex geometries on the small scale.  

In this paper, we base our work on a three-node triangle Mindlin plate finite element with 27 

DOFs. Recently investigated by Xia et al. [20], this element utilizes non-conforming interpolation 

and provides nodal C1 continuity that ensures compatibility with curvature-based flexoelectricity. 

An additional set of three DOFs for the discretization of electric potential field requires to be 

implemented to meet the requirements of flexoelectric constitutive relations. Upon 

implementation of the finite element model, we will explore the influence of flexoelectric effects 

on bandgap properties of composite microplates, which has not been investigated in the 

literature. 

Contents of this paper is organized as follows: we briefly review in Section 2, the curvature-

based flexoelectricity theory and describe the basic equations in terms of Mindlin kinematics 

assumptions and electric potential relations. Based on these relations, weak form of the 

equilibrium permitting calculation of eigenfrequencies will be given. In Section 3, we describe 

finite element discretization and introduce the relations regarding the transfer matrix method. 
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Bloch boundary conditions allowing for unit cell bandgap calculations will be given. In Section 

4, we present four numerical examples to validate the proposed model: first, we validate the 

model by comparing with analytical calculations and confirm the presence of flexoelectric effects 

on composite microplates. We then study its dependence on the microstructure and upon 

validation of the model, an application is provided where bandgap properties of an anti-

tetrachiral metastructure are investigated. Finally, the work presented in the paper will be 

summarized in Section 5. 

 

2. Theoretical framework  

2.1 Curvature-based flexoelectricity theory 

Let us consider an electro-elastic centrosymmetric cubic material continuum that occupying 

a volume Ω and exhibiting microstructure and flexoelectric effects. The relative Gibbs free 

energy G based on the curvature-based flexoelectricity theory ([17], Qu et al. 2021) reads 

   
1

( : : )d
2

G V


    σ ε m χ D E , (1) 

where σ and m are the Cauchy stress and couple stress tensors, respectively. D refers to the 

electric displacement vector, and dV the elementary volume. Then, the strain tensor ε, 

curvature tensor χ, and electric field intensity vector E are, respectively, expressed as follows: 

T1
( ) ( ) ,

2

,

,

     

 

 

ε u u

χ θ

E

       (2) 

where u is the displacement vector, φ is the electric potential, and θ is the rotation vector 

defined by 

1

2
 θ u .         (3) 

    The corresponding constitutive equations with small deformation for centrosymmetric 

cubic materials can be written as  

: ,

,

: ,



  

  

eσ C ε

m E f

D e E f χ

            (4) 

where Ce are the fourth-order elastic stiffness tensors, f is the third-order flexoelectric coefficient 

tensor, and e is the second-order dielectric tensor. The matrices Ce, f and e are given in 

Appendix A. 

The kinetic energy for the volume Ω can be given by 
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 21
d

2
iK u V


     (5)  

where ρ is the mass density. Furthermore, the overhead “·” and “··” represent, respectively, the 

first- and second-time derivatives. 

2.2 Basic equations 

In this part, we focus on the basic kinematics equations for a Mindlin-type microplate 

continuum with uniform thickness h, as shown in Fig.1. A three-dimensional Cartesian 

coordinate system (x, y, z) is employed to describe the plate geometry, with its thickness 

direction along the z-axis and the middle plane (z = 0) lying on the x-y plane. 

 
Fig.1 Geometry of the Mindlin-type microplate in Cartesian coordinates 

Based on the classical geometry assumptions of Mindlin plate, the displacement field of the 

microplate can be described as ([21], Gao and Zhang 2016): 

( , , , ) ( , , ),

( , , , ) ( , , ),

( , , , ) ( , , ),

x

y

u x y z t z x y t

v x y z t z x y t

w x y z t w x y t





 

 



       (6) 

where w(x, y, t) is the deflection of the middle plane. �x(x, y, t) and �y(x, y, t) are the rotation 

components of the middle plane shown in Fig.1 and defined by 

( , , )
( , , ) ( , , ) ,

( , , )
( , , ) ( , , ) ,

x x

y y

w x y t
x y t x y t

x

w x y t
x y t x y t

y

 

 


 




 



      (7) 

where βx(x, y, t)  and βy(x, y, t) denote shear angles around x- and y-axis, respectively. 

Substituting Eq. (6) into Eqs. (2) and (3) yields 

 ˆ,ε S ε   (8a) 

 ˆ .χ S χ   (8b) 

The electric potential φ in microplate can be assumed by [18,22] 

 ( , , , ) ( , , )x y z t z x y t  , (9)  
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where φ' is the first-order electric potential.  

From Eqs. (2) and (9), the electric field intensity vector E is expressed as 

ˆ
E E S E .          (10) 

Note that Sε, ��, Sχ, ��, SE and �� in Eqs. (8a, b) and (10) are listed in Appendix B. 

2.3 Weak form 

According to variational principle [18,22], based on Eqs. (1), (4), (5), (8a, b) and (10), the 

weak form of the current microplate can be summarized as follows: 

  T T T T Tˆ ˆ ˆˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) d d
S S

S S         ε Cε χ f E E fχ eE u ρ u+   (11) 

where S is the projected area of the corresponding microplate, dS is the area element, 

Tˆ { ( , , ), ( , , ), ( , , )}x yw x y t x y t x y t u is the transformed displacement vector of the Mindlin plate, 

and �� is also provided in Appendix B. Besides, the generalized constitutive matrices C�  , f�, e� 

are as follows: 

 

T2

2

T2

2

T2

2

ˆ d ,

ˆ d ,

ˆ d ,

h

h

h

h E

h

h E E

z

z

z

 





















mC S C S

f S fS

e S eS

                (12) 

where Cm is the elastic stiffness matrix in Mindlin plate theory, and it is given in Appendix 

A. 

Considering the time-harmonic displacements, Eq. (11) can be written as 

  T T T T 2 Tˆ ˆ ˆˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) d d 0
S S

S S          ε Cε χ f E E fχ eE u ρ u+   (13) 

where ω is angular frequency. Eq. (13) will be used to obtain the eigenfrequencies. 

 

3. Finite element discretization 

3.1 Implementation of triangular microplate 

Meshing a microplate over the projected area S with three-node triangular elements as 

shown in Fig.2, where Гd and Гf are, respectively, displacement (also called essential) boundary 

conditions and force (also called natural) boundary conditions, Li(i = 1, 2, 3) refers to area 

coordinates. 
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Fig.2 A microplate discretized by a 3-noded plate triangle with 30 DOFs 

A three-node plate triangle with 30 DOFs shown in Fig.2 is implemented to solve the 

flexoelectric problem that is the coupling between polarization and strain gradients. For 

displacement field, the components of �� are approximated by 

3

3

3

,

,

,

s ti i
i i i i

i

s txi xi
x i xi i i

i

yi yis t
i yi iy i

i

w w
w N w N N

x y

N N N
x y

N N N
x y

 
 

 
 

 
  

 

 
 

 

 
 














      (14) 

where the shape functions Ni, N
s 

i  and Nt 

i  are listed in Appendix C. Furthermore, the element 

nodal displacement vector can be expressed as 

1 1 T1 11 1
1 1 1 1 27{ , , , , , , , , },

y ye x x
x y

w w
w

x x x y y y

  
  

   


     
u  .    (15) 

Substituting Eq. (15) into Eqs. (B.2) and (B.4), respectively, the generalized strain and 

curvature vectors are expressed by 

ˆ ,

ˆ .

e

e









ε B u

χ B u
        (16) 

For electric field, the first-order electrical potential φ' is approximated by 
3

1

e
i i

i

N 


   , 

where the element nodal electrical potential vector is  
T

1 2 3, ,e      φ , and the shape functions 

Ne 

i  are listed in Appendix C. The static electric field vector �� can be obtained as follows:  

ˆ e
E
E = B φ .       (17) 

Note that Bε, Bχ, BE are shown in Appendix C. 

Substituting Eqs. (16) and (17) into Eq. (13), the element dynamic matrix equations can 

be written as 

11 12 112

21 22

0
0

0 0

e e

e e


         
       

         

K K u M u

K K φ φ
,    (18) 
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where the components matrices M11, K11, K12, K21, and K22 are given in Appendix C. 

3.2 Bloch-periodic boundary conditions 

Based on Bloch's theorem, the displacement field of elastic wave propagation can be written 

in a harmonic function as 

 ,       (19) 

where k is the wavevector, r is the coordinate vector of the unit cell, uk(r) is a periodic function 

consistent with the periodicity of the structure. To implement the Bloch boundary conditions, 

it is convenient to divide the unit cell boundary nodal variables into nine subsets by 

distinguishing the edges and corners. As shown in Fig. 3, we note therefore: 

 

Fig.3 (a) Periodic 2D material, and (b) nine sets of the nodal variable [23] in 

the referenced unit cell (surrounded by a red border) 

Nodal variables on the right and top boundaries qR and qT are related to those on the left 

and bottom boundaries qL and qB, respectively. Therefore, 

         (20) 

where 1i
1 e  k r , 2i

2 e  k r , r1 and r2 are the relevant base vectors. Similarly, we use the following 

expressions to describe the kinematics of the corner nodes: 

        (21) 

These boundary conditions satisfy the Bloch theorem (Eq. (19)) and implement the periodic 

conditions on the free DOF vector T{ , , , , , , , , }I L R B T BL BR TR TLQ q q q q q q q q q  with respect to the 

independent DOF vector Tˆ { , , , }I L B BLQ q q q q  . Therefore, the Bloch boundary conditions 

applied to the periodic unit cell can be expressed as: 
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ˆQ PQ ,          (22) 

where the transfer matrix P that defines the periodic conditions is given as: 

1

2

1

1 2

2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0







 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

I

I

I

I

P I

I

I

I

I

.  

Assembling the entire system and using Eq. (22), Eq. (18) can be further expressed as 

T 2 T ˆ( ) 0 P KP P M P Q .                   (23) 

This is the final form of the unit cell governing equation of free vibration with the account 

for Bloch boundary conditions. For a given wave vector k, the corresponding eigen-frequencies 

ω can be obtained by performing modal analysis based on Eq. (23). The real-valued wave vector 

k that is not in the range of ω will be identified as bandgaps. 

 

4. Numerical results 

Flexoelectric effect describes the coupling between non-uniform deformation and the 

induced electrical responses. It is a common phenomenon in all dielectric materials, however, its 

observation is most obvious in centrosymmetric dielectric materials [7-9]. In this section, we 

consider centrosymmetric cubic materials in the O class of crystals and investigate their bandgap 

properties. The material composition of the unit cell is distinguished between Phases I and II, 

based on PbS and epoxy, respectively, whose properties are given in Table 1. 

Table 1 Material parameters of PbS and epoxy ([24-28]) 

Material PbS Epoxy 


3(kg / m )  7600 1180 

11c (GPa) 127 4.889 

12c (GPa) 29.8 2.408 

44c (GPa) 24.8 1.241 

11ò 9 2 2(10 C / (Nm ))  1.567 0.0426 

1g
8(10 C / m)  0.75 3 

 

4.1 Validation 

To validate the proposed numerical framework, let us consider a square unit cell composed 

of centrosymmetric dielectric materials shown in Fig. 4a. Then, the edges Г-X-M-Г in Fig. 4b 
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refer to the boundary of the irreducible first Brillouin zone in the reciprocal space, considered 

for band gap calculations [2]. The unit cell thickness h = 5 μm, the unit length L = 20h and the 

volume fraction of Phase I VI = 16% (i.e., c = 0.4L) are considered in this section. 

 

Fig. 4 (a) The geometry of the unit cell structure (b) Representation of the 

irreducible first Brillouin zone in the reciprocal space 

Based on this unit cell, the results of the proposed flexoelectric model using two mesh 

densities depicted in Fig.5 are considered to compare with predictions by plane wave expansion 

method (PWE) involving flexoelectric effect. Equations implemented in this example for PWE 

calculations are given in Appendix D. Plane wave expansion of order 25 is used to ensure the 

accuracy of the result. The obtained band diagrams are plotted in Fig. 6. 

 

Fig. 5 Two mesh refinements based on triangular elements: (a) 10   10, (b) 20   20 

From Fig. 6, it is observed that the result of the proposed flexoelectric model approaches 

the PWE result with increased mesh refinement, as expected. Bandgap computed using the 20 

  20 mesh perfectly agrees with the PWE result to the third decimal, suggesting that the 20 

  20 mesh refinement is sufficient for obtaining converged solution. 
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Fig. 6 Compared to PWE, the band structures obtained by the proposed model 

with (a) meshing density of 10 10 (b) meshing density of 20 20 

4.2 Size effect of the flexoelectric model in bandgap analysis 

In this section, we adopt the unit cell microstructure of Section 4.1 and investigate the size 

dependence of bandgap properties using the flexoelectric model. Therefore, we perform a series 

of bandgap calculations based on a range of problem sizes for which size effects will gradually 

emerge. The calculations are carried out using both the proposed flexoelectric model and 

classical elasticity model. Results from the two models are expected to diverge with the 

emergence of size effects since only behaviors of flexoelectricity are size-dependent.   

The problem size we have considered varies first within submicron range with the unit cell 

thickness h = 0.2 ~ 0.9 μm, then with h = 20 ~ 90 μm. The frequency range of the first bandgap 

is plotted as function of h, for both the flexoelectric and classical elasticity models, in Fig.7. 

 

 

Fig. 7 Bandgap frequency ranges corresponding to different plate thickness: 

(a) the range of thickness h = 0.2 ~ 0.9 μm (b) the range of thickness h = 20 

~ 90 μm 

Significant difference can be noticed on the bandgap frequency range calculated with the 

flexoelectric and classical elasticity models according to Fig.7(a), especially on small problem 

sizes with h approaching 0.2 μm. Distinct bandgaps can be observed at h = 0.2 μm, with the 

frequency ranges [63.66 MHz, 70.43 MHz], and [54.12 MHz, 61.73 MHz], obtained by 

flexoelectric and classical elasticity models, respectively. This difference can be explained by the 

fact that only the effect of flexoelectricity is size-dependent. Therefore, size effect which is most 

significant on sub-micron problems has been accounted for only by the flexoelectric model.  For 

the same reason, with larger problem sizes, the two models gradually converge with h 

approaching 0.9 μm.  Significance of size effects becomes negligible with h going beyond the 

micron meter level, thus in Fig.7(b) which depicts the cases with h = 20 ~ 90 μm, the 

flexoelectric and classical elasticity models completely agree with each other. 
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Fig.8 A spatial periodic composite microplate structure composed of n unit cells 

To study the effectiveness of the bandgap calculation, we further perform dynamic response 

analysis in time domain using Newmark implicit integration based on a real scale composite 

microplate structure. The structure is composed of n unit cells periodically arranged along x 

axis, as shown in Fig. (8). Application of Newmark integration allows calculating the dynamic 

response of the structure following an input excitation prescribed as function of time. For reasons 

of convenience, we consider n=3 and set point O as the coordinate origin (i.e., x=0, y=0).  A 

harmonic excitation signal F=F0sin(ωt) is prescribed at the point (x, y) = (0, -L/2), where 

F0=1x10-7 N. Other boundary conditions involve fixed constraints at the points (x, y) = (3L, 0) 

and (x, y) = (3L, -L). Measurement of the dynamic response is performed at the point (x, y) = 

(3L, -L/2). 

 

Fig.9 Dynamic response of proposed model and classical model in Time Domain: (a) 

thickness h = 0.2 μm and the frequency of harmonic excitation signal ω=67 MHz; (b) 

thickness h = 20 μm and the frequency of harmonic excitation signal ω=550 kHz; 

To make meaningful comparison that confronts bandgap predictions (Fig.7) with dynamic 

response simulations, we prescribe a harmonic excitation to the composite microplate and 

compare the dynamic responses by considering both the flexoelectric and classical elasticity 

models. Specifically, we consider a problem configuration with h = 0.2 μm, which has shown 

significant size effect as reported in Fig.7(a). We then apply an excitation signal with ω=67 

MHz, which belongs to the bandgap predicted by the flexoelectric model, but not by the classical 
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elasticity model. Comparison made on the dynamic response in time domain using both models 

(see Fig.9(a)) leads to the following observation: since the input excitation (ω=67 MHz) lies in 

the bandgap of the flexoelectric model only, we observe significant attenuation on the dynamic 

response of the flexoelectric model, whereas the classical elasticity model gives amplified 

response, which is normal since the prescribed excitation lies beyond its bandgap. Similarly, we 

perform further tests by considering another configuration with h = 20 μm, which according to 

Fig.7(b) does not demonstrate visible size effect. We then prescribe on the microplate an input 

excitation of frequency ω=550 kHz, which belongs to the bandgap of both the flexoelectric and 

classical elasticity models. This times, we observed concordant dynamic responses, which both 

attenuate with time. This observation complies with the theoretical prediction, since input waves 

within the bandgap get attenuated during propagation and, since the problem size does not 

involve microstructure effect, the flexoelectric and classical theory models present equivalent 

dynamic behaviors.  

 

4.3 Effect of volume fraction on bandgaps 

In Section 4.2, we investigated the size dependence of flexoelectric effect in bandgap 

calculations and proposed a dynamic response simulation in time domain to confirm the 

effectiveness of our approach. In this section, we continue with the same unit cell microstructure 

and further study the influence on the bandgap behaviors by the volume fraction of the inclusion. 

We recall the dimension of the unit cell given by L   L, with L = 20h. Since the inclusion 

(Phase I) is defined by variable volume with the volume fraction denoted by VI = c2/L2, we 

prescribe a series of bandgap calculations by considering VI that evolves on the range VI = 0.05 

~ 0.5. Additionally, we perform two groups of tests by considering distinct problem sizes with 

the unit cell thickness h = 0.2 μm and 20 μm, respectively. Therefore, significant size-dependent 

flexoelectric effect can be expected on the submicron h = 0.2 μm case.  

 

Fig. 10 The bandgaps corresponding to different volume fraction V1:(a) h = 0.2 μm  (b) 

h = 20 μm 
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We present in Fig. 10 evolution of the first bandgap calculated with respect to the inclusion 

volume fraction for both problem sizes. The result compares the proposed flexoelectric model 

with the classical elasticity model. Therefore, we notice similar size effects by comparing Fig. 

10 (a) and (b) where size-dependent flexoelectric effect is only observed on the submicron 

problem (Fig. 10 (a)), which is coherent with the conclusion of Section 4.2 (Fig. 7).  In addition, 

the following observations can be drawn based on the analysis of Fig. 10 (a) and (b): first, the 

inclusion volume fraction has significant influence on the structure’s bandgap property. With VI 

< 0.1 or VI > 0.4, the bi-phase microstructure does not present visible bandgap at all. Then, 

both the range and position of the bandgap are function of the inclusion volume fraction VI. 

Consequently, results depicted in Fig. 10 (a) and (b) can be used to assist the design of the bi-

phase microstructure, leading to tunable bandgap behaviors with the account for size-dependent 

flexoelectric effects. 

 

4.4 Bandgap of an anti-chiral metastructure with flexoelectric effects 

In the previous examples, we confirmed the accuracy of the proposed numerical model via 

comparison with PWE solutions. The cases we investigated only involve basic square geometries 

due to the limitations of the PWE method, which requires building shape functions specific to 

each model and is therefore ineffective in treating complex geometries. To illustrate the 

versatility and capacity of the proposed numerical model in dealing with complex 

microstructures, we investigate in this example bandgap properties of an anti-tetrachiral 

metastructure ([29,30]). As shown in Fig.11(a), the anti-tetrachiral unit cell is composed of 

circular nodes connected by straight ligaments that are tangent to them. The circular nodes are 

of radius r and the ligaments are of length a.  The structure wall thickness is d with depth h. 

The bi-phase material consists of PbS for Phase I and Epoxy for Phase II, whose properties are 

given in Table 1. The unit cell geometry parameters are defined with respect to h as: 2a = 20h, 

d = 0.5h and r = 2.5h. Bandgap calculation is performed by considering the boundary of the 

irreducible first Brillouin zone (Fig. 11(b)), indicated by the path Г-X-M-N-M and defined in 

the reciprocal space of the unit cell.   
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Fig. 11 (a) The unit cell of the anti-tetrachiral metastructure ([30]) (b) 

Irreducible first Brillouin zone in the reciprocal space. 

 As shown in Figs.12(a-c), three mesh densities containing 1140, 1592 and 3248 elements, 

respectively, have been considered to evaluate the mesh convergence properties of the proposed 

model. The obtained band diagrams are reported in Fig.12(d-f), where we can observe good 

convergence of the band structure with respect to mesh refinement. Taking the case with h = 

0.2 μm as an example, the second bandgap frequency range obtained with the three cases are 

[48.75 MHz, 130.70 MHz], [47.62 MHz, 127.62 MHz] and [46.28 MHz, 124.83 MHz], for the 

coarse, medium and fine mesh refinements, respectively.  We observe therefore stabilized result 

that begins with the medium mesh. Besides, the shape of the band frequency curves is equivalent 

for the three cases, suggesting negligible mesh dependence. Hence, the test cases lead to 

confirmed stability and mesh convergence of the proposed model. In the following, the fine mesh 

configuration is adopted to study the property of size dependence due to flexoelectric effects. 

 

 
Fig. 12 The three mesh refinements, with fine mesh (a), medium mesh (b), and coarse 

mesh (c).  The bandgap diagrams calculated using the fine mesh (d), medium mesh (e) 

and coarse mesh (f). 

Based on the fine mesh configuration which presents confirmed mesh convergence, we 

investigate the flexoelectric effect via the induced size dependence on bandgap properties. 

Therefore, we prescribe two groups of tests with different problem sizes. The first group consists 

of cases with thickness ranging from 0.2 μm to 0.9 μm, and the second group consists of 

significantly larger problems, with the thickness ranging from 20 μm to 90 μm. For both 

situations, we compare the size of the first bandgap by considering models with and without 

flexoelectric effects, and we report the results in Fig.13.   
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Fig. 13 First bandgap frequency range as function of the plate thickness: (a) 

cases in the thickness range h = 0.2 ~ 0.9 μm, (b) cases in the thickness range 

h = 20 ~ 90 μm. 

 

We observe in Fig.13(b) perfect coincidence between the flexoelectric model and the classical 

model, which indicates negligible flexoelectric effect on larger problem sizes. This is normal since 

bandgap properties are not size-dependent on macro scale problems. On the contrary, bandgap 

results depicted in Fig.13(a) do not coincide.  The account for flexoelectric effect leads to 

significant size dependence of the bandgap property on micro scale problems. This further 

suggests that the size-dependent flexoelectricity effect is mostly visible on the submicron scale, 

which agrees with the findings in Section 4.2  

 

5. Summary 

In this work, a high-order finite element model is proposed to predict elastic wave bandgaps 

of composite microplates involving flexoelectric effects. A three-node triangle plate element with 

30 DOFs is implemented to accommodate the formulation of curvature-based flexoelectric theory, 

and we applied Bloch's theorem for the bandgap calculation based on the composite’s periodic 

unit cell. In terms of numerical implementation of the flexoelectricity theory, our model has 

been validated via comparison with analytical PWE method and its application on an anti-

tetrachiral metastructure has proved its adaptability on problems involving complex geometries. 

Then, regarding the physical interpretation of the simulations, our investigations revealed that 

the size-dependent flexoelectric effect cannot be neglected for problems of submicron level, 

whereas it does not present significance on structures larger than the micrometer level. Future 

extensions of the work should include investigation of flexoelectric effects on soft dielectric 

materials, and integration of other size-dependences such as surface effects etc. [31-37]. 
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Appendix A 

Cubic material -O class： 

Elastic stiffness matrices 
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where k11 and k22 are in-plane shear correction parameters, and they are both 5/6. 

Flexoelectric coefficient matrix 
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Appendix B 

The expressions of ��, ��, ��, �� ��� ��: 
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Appendix C 

The components of mass matrix and stiffness matrix: 
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where the corresponding strain-displacement matrixes Bε, Bχ and BE are expressed as: 
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with the shape function matrix N and Ne：  
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and bj = yj  yk, cj = xk  xj, Li refers to area coordinates shown in Fig.2, with i, j, k are cyclic 

permutation indices. 

Appendix D 

The motion balance equations of the proposed curvature-based flexoelectricity Mindlin 

microplate are as follows: 
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where    
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