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Abstract 

The localization of elastic wave at defect in phononic crystals (PnCs) has been applied to 

design piezoelectric energy harvesting (PEH) devices. However, the earlier researches were 

based on classical linear elasticity theory, which failed to predict the structural behavior at the 

micron scale. Based on a modified couple stress theory (MCST) and a mixed finite element 

method, the physics builder in COMSOL® Multiphysics is used to develop a novel interface 

that can capture the microstructure-dependent size effect and be applied in the simulation of 

a PnC-based PEH device. Size dependence of the newly developed model is demonstrated by 

three sets of models at different sizes. Numerical results show that when the size effect is 

considered in the model, the frequencies of the bandgap and defect bands increase with 

decreasing model size compared to the classical theory. Furthermore, the size reduction changes 

the internal stiffness ratio in the model, which affects the displacement amplitude, output 

voltage and output electrical power of the PEH device. Therefore, size effects are inevitable in 

micron-level models. These discoveries would help the design of small-scale PnC-based PEH 

devices for enhanced energy collection. 

Keywords: Size effect; Piezoelectric energy harvesting; Modified couple stress theory; Defect 

band; Phononic crystal; Bandgap 

 

1. Introduction 

The phononic crystal (PnC) defect results in a high degree of elastic wave localization and 

provides an efficient way of energy collection in piezoelectric energy harvesting (PEH) devices, 

which has attracted much attention [1-6]. Bandgap is an extraordinary property of PnCs, and 

elastic waves in the bandgap frequency range decay rapidly and cannot propagate through the 
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PnCs [7-11]. Furthermore, by changing a single unit cell structure to destroy the periodicity of 

the PnCs (i.e., a defect), flat passbands (i.e., defect bands) usually appear in the bandgap [12-

14]. The evanescent waves corresponding to the defect band frequencies can then be localized 

and amplified inside the defect. Due to the wave enhancement phenomenon, the output power 

of PEH devices placed at the defect can be several times higher compared to the conventional 

cantilever-type PEH devices [15]. 

This innovative idea has been extensively researched. Experiments [16] have shown that the 

power harvesting efficiency for acoustic energy is 625 times better than that without PnCs, 

while external loading has an effect on PEH devices. The explicit analytical solution of the 1D 

defect model [4, 17, 18] revealed that the bandgap is a necessary condition for the defect band. 

Proper geometric parameters (e.g., piezo thickness, piezo diameter and substrate thickness) can 

enhance energy transfer and conversion [19]. For ambient vibrational energies in low-frequency 

ranges [20, 21], defective local-resonance type PnCs (often referred to as metamaterials) seem 

to be more suitable relative to Bragg type [22]. Single defects have a narrow operating 

bandwidth, while multiple defects (e.g., decoupled double defects [23, 24], coupled double 

defects [25] and L-shape defects [26]) can broaden the energy harvesting bandwidth. Multiple-

field techniques (e.g., thermal tuning [27, 28], electrical tuning [29] and magnetic tuning [30]) 

allow efficient dynamic adjustment of the energy harvesting operating frequency for adaptation 

to random environmental frequencies. However, most of them focus on the macroscale level. 

Piezoelectric energy harvesting and transfer usually serve some low-power devices (e.g., 

embedded sensors, medical implants [31, 32] and monitoring devices), which requires 

miniaturization of the model [21]. With device miniaturization, numerical simulations and 

predictions based on classical linear elasticity theory will encounter a great challenge at the 

micron scale. 

At the microscopic scale, the characteristic scale of the internal microstructure (e.g., 

inclusions, microcracks and lattices) in the material is close to the material geometry, which 

makes it impossible to ignore the size effect generated by these microstructures on the 

mechanical properties of the material. Many experiments (including static bending [33-36] and 

vibration [37, 38]) have shown that thin structures usually exhibit size effects. In order to solve 

this problem, a series of higher-order theories have been developed to describe this mechanical 

behavior, such as the couple stress theory [39], the strain gradient theory [40], the nonlocal 

elasticity theory [41], the micromorphic elasticity theory [42] and the surface elasticity theory 

[43]. In particular, the modified couple stress theory (MCST) [44], which includes only one 

additional material constant, has been successfully applied to explain the microstructure-

dependent size effect in small-scale structures [45-48], including PnCs [49-51]. As a result, the 

bandgap and defect band in PnCs arising from the Bragg scattering will also be affected by 

the sizes and microstructures at the micron scales. Hence, there is a need to incorporate the 

modified couple stress to study PnC-based PEH devices at small scales. 

The main objective of this work is to systematically study the size effect on PnC-based PEH 

devices based on the MCST. Proceeding from the Lagrange multiplier method, we use the 

physics builder in COMSOL® Multiphysics to develop a new interface (called the MCST 

interface) that can characterize the size effect, which is an extended version of the built-in solid 
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mechanics interface. This interface is then used in conjunction with the preset electrostatics 

and circuit interfaces to analyze the model. In Section 2, the theoretical part of this interface 

is given. Section 3 presents the numerical results of three groups of models with different scales 

to show how model reduction affects energy collection. Conclusions are made in Section 4. 

2. Formulation 

The purpose of this section is to introduce the underlying principles of the new interface 

and to present the technical details of its implementation in COMSOL® Multiphysics. Two 

parts will be expanded in this section. Firstly, the MCST is reviewed and the weak form of the 

motion equations is derived based on Hamilton’s principle. Then, two new weak equations 

combining the Lagrange multiplier method are given. They will be used in Section 3 for the 

band structure calculation and frequency domain analysis of the model. 

2.1 Modified couple stress theory 

Based on the MCST [44, 51], the strain energy UT in region Ω can be written as 
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where σij and mij are, respectively, the Cauchy stress and couple stress tensors, dV is the volume 

element, and the strain εij and curvature χij tensors are defined by 
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with the displacement vector ui, and the rotation vector θi presented by 
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where εijk is the Levi-Civita symbol. Furthermore, the constitutive equations for isotropic 

materials can be given by [49] 

 2 ,ij kk ij ij       (4a) 

 
22 ,ij ijm l   (4b) 

where λ and μ are the Lamé constants, δij is the Kronecker delta, and l is a material length 

scale parameter. 

The kinetic energy K of the region Ω is 
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where ρ is the material mass density, and the overhead “·” represents the first derivative to time 

t. 

In addition, the virtual work W is done by the external force as 
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Here, fi and ci are the body force and body couple stress for per unit volume, respectively. pi 

and qi are the traction and surface couple for per unit area dA acting on ∂Ω. 

Based on Hamilton’s principle [52], over the time interval [0, T], the weak form of the 

motion equations can be obtained from 

  
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Combining Eqs. (1,5-7), with the virtual displacements vanishing at t = 0 and t = T, we 

get 
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where the overhead “··” represents the second derivative to time t. 

2.2 Mixed finite elements for modified couple stress theory 

Since the weak form in Eq. (8) contains the second-order derivatives of the displacements, 

the displacements ought to be C1-continuous. However, this is a well-known issue. To develop 

a finite element method for the strain gradient theory, Shu et al. [53] proposed a mixed finite 

element approach using two sets of C0-continuous dependent variables (i.e., displacement and 

displacement gradient) for discretization and Lagrange multipliers to limit the kinematic 

relationship between them. It was extended by Kwon and Lee [54, 55] to the MCST. Here we 

briefly review the theoretical part of the method to ensure the completeness of this paper, and 

more deductive details can be obtained from these studies [53-59]. 

The weak form dependent variables in Eq. (8) ultimately point to the displacement. But 

two sets of independent dependent variables, the displacement vector ui and the relaxed 

rotation vector �i, are considered in the mix element, and the constraint between the relaxed 

rotation vector �i and the physical rotation vector θi is implemented by a Lagrange multiplier 

vector αi: 

 ( ) d 0.i i i V 


   (9) 

Here, the above equation shows that the connection between the relaxed rotation vector and 

physical rotation vector is satisfied in the volume-averaged sense [53].  

For harmonic traveling wave analysis, Eq. (8) becomes, with the help of Eq. (9) and ci = 

0 = fi = pi = qi 

 2 ( ) d 0,iij ij ij ij i i i i i iiim u u V               

          (10) 

where ω is the angular frequency. By applying the Bloch periodic boundary conditions [60], the 

relevant bandgap of the PnCs can be obtained through Eq. (10). 

Considering the damping effect, modifying Eq. (10) yields 

2 ((1 ) ) d 0,s i i iij ij ij ij i i i i i im u u Vi               

        

 (11) 
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where i is an imaginary unit, ηs is the isotropic structural loss factor. Eq. (11) will be applied 

to obtain the frequency response curve of the model. 

In COMSOL® Multiphysics, we use the physics builder to package the above into an 

MCST interface. For the subsequent numerical simulations, the displacement vector is 

discretized using the Lagrange quadratic element, while the relaxed rotation and Lagrange 

multiplier vectors are discretized using the Lagrange linear element, as shown in Fig. 1. The 

3×3 and 2×2 Gaussian quadrature methods are utilized for displacement and relaxed rotation, 

respectively. In addition, the validation of the MCST interface developed in this section is 

illustrated in Appendix A with a pure shear example. 

 
Fig.1 A hexahedral element with 27 nodes for MCST interface, with the hollow circle being the 

displacement vector ui and the solid circle representing the displacement ui, the relaxed rotation 

�i and Lagrange multiplier αi vectors. 

 

3. PnC-based PEH device 

What exactly are the size effects on PnC-based PEH devices? For this purpose, numerical 

results for three different sets of models at different scales are given in this section. Compared 

with classical theory, the couple stress effect is revealed by comparing the band structure, defect 

band and PEH device’s performance, respectively. 

3.1 Bandgap analysis for unit cell 

 

 
(a) (b) 

Fig.2 Schematic diagram of the PnC: (a) unit cell consists of a core with the length a1 and 

thickness tir, and a substrate with the lattice constant a and thickness h, and (b) irreducible 

first Brillouin zone.  
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As shown in Fig. 2(a), the PnC unit cell consists of a hard iron core (white part) and a 

soft epoxy substrate (light green part). The core is centered and penetrates the substrate, while 

the cell geometry is symmetric about the neutral layer of the substrate. In this section, models 

are presented for three different body epoxy plate thicknesses (i.e., h = 1.5 mm, 150 μm and 

100 μm) to demonstrate the size effect. In addition, the lattice constant of the unit cell a = 

20h, the length of the iron core a1 = 10h, and the core thickness tir = 4h. The material properties 

of the iron and epoxy are given in Table 1. 

Table 1. Material properties of iron and epoxy [61]. 

Material properties Density ρ(kg/m3) Young’s modulus E(GPa) Poisson’s ratio ν Length scale parameter l(μm) 

Iron 7870 200 0.29 6.85 

Epoxy 1180 3.3 0.33 16.93 

 

It should be noted that the material properties of the iron in Table 1 are taken from the 

COMSOL built-in material library. The relation l = bh /�3(1 − �)  given by Lam et al. [34] is 

used to estimate the material length scale parameter l in Table 1. For metals, bh ≈ 10 µm [62], 

and for epoxy bh = 24 µm [34]. 

Bloch periodic boundary conditions are arranged around the unit cell and the reciprocal 

wave vector is scanned along the boundary line of the irreducible first Brillouin zone (see 

Fig.2(b)). The band structure of the unit cell is obtained by calculating the eigenfrequencies. 

In this paper, the model incorporating size effect (i.e., modeled with the MCST interface) is 

considered as the current model, while the classical model is modeled with the solid mechanics 

interface built in COMSOL. The displacements in the solid mechanics interface are Lagrange 

quadratic discretization, while the discretization strategy in the MCST interface we have 

accounted for in Section 2. The bandgaps of the three scaled unit cells (i.e., h = 1.5 mm, 150 

μm and 100 μm) are plotted in Fig 3. 

From Fig. 3, all unit cells have a complete bandgap, which means that all elastic waves 

(i.e., both in-plane and out-of-plane waves) of frequencies in the bandgap range will be filtered. 

When h = 1.5 mm, the current model predicts the bandgap values that are consistent with 

those of the classical model. However, the bandgap frequency of the current model is higher 

than that of the classical model when h = 150 µm, and this difference is further reinforced at 

h = 100 µm. This finding implies that the size effect on the bandgap is significant only in very 

thin plates [63]. In addition, considering the microstructure-dependent size effect stiffens the 

model and leads to an elevated eigenfrequency, as expected [37, 38]. 
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(a)  (b)  

  
(c) (d)  

  
(e)  (f)  

Fig. 3 Band gaps for the PnC predicted by: (a) the current model with h = 1.5 mm, (b) the 

classical model with h = 1.5 mm, (c) the current model with h = 150 μm, (d) the classical 

model with h = 150 μm, (e) the current model with h = 100 μm, and (f) the classical model 

with h = 100 μm. The lattice constant of the unit cell a = 20h, the length of the iron core a1 

= 10h, the core thickness tir = 4h, and the material properties employed in the calculation are 

tabulated in Table 1. 
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3.2 Defect bandgap analysis  

The periodicity of PnCs is the main factor for the bandgap generation, and if this 

periodicity is disrupted by locally transforming the material properties or structure inside PnCs 

(i.e., introducing a defect), the elastic wave will localize at the defect. The major focus in this 

subsection is on how the size effect impacts the defect band frequencies. 

 

 

(a) (b) 

Fig. 4 A PnC-based PEH system: (a) a geometric configuration of a 5×5 defected PnCs plate 

with two piezoelectric sheets in the middle position, with the radius rpz and thickness tpz, and 

(b) circuit diagram for two piezoelectric sheets. 

 

Unlike the bandgap analysis for the unit cell, the defect band frequencies are calculated by 

supercells in this sub-section. The 5×5 plate-like PnCs are shown in Fig. 4(a). The core at the 

middle position is removed and recovered to the epoxy substrate. Two circular piezoelectric 

sheets of the same size (PZT-4D) are placed on the top and bottom of the substrate to form a 

point defect and serve as PEH devices. The radius of the piezoelectric sheet rpz = 2.5h, thickness 

tpz = 0.5h, and the material properties are listed in Table 2. Note that the material properties 

of the PZT-4D in Table 2 are directly taken from the COMSOL built-in material library. 

Furthermore, at the micro-scale, the size effect of ceramic materials is not significant and can 

usually be ignored (l = 0)[33]. 

Table 2. Material properties of PZT-4D. 
Material 

properties 
ρ(kg/m3) c11(GPa) c12(GPa) c13(GPa) c33(GPa) c44(GPa) e31(C/m2) e33(C/m2) e15(C/m2) 

ϵ11(10-

9F/m) 

ϵ33(10-

9F/m) 

PZT-4D 7600 153.83 98.46 93.10 128.24 23.81 -4.7303 15.2586 13.0952 7.05 6.75 

 

The circuit of the PEH devices is depicted in Fig. 4(b). Note that the top and bottom 

surfaces of the two piezoelectric sheets are considered to be completely covered by the electrodes, 

while the electrode thickness is negligible with respect to the whole model. The top and bottom 

electrodes of the PEH devices are connected to each other and to the input section of the 

resistor, and the remaining electrodes are connected to the output section of the resistor and 

grounded. The external resistor is uniformly set to 100 MΩ for simulating an open-circuit 

condition. 
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For the case of PEH devices, the electrostatics and electrical circuit interfaces in 

COMSOL® Multiphysics are used in conjunction with the solid mechanics interface (i.e., the 

classical model) or the MCST interface (i.e., the current model) for calculating the defect band 

frequencies. The electrostatics interface is coupled with the solid mechanics or MCST interface 

to depict the piezoelectric effect. The electrical circuit interface is responsible for implementing 

the circuit configuration in Fig. 4(b) and determining the performance of the PEH devices. 

Under the open-circuit condition (i.e., resistance of 100 MΩ), Fig. 5 shows the defect bands 

of the current and classical models within the bandgap at different scales (i.e., h = 1.5 mm, 

150µm, 100 µm). In Appendix B, we provide all the defect mode shapes (displacement 

magnitudes) in full and summarize them into three types (i.e., Modes A, B and C) listed in 

Fig. 6. Referring to the previous study by Lee et al. [19, 63], the target bandgap and defect 

band frequencies can be obtained by adjusting the mass or stiffness of the unit cell or PEH 

device. 

The information given in Fig. 5 can be summarized as follows: for the same type of defect 

mode, the current model always predicts a higher frequency than the classical model. As the 

plate thickness h decreases, this difference becomes larger. In particular, when h = 100 µm, the 

corresponding frequency of Mode C disappears in the bandgap. It is also important to 

emphasize that the size effect can be neglected in the large-scale case (with h = 1.5 mm here) 

since both models predict the same defect band frequencies. From Fig. 6, we confirm that the 

defect state modes for all models are out-of-plane versions. Mode B, as a unipolar class defect 

mode shape, is the best deformation for PEH device energy collection efficiency. This is mainly 

attributed to two reasons: (1) the PEH device should have sufficient deformation to generate 

electro-elastic coupling for output electrical energy; and (2) the PEH device should avoid being 

deformed in both tension and compression to avoid voltage cancellation. In conclusion, for all 

modes, the frequencies corresponding to Mode B will be the focus of subsequent analysis. 
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(c)  (d)  

  
(e)  (f)  

Fig. 5 Defect bands for the PnC-based PEH device predicted by: (a) the current model with h 

= 1.5 mm, (b) the classical model with h = 1.5 mm, (c) the current model with h = 150 μm, 

(d) the classical model with h = 150 μm, (e) the current model with h = 100 μm, (f) the 

classical model with h = 100 μm. The lattice constant of the unit cell a = 20h, the length of 

the iron core a1 = 10h, the core thickness tir = 4h, the radius of the piezoelectric sheet rpz = 

2.5h, thickness tpz = 0.5h, the external resistor is100 MΩ, and the material properties employed 

in the calculation are tabulated in Tables 1 and 2. 

 

   
 

(a)  (b)  (c)   

Fig. 6 Three types of defect mode shapes (displacement magnitudes) of the current and classical 

models at different scales: (a) Mode A, (b) Mode B, and (c) Mode C. 
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3.3 PEH devices performance analysis 

 
Fig. 7 Schematic diagram of the frequency domain analysis model, with the excitation to be 

the distance of 5a/3 from the front-most PnCs. Two perfectly matched layers (PMLs) are set 

at the substrate boundary in the x-direction, and continuous periodic boundary conditions 

(PBCs) are imposed in the y-direction. 

 

To test the performance of the PEH affected by external elastic waves, we designed an 

analysis model as shown in Fig. 7. The 5×5 defected PnCs are still placed in the model, and 

the circuit is configured in the same way as in Section 3.2, connected in parallel and connected 

to the external resistance (with 100 MΩ here). At the distance of 5a/3 (where a is the lattice 

length of the unit cell) from the front-most PnCs, a displacement of constant amplitude in the 

z-direction (for 20 nm) is applied for simulating the generation of elastic waves. Two perfectly 

matched layers (PMLs) are set at the substrate boundary for absorbing elastic waves in the x-

direction, and continuous periodic boundary conditions (PBCs) are also imposed to ensure an 

infinite domain in the y-direction. 

For all frequency domain analyses, the mechanical damping of the entire structure is set to 

a structured loss factor ηs = 0.0001. The maximum grid size is always less than 1.67 times the 

substrate thickness, which is about one-tenth of the corresponding excitation wavelength and 

is sufficient to achieve highly accurate numerical results. It is important to emphasize that the 

grid setting strategy is valid for all cases in this paper. We also provide specific meshing schemes 

in Appendix B to ensure reproducibility in the simulations. 

The frequency responses of the z-displacement and output voltage for the current and 

classical models with three thickness cases are plotted in Fig. 8, and the parameter peaks are 

recorded in Table 3. The displacement amplitude is the value at the top center of the upper 

PEH device, and the output voltage comes from the potential difference between the external 

load input and the output section in the electrical circuit interface. Nearly identical peak 

displacement (137 nm) and peak output voltage (0.50 V) are obtained for the current and 

classical models at h = 1.5 mm. When h = 150 and 100 μm, the peak displacement and output 

voltage of the classical model are guaranteed to be consistent with the part of h = 1.5 mm. On 

the contrary, the displacement and voltage of the current model at h = 150 μm are raised to 

147 μm and 0.56 V. The difference is further amplified at h = 100 μm (with the peak 
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displacement of 149 μm and the voltage of 0.60 V). Furthermore, as the scale decreases, it can 

be observed that the resonant frequency of the current model is gradually lifted relative to the 

classical model, which is consistent with the conclusions of Section 3.2. 

It should be noted that the higher peak displacements and voltages obtained for the current 

model in the small-scale case (with h = 150 and 100 μm here) are due to the change in the 

stiffness ratio of the PnCs to the PEH devices (i.e., the effective stiffness of the PnCs increases 

for the current model relative to the classical model, while the PEH one remains constant). In 

addition, higher output voltages can be obtained by connecting two PEH devices in series [25]. 

  
(a)  (b)  

  
(c)  (d)  

  
(e) (f)  
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Fig.8 The PEH performance of the current and classical models: (a) z-displacement at h = 1.5 

mm, (b) output voltage at h = 1.5 mm, (c) z-displacement at h = 150 μm, (d) output voltage 

at h = 150 μm, (e) z-displacement at h = 100 μm, and (f) output voltage at h = 100 μm. 

 

Table 3. Peak z-displacement and peak voltage for the current and classical models at three 

different scales (h = 1.5 mm, 150 μm and 100 μm). 

Plate thickness h  Model 
Resonance 

frequency (kHz) 

Peak displacement 

(nm) 

Peak voltage 

(V) 

1.5 mm Classical 9.59 137 0.50 

1.5 mm Current 9.59 137 0.50 

150 μm Classical 95.89 137 0.50 

150 μm Current 98.44 147 0.56 

100 μm Classical 143.84 137 0.50 

100 μm Current 152.24 149 0.60 

 

3.4 Optimal external load for maximum electrical output power 

For all cases, the external resistance is swept from 0 to 100 MΩ at the resonant frequency 

(see Table 3), and the rest of the settings are consistent with Section 3.3. Fig. 9 shows the 

output voltage and output power corresponding to different resistances at the resonant 

frequency. According to Ohm’s law, the electric output power is defined as voltage2/resistance. 

From Figs. 9(a, c, e), the output voltage increases monotonically and converges to a peak 

for all models as the external resistance increases. In all cases, the output voltage of the current 

model is always higher than that of the classical model, regardless of the external resistance. 

This difference is further amplified as the scale decreases. 

Figs. 9(b, d, f) show the peak output power of each model and the corresponding optimal 

external resistance. The optimal electrical output for all models is summarized in Table 4. It 

can be shown that, regardless of plate thickness, the classical model has a constant value of the 

optimal resistance (with 98.1kΩ) and peak output power (0.65μW) under the resonant 

frequency wave excitation. While for the current model, at h = 1.5 mm, the same value results 

are obtained with the classical model. For h = 150 μm, the optimal resistance and peak output 

power of the current model are 100.2 kΩ and 0.8 μW, respectively, which are both larger than 

the values of the classical model. The numerical difference is further stretched at h = 100 μm 

with 103.4 kΩ and 0.87 μW, respectively. This indicates that, in contrast to classical continuum 

theory, the influence of the microstructure-dependent size effect can be very important at small 

scales, boosting the output voltage and power of the PnC-based PEH device. This finding 

further supports the miniaturization of the PnC-based PEH device. 
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(a)  (b)  

  
(c)  (d)  

  
(e)  (f)  

Fig. 9 Variation of outputs concerning external resistance of the current and classical models: 

(a) output voltage at h = 1.5 mm, (b) output power at h = 1.5 mm, (c) output voltage at h = 

150 μm, (d) output power at h = 150 μm, (e) output voltage at h = 100 μm, and (f) output 

power at h = 100 μm. The electric output power is defined as voltage2/resistance. 

 

Table 4. Optimal external resistance and peak output power for the current and classical models 

at three different scales (h = 1.5 mm, 150 μm and 100 μm). 

Plate thickness h  Model 
Optimal external 

resistance (kΩ) 

Peak output power 

(μW) 

V
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ta
ge

 (
V

)
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ut
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ut

 P
ow

er
 (

μ
W

)
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1.5 mm Classical 98.1 0.65 

1.5 mm Current 98.1 0.65 

150 μm Classical 98.1 0.65 

150 μm Current 100.2 0.80 

100 μm Classical 98.1 0.65 

100 μm Current 103.4 0.87 

 

4. Conclusion 

In this paper, we introduce the microstructure-dependent size effect in the PnC-based PEH 

device, which provides a better description of the small-scale model mechanical and electrical 

behaviors. First, the MCST interface that can characterize the size effect was developed using 

the Lagrange multiplier method in COMSOL® Multiphysics. Second, using the newly 

developed interface, the band structure, defect band and PEH device’s performance predicted 

by the current model were compared to that predicted by the classical model for three sets of 

scale size PnC-based PEH devices. The newly developed model can be applied to predict results 

for PnC-based PEH devices at all scales, while the classical model can only predict the relevant 

solutions at large scales. When the device is not very small, the current model predicts the 

same bandgap frequencies as the classical model. 

Considering the size effect raises the bandgap and defect band frequencies in the current 

model compared to the classical model. Especially, the effect on defect band frequency is 

significant. Moreover, this difference is further amplified as the model scale decreases. The 

frequency domain analysis of the open-circuit condition shows that the displacement, voltage, 

and peak output power of the current model are all elevated with respect to the classical model 

due to the change in the stiffness ratio between the PnCs and PEH devices. In addition, a 

unipolar class defect mode shape can always be detected in both current and classical models 

for the best PnC-based PEH device energy collection efficiency. 

When the scale comes to the micron level, models have higher operating frequencies. The 

predictions and numerical simulations for the PnC-based PEH device by the classical linear 

elasticity theory have great limitations, and it is necessary to consider the size effect. 

Furthermore, energy harvesting at a micron or even smaller scale can be realized and enhanced 

by the current PnC-based PEH device. 
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Appendix A 

It is shown here that the MCST interface developed in Section 2.2 is validated with a pure 

shear example. Park et al. [64] provide an analytical solution to a pure shear problem for the 

MCST. With the help of the MCST interface, we compare the numerical values of the finite 

element (FE) model to them. 

As shown in Fig. A.1, the current FE model with epoxy material has the length L = 300 

μm, width b = 150 μm and thickness h = 30 μm. And the FE model consists of 21,600 

hexahedral elements. Table 1 lists the material properties of the epoxy. The boundary 

conditions of the FE model are 
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
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The remaining parts are the traction free boundary conditions. It should be noted that the 

premise of the analytical solution proposed by Park et al. [64] assumes that L, b→∞, which is 

the reason for imposing symmetry boundary conditions (i.e., constraints on the z = 0, b planes) 

in the FE model. 

 
Fig. A.1 FE model meshing, geometry and the coordinate system, with the length L, width b 

and thickness h. 

 

We compare the numerical results (i.e., u1) at the cut line (L/2, y, 0) with the analytical 

solution as shown in Fig. A.2. In addition, the solution obtained based on the classical theory 

(i.e., l = 0) is similarly plotted in Fig. A.2 to facilitate further demonstration of the differences. 

It can be seen that the current FE model obtains numerical values in agreement with the 

analytical solution, while the difference with the classical theory is very large.  
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Fig. A.2 Comparison of three numerical results (i.e., u1) at the cut line (L/2, y, 0) for the pure 

shear problem. The FE model is calculated based on the MCST interface developed in Section 

2.2. The length L = 300 μm, width b = 150 μm, thickness h = 30 μm, and the material 

properties of the epoxy employed in the calculation are tabulated in Table 1.The analytical 

solution is adopted from Park et al. [64]. The classical solution corresponding to l = 0 is also 

presented. 

Appendix B 

B.1. Meshing scheme 

The maximum mesh length for all FE models in this paper is no more than 1.67 times the 

thickness of the model epoxy substrate. The specific division scheme is shown in Fig. B.1.  

   

(a)  (b)  (c)  

Fig. B.1 Meshing schemes for all models mentioned in this paper: (a) unit cell, (b) 

supercell, and (c) frequency domain model. 

B.2. Displacement defect mode for supercells 

Fig. B.2 gives all displacement defect mode shapes of the current model for h = 1.5 mm, 

150 μm and 100 μm adopted from Fig. 5. Regardless of the scale size, the defect mode shapes 

for the classical model are consistent with the scale of the current model at h = 1.5 mm and 

are not repeatedly listed here. 
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(a)  (b)  (c)  

   
(d)  (e)  (f)  

  

 

(g) (h)  

Fig. B.2 Displacement defect mode shapes for the current model on (a) 8.76 kHz at h =1.5 mm, 

(b) 9.59 kHz at h =1.5 mm, (c) 10.40 kHz at h =1.5 mm, (d) 89.79 kHz at h =150 μm, (e) 

98.44 kHz at h =150 μm, (f) 106.80 kHz at h =150 μm, (g) 138.73 kHz at h =100 μm, and (h) 

152.25 kHz at h =100 μm. 
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