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Abstract: We propose a framework for optimizing personalized treatment outcomes for patients with 1

neurological diseases. A typical consequence of such diseases is gait disorders, partially explained by 2

command and muscle tone problems, associated with spasticity. Intramuscular injection of botulinum 3

toxin type A is a common treatment for spasticity. According to the patient’s profile, it is important 4

to offer the optimal treatment combination with highest possible benefit-risk ratio. For prediction 5

of Knee and Ankle kinematics after botulinum toxin type A (BTX-A) treatment, we propose: (1) a 6

regression strategy based on a multi-task architecture composed of LSTM models; (2) to introduce 7

medical treatment data (MTD) for context modeling; (3) a gating mechanism to model treatment 8

interaction more efficiently. Proposed models are compared with and without metadata describing 9

treatments, and with serial models. Multi-task Learning (MTL) achieved the lowest Root Mean 10

Square Error (RMSE) (5.60°) for traumatic brain injury (TBI) patients on Knee trajectories and the 11

lowest RMSE (3.77°) for cerebral palsy (CP) patients on Ankle trajectories.Overall, the best RMSE 12

ranges from 5.24° to 6.24° for MTL models. To the best of our knowledge, this is the first time that 13

MTL is used for post-treatment gait trajectory prediction. MTL models outperform serial models, 14

particularly when introducing treatment metadata. The gating mechanism is efficient to model 15

treatments interaction and in improving the prediction of trajectories. 16

Keywords: Multi-task Learning; Clinical Gait Analysis; Pathological Gait; Deep Learning; Long 17

Short-Term Memory; Botulinum Toxin 18

1. Introduction 19

Fatigue, weakness, sensory loss, ataxia, and spasticity are among the usual causes of 20

motor impairments due to neurological diseases such as multiple sclerosis (MS) [1], TBI, 21

spinal cord injury (SCI) or CP, among others. For this reason, people with such impairments 22

are often advised by their physicians to be treated in rehabilitation as a supplement to their 23

background pharmacologic treatment. Spasticity is a motor disorder characterized by a 24

velocity-dependent increase in tonic stretch reflexes (muscle tone) with exaggerated tendon 25

jerks resulting from hyper-excitability of the stretch reflexes as one component of the upper 26

motor neuron syndrome [2]. Intramuscular injection of BTX-A is a standard treatment 27

for spasticity. It has been shown that BTX-A produces improvements in lower and upper 28

limb function [3], thereby improving movement such as walking [4] (see Figure 1) or fine 29

motor skills. The minimum and maximum dose of BTX-A may vary depending on the 30

muscle that is considered [5]. Furthermore, the total dose of BTX-A (sum of doses for all 31

treated muscles) should not exceed a recommended amount according to the patient and 32

the considered muscles (i.e., upper limbs and lower limbs). BTX-A is a relatively expensive 33
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pharmaceutical product and its consumption has increased in recent years [6,7]. Although 34

its effect on muscle function is considered reversible, BTX-A treatment presents risks (i.e., 35

undesirable effect) and injection sessions should be spaced by at least 3 months. For all 36

these reasons, optimizing BTX-A treatment by choosing the right muscles to be treated and 37

the dose distribution is a complex task of great relevance, and requires careful study of the 38

patient’s condition. 39

(a)

(b)

Figure 1. Example of the outcome of BTX-A treatment on gait (a) before treatment (b) after BTX-A
treatment.

In practice, decision-making is based on a patient’s medical history, physical exam- 40

ination, and Clinical Movement Analysis (CMA). CMA consists in studying movement 41

troubles and identifying their plausible causes, based on biomechanical interpretation of 42

instrumental measures [8] (Figure 2). If certain quality criteria are fulfilled, CMA data are 43

sufficiently reliable for clinical interpretation [9]. CMA techniques can be used to analyze 44

lower limb movement (e.g., walking, climbing stairs, running, etc.) or fine motor skills. 45

Numerous scientific studies have shown that CMA, especially Clinical Gait Analysis (CGA), 46

provides considerable aid in the assessment and treatment decision for various neurological 47

diseases such as CP [10], post-stroke hemiparesis [11], MS [12], among others. 48

Artificial Intelligence (AI) and Machine Learning (ML) techniques have become almost 49

ubiquitous in our daily lives by supporting or guiding our decisions and providing rec- 50

ommendations. Therefore, it is not surprising that ML approaches are currently becoming 51

more and more popular in precision medicine and fulfill an increasing demand for new 52

healthcare solutions, in particular a better understanding of pathological processes. Among 53

AI and ML methods, deep neural network (DNN) [13] have already shown spectacular 54

results in clinical decision-making aid [14]. DNN require a significant amount of data 55

to be properly trained. However, available experimental databases are often limited in 56
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Figure 2. CMA of lower limbs. Different types of sensors are used to conduct kinematic and kinetic
analyses of locomotion in gait labs. These include accelerometers, gyroscopic sensors, magnetometers,
force platforms, MoCap systems.

size, which makes these impractical to construct DNNs for prediction models. Medical 57

data is often heterogeneous, complex, incomplete, uncertain, multimodal, and multilevel, 58

which drastically decreases the amount of exploitable data and questions the development 59

of prediction models [15]. ML models must be able to manage data of a different nature 60

describing the patient (images, time series, discrete clinical data, etc.) and link them to 61

data from treatment in nominal, categorical (type of treatment) [16] and/or discrete (doses) 62

forms. This requires that the model be taught a regression task between the data after 63

and before BTX-A treatment. Since these treatments are often a combination of several 64

factors (e.g. several drug injections), it is necessary to be able to model their interactions. 65

Therefore, we propose a strategy to create multitask deep artificial neural networks (DNN). 66

Indeed, MTL can cope with sparse data problems and build a more robust model by sharing 67

knowledge among different tasks [17]. MTL has been widely applied in ML and in the 68

biomedical field, to address the diversity of the data [17]. 69

In the CGA-literature, several works exploited Deep Learning (DL) for predicting gait 70

trajectories, most of them on healthy gait. Su et al. [18] predict gait trajectories and the five 71

gait phases (loading response, mid-stance, terminal stance, pre-swing, and swing) with an 72

Long Short-Term Memory (LSTM) to help in the design of exoskeletons. They employed 73

either 10 or 30-time steps as input for predicting the next five or ten steps. 12 people were 74

enrolled in their experiment and data were collected using attached inertial measurement 75

units (IMUs) on their body parts. Zhu et al. [19] used an attention-based Convolutional 76

Neural Network (CNN)-LSTM to forecast joint trajectories of knee and ankle, based on 77

lower and upper limb data, for the next 60 milliseconds. Zaroug et al. [20] constructed 78

an LSTM auto-encoder to forecast linear acceleration and angular velocity trajectories. To 79

make a prediction of five or ten steps into the future, they considered several lengths of 80

input time steps (five to 40 steps) of kinematic data of six male participants. Hernandez 81

et al. [21] proposed a hybrid network combining an LSTM with a CNN(DeepConvLSTM) 82

to estimate kinematic trajectories, reaching an average Mean Absolute Error (MAE) of 83

3.6°. Jia et al. [22] constructed a DNN for trajectory prediction using LSTM units and a 84

feature fusion layer. This layer uses EMG and joint angles data. Liu et al. [23] built a 85

deep spatio-temporal model composed of LSTM units to forecast two time-steps into the 86

future, using kinematic data of 35 subjects. More recently, Kolaghassi et al. [24] worked 87

on pathological gait trajectories of children with neurological disorders. They used two 88

deep learning models, an LSTM and a CNN, to forecast hip, knee, and ankle trajectories. 89

Note that all these works tackle the prediction of the same gait cycle. The issue we face in 90

this study is much more complex since it is centered on the impact of several treatments 91

(BTX-A) on gait trajectories. 92

Our contribution consists in proposing a new solution to predict the BTX-A post- 93

treatment gait trajectory of the patient, and possibly the interaction between different 94

treatments. This solution is a MTL architecture which alleviates the drawbacks previously 95
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mentioned: dataset size (number of patients), sample size (number of features), and 96

features diversity. To the best of our knowledge, this is the first time that MTL is used for 97

post-treatment gait trajectory prediction. This architecture is composed of a collection of 98

LSTM-shaped sub-models, arranged in parallel or in series. Each sub-model is used for 99

one treatment, and each treatment corresponds to an injected muscle. These muscles are 100

attached to the left and right knees and ankles. This MTL model will learn to map pre- 101

treatment gait sequences into post-treatment sequences. A gating mechanism is proposed 102

with different architectures, to control the treatments’ influence on the final prediction. 103

Section 2 presents the data collection and its characteristics. Section 2.3 describes more 104

specifically the different deep architectures used. Most prominent results are presented in 105

section 3. The paper ends with a conclusion and a short discussion. 106

2. Materials and Methods 107

2.1. Dataset Acquisition 108

Data were collected in the Movement Analysis Laboratory of Rehabilitation Center of 109

UGECAM Coubert (France) using a Codamotion system consisting of four CX1 cameras at 110

100 Hz. All the patients in this laboratory are adults with different types of gait issues. This 111

database consists of patients with central neural system disorders, e.g. CP, SCI, TBI and all 112

patients have undergone spasticity treatment with BTX-A injections. 113

The database is composed of Npat =38 patients. Nuni = 15 patients (39.47%) are 114

unilaterally affected (the right lower limb is affected in 6 of them and the left lower limb 115

for the other 9), and Nbil = 23 patients (60.53%) are bilaterally affected, which means 116

that in total Nlimbs = 61 lower limbs have been modified. The data contains CGA of 117

patients before treatment, medical treatment details, and CGA after treatment. The average 118

age of patients at the time of pre-treatment CGA, time of injection, and the time of post- 119

treatment CGA are 46.67 years old (yo), 46.76 yo, and 46.93 yo respectively. The range 120

of age in the dataset is from 21 to 75 yo. There is approximately a 3-month gap between 121

pre-treatment CGA and post-treatment CGA. Details of patients are listed in Table 1. In 122

this work, we considered injections into four muscles: Soleus, Gastrocnemius (Medialis 123

and Lateralis), Semitendinosus, and Rectus Femoris. We also defined a fifth category called 124

"Other Muscles", which groups all the other muscles that were treated (see Table 2). 125

There are 28 different combinations of BTX-A injections of these four muscles. A
treatment binary code vector

sj = (sj
1, . . . , sj

c)
T , sj

i ∈ {0, 1}, i = 1 . . . c(c = 5 as shown in Table 1)

is attributed to each lower limb i, with sj
i = 1 if muscle i was injected in limb j, 0 otherwise 126

and dj = (dj
1, . . . , dj

5)
T , dj

i ∈ {0, 1} is a binary vector put for the disease of patient’s limb j. 127

There are five diseases: CP, MS, TBI, SCI, and stroke. T is the transpose operator. 128

Table 1. Patient database description.

Total Patients 38
Age (Mean ± SD) 46.76 ± 13.43
Males/Females 24/14
Unilaterally/ Bilaterally affected 15/23
Cerebral Palsy 3
Stroke 9
Multiple Sclerosis 12
Traumatic Brain Injury 3
Spinal Cord Injury 11
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Table 2. Considered Injected muscle and their frequencies in the database.

Muscle Number Muscle/Category Injections in patient
Number Proportion

1 Soleus 49 29.7%
2 Gastrocnemius Left 37 28.5 %
3 Rectus Femoris 18 10.8%
4 Semitendinosus 12 7.2%
5 Other Muscle 40 24.2 %

2.2. Data Preparation 129

Kinematic data were automatically segmented into gait cycles from initial contact (IC) 130

to terminal swing (TS), utilizing the high pass algorithm (HPA) [25]. Then gait cycles were 131

resampled and normalized to 51 points (2% of the gait cycle) as proposed by CGA [26], 132

so that DL models are trained with fixed-length sequences as illustrated in Fig. 3. Mean 133

gait cycles were computed for each limb.Combining both pre and post-treatment cycles of 134

each patient leads to a total of n = 1, 622 gait strides. For any patient’s limb j, the input 135

vector is an angular time series xj = (xj
1, . . . , xj

m)
T ∈ [−180,+180]m and the target vector 136

is t j = (tj
1, . . . , tj

m)
T , with m = 51 × 2 = 102. Let D = {xj, t j, dj, sj}n

j=1 be the input-target 137

training set. 138

The patient’s data consists of multiple gait cycles at the time of pre-treatment CGA 139

and post-treatment CGA. Different trials were recorded for each patient. In one trial, there 140

are multiple cycles of pre-treatment CGA. We extract all the cycles of all patients and store 141

them. We separate the right and the left cycles of a person since we consider them as 142

different samples in the data. We perform the same procedure for post-treatment CGA 143

data. Each pre-treatment cycle is associated with a target post-treatment cycle. Note that 144

the number of cycles per patient varies from one patient to another. 145

There is a total of 5 joints (pelvis, hip, knee, ankle, and foot) and 3 signals per joint 146

in our dataset, leading to 15 signals. These three signals represent the projections of the 147

trajectory of each joint, respectively, on the sagittal, frontal, and transverse planes. In this 148

study, we only consider knee and ankle sagittal planesbecause most treatments are done 149

around these joints.Figures 3a and 3d show the sagittal plane signal (flexion/extension) of 150

ankle and knee for a patient’s complete trial containing multiple cycles. 151

Figures 3b and 3e show a cycle extracted from the full knee and ankle trials, respec- 152

tively.Figures 3c and 3f show the normalized cycle into 51 points. In the end, our dataset 153

contains 1,622 samples and 210 features: the first feature represents the ID (patient name), 154

the second to 103rd are features of the pre-treatment CGA, then c = 5 features describe 155

the presence or absence of botulinum toxin injection according to muscles categories, and 156

finally the last 102 features concern the post-treatment CGA of a patient. 157

An input matrix X and a target output matrix Y are constructed using the parameters 158

of n training samples, f features (the sagittal plane of the ankle and knee), lin input size, and 159

lout output size. Pre- and post-treatment data were centered and reduced by the standard 160

deviation. The goal is to construct a model with g() that maps Ŷ = g(X), where Ŷ is a value 161

that is very close to the actual value Y. 162

2.3. Description of the models 163

2.3.1. Long Short-Term Memory 164

When training, early recurrent networks had difficulty remembering information for 165

long periods of time, such as several thousand time steps. Hochreiter et al. [27] introduced 166

a special memory cell capable of retaining information for long periods of time. The LSTM 167

can read and write to its memory. More importantly, this memory never goes through an 168

activation function. This effectively combats the [28] trailing gradient problem and makes 169

the formation of this pattern very stable. 170
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(a) Knee trial. (b) Knee cycle. (c) Knee normalized cycle.

(d) Ankle trial. (e) Ankle cycle. (f) Ankle normalized cycle.

Figure 3. Process of converting one trial to one normalized cycle

The original LSTM works with a series of input signals xt. It has a so-called hidden 171

state ht and cell state ct of the same size as xt. The cell state ct is the model’s memory. The 172

hidden state ht is the model’s prediction of xt. 173

The LSTM equations are defined by the following set of matrix equations; 174

A = ht∥1xt (1)

f t = σ(W f A + b f ) (2)

it = σ(Wi A + bi) (3)

ot = σ(WO A + bO) (4)

dt = tanh(Wd A + bd) (5)

ct+1 = f t ◦ ct + it ◦ dt (6)

ht+1 = ot ◦ tanh (ct+1) (7)

where ∥1 is the concatenation operator, ◦ is put for the Hadamar product, σ is the 175

logistic function, W are weight matrices and b biases. The basic idea is that the model 176

takes the input xt and the previous prediction of the current input ht , updates its internal 177

memory ct to ct+1 and then makes a new prediction ht+1 based on ct+1, ht and xt. 178

The original LSTM could have multiple parallel memory cells ct, but as in practice 179

mostly only one memory cell is used; the description of the LSTM was limited to one ct. 180

All the gate functions (equations 2 to 4) are fully connected layers such as y = f (Wx + b) 181

with a sigmoidal activation function. The data flow in the LSTM is illustrated in Figure 4) 182

Als,o the role of ht is not strictly fixed to be a prediction of xt. In fact it can be any 183

series of predictions that is connected to the input series xt. For example, if xt was the 184

number of people who entered (or left) a building in the last hour, then ht could be the 185

current number of people inside the building (with an appropriate scaling, so it fits the 186

output range [-1, 1]). 187

For this study, we have used several variants of LSTM. 188
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Figure 4. LSTM Unit. The gates which decide which part of the information to pass on are orange.
Green is the update to the memory cell.

Five categories of used treatments are reported in Table 2: BTX-A injection of the first 189

four muscles and the fifth category of injections in all other muscles. Each treatment is 190

represented by a LSTM layer. Hidden states represent, according to the DL architecture 191

used, the presence or absence of treatments by BTX-A in the five muscles. 192

While the LSTM is well suited to prediction tasks on time series, sometimes the 193

knowledge about future events is necessary for a correct prediction. So, the term future is 194

relative to t and means the following data points. Of course, the next/future data points 195

must already be known to be included in the prediction. [29] identified two strategies to 196

integrate knowledge of future events into an LSTM model: bi-directional recurrent neural 197

network (RNN) [30] and delayed input, this second approach consisting in delaying the 198

signal by a delay τ. 199

Model 1 LSTM is used with pre-treatment CGA data and post-treatment CGA data. Treat- 200

ments were not considered in this experiment. The model was implemented using 201

five layers of LSTM units, with 51 units per layer, one unit for each point of a cycle. 202

Note that each unit receives a pair of inputs for the knee and ankle respectively. 203

The final layer is fed into a dense layer of 102 neurons (2×51 values), which is then 204

reshaped to get the desired output, shown in Figure 5a. In this model, we initialize 205

the values of the cell state and hidden state of each layer to 0. 206

Model 2 Total of 5 treatments, together with pre-and post-treatment CGA data, were included 207

in this model, displayed in Figure 5b.In this architecture, the values are initialized 208

according to the medical treatment. If one patient was injected into muscle 1 and 209

muscle 3 (Table 2), then all components of the hidden states vector in LSTM layer 210

1 and LSTM layer 3 are initialized to 1, and other layers’ hidden states vector is 211

initialized as 0. In this model, we also initialize the cell state as 0. 212

2.3.2. Bi-directional LSTM 213

The entire signal must be known for this approach. Two LSTM models are trained 214

in parallel, one on the input series (forward) and the other on the reverse input series 215

(backward), starting with the last input and then the forward- last and so on. Thus for each 216

t there are two hidden states h1,t and h2,t among the two available models. h1,t only contains 217

information about the past and h2,t only contains information about the future. Together 218

they have the information about the whole signal and the final prediction f (h1,t, h2,t) is 219

made using the two hidden states. This method has the disadvantage that two models have 220

to be trained and therefore the number of parameters and the training time are doubled. 221

We study the Bi-directional LSTM (Bi-LSTM) architecture and consider two experi- 222

ments, namely with and without MTD, as previously presented on LSTM. 223



Version October 3, 2022 submitted to Journal Not Specified 8 of 20

(a) (b)

Figure 5. LSTM architectures (Model 1 and Model 2) proposed in this work: (a) without MTD; (b)
with MTD

Model 3 is a Bi-LSTM, as depicted in Figure 6. As shown in Fig. 6, the model has mainly the 224

same structure as the previous Model 1 (same number of layers and units in each 225

layer). The final layer’s hidden state is fed into a fully connected layer. As in Model 1, 226

we initialize the values of the cell state and hidden state of each layer to 0. 227

Model 4 This model takes into account MTD in a Multi-task architecture of Bi-LSTM models. 228

Indeed, five Bi-LSTM models work in parallel, while incorporating MTD as in Model 229

2. Each Bi-LSTM has 51 units, each receiving as input a pair for knee and ankle 230

respectively. Input X is fed to the five Bi-LSTM sub-models, and the cell state of 231

all such sub-models was initialized to 0. Also, the hidden states of all sub-models 232

were initialized according to the presence or absence of MTD (as discussed in Model 233

2). This architecture has two fully connected layers: the first layer concatenates the 234

outputs of all the sub-models and the second maps the output of the first layer to 102 235

neurons as per desired output, as shown in Figure 7a. 236
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Figure 6. First Bi-LSTM architecture (Model 3) proposed in this work without considering MTD.

Model 5 This model is also a Multi-task architecture of Bi-LSTM sub-models, as in Model 4. 237

But in this case, MTD is considered differently, with a gating mechanism: instead 238

of passing MTD as a hidden state of each Bi-LSTM sub-model, we incorporate them 239

at the end of such sub-models, by multiplying each sub-model’s output by its cor- 240

responding binary value of MTD. In other words, if there is any treatment, it will 241

be used further in the model; otherwise, it will be discarded (multiplying with 0), as 242

illustrated in Figure 7b. By doing this experiment, we want to assess the impact of 243

this gating mechanism comparatively to MTD internal processing by each sub-model 244

as done in Model 4. 245

Model 6 & 7 In both models, we replace the first fully connected layer (FC Layer 01) (see 246

Figure 7a and Figure 7b) by a convolutional layer (see Figure 7c and Figure ??, with 247

kernel size (5,2) and stride (3,2). As there are five Bi-LSTM sub-models and each 248

has an output of size 2×102, we concatenate such outputs and reshape them into a 249

matrix of size (10x102), then given as input to the convolutional layer. Finally, the 250

convolutional layer’s output is fed into a fully connected layer of size 102. Model 6 251

incorporates MTD as in Model 4, through the internal states of sub-models. Model 7 252

uses the gating mechanism as in Model 5. 253

2.3.3. Experimental Setup 254

CGA data consists of 1622 combination pre-treatment and post-treatment gait cycles 255

of 38 patients. Leave-One-Out Cross Validation was used to assess models’ performance. 256
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(a) (b)

(c) (d)

Figure 7. Multi-task Learning architectures with Bi-LSTM sub-models; (a) Model 4: processing MTD
internally in each sub-model; (b) Model 5: incorporating MTD through a gating mechanism; (c)
Model 6: processing MTD internally in each sub-model using Conv layer; (d) Model 7: incorporating
MTD through a gating mechanism using Conv layer

For each iteration, we used 37 patients for training the model and one for testing. In the 257

end, we have taken the RMSE of all tested patients for each model. Mini-batches were 258

used throughout the training process for all models, and the size of each batch was 16. 259

We chose the RMSE as the loss function for optimizing the deep learning models and 260

used the ADAM optimizer for learning. We tried different learning rates and selected 261

the best possible values were selected. We report in Table 3 all details concerning models 262

hyper-parameters. 263

We calculated the RMSE to see how closely the predicted trajectories of knee and ankle, 264

Ŷ, match the actual trajectories of knee and ankle, Y. The following equation of RMSE can 265

be derived if we assume that n represents the number of testing samples, f represents the 266

number of features, and lout represents the output size. 267

RMSE =

√√√√ 1
n f lout

n

∑
i=1

f

∑
j=1

lout

∑
k=1

(
yi,j,k − ŷi,j,k

)2
(8)

We also calculated standard error (SE) to measure the variation of RMSE with respect 268

to each disease. SE is calculated using the following formula, where σ represents the 269

standard deviation (SD) of prediction with respect to a particular disease and n represents 270

the total number of patients having a particular disease. 271
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Table 3. Hyper-parameters selection for LSTM, Bi-LSTM, and other variants of architectures. MTD
column is used for medical treatment data (included/ not included).

Model No. and
Fig. Reference Model Type MTD LSTM layers

(units) Conv. Layer FC layers (units) Learning rate

Model 1 (Fig. 5a) LSTM (Serial) No 5 layers (51) None 1(102) 0.005

Model 2 (Fig. 5b) LSTM (Serial) Yes 5 layers (51) None 1(102) 0.005

Model 3 (Fig. 6) Bi-LSTM (Serial) No 5 layers (51) None 1(102) 0.005

Model 4 (Fig. 7a) MTL, 5 Bi-LSTMs Yes 1 layer per sub-
model (51) None 2 (1020 & 102) 0.005

Model 5 (Fig. 7b) MTL, 5 Gated
Bi-LSTMs Yes 1 layer per sub-

model (51) None 2 (1020 & 102) 0.005

Model 6 (Fig. 7c) MTL, 5 Bi-LSTMs
+ Conv Layer Yes 1 layer per sub-

model (51)
Kernel(5,2),
Stride(3,2) 1(102) 0.005

Model 7 (Fig. 7d)
MTL, 5 Gated
Bi-LSTM + Conv
Layer

Yes 1 layer per sub-
model (51)

Kernel(5,2),
Stride(3,2) 1(102) 0.001

SE =
σ√
n

(9)

We compare and evaluate the performance of the models with the use of these mea- 272

sures. 273

3. Results 274

We evaluate models 1 to 7 on our dataset with the above-mentioned metrics and 275

display results in Table 4. These results show the angle difference between actual and pre- 276

dicted trajectories with different architectures. Lowest average RMSE values are displayed 277

in bold; they correspond to the best prediction model according to the diseases reported in 278

Table 4. 279

From Table 4, we notice that Model 4 outperformed other models in the prediction of 280

post-treatment gait trajectories for patients having MS and TBI. Also, Model 6 performed 281

better for SCI patients than all other architectures. Model 7 outperformed other models of 282

patients having Stroke and CP. We notice that in all cases MTL architectures achieve better 283

performance globally, on both knee and ankle signals. 284

The following two tables (Table 5 and Table 6) report the difference in angles from 285

actual to predicted gait trajectories of knee and ankle, respectively. In Table 5, the best 286

prediction for Knee angle is obtained for TBI patients by Model 5 with a 5.60°. Also, for 287

all diseases, MTL architectures outperform the others. Model 6 gives the best prediction 288

for MS and SCI; we also note that the gap between Model 6 and Model 7 is prominent. On 289

the other hand, for Stroke patients, Model 7 outperforms the others. In Table 6, we notice 290

that the best RMSE for the ankle is 4.38°, predicted by Model 4, which is lower than that 291

obtained on the knee (5.60°). In case of the ankle, Model 7 gives the best results for SCI 292

4.49° and again Stroke 6.26°. 293
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Table 4. Performance of different models in prediction of post-treatment gait trajectories with respect
to different diseases.

Model
No. and
Fig. Ref-
erence

Model Type

Spinal
cord
injury
(SCI)

Multiple
sclerosis
(MS)

Stroke
Cerebral
palsy
(CP)

Traumatic
brain in-
jury
(TBI)

No. of patients

11 12 9 3 3

No. of Cycles

474 530 322 148 148

RMSE Mean ± Standard Error

Model 1
(Fig. 5a) LSTM (Serial) 6.82±0.09 6.89±0.10 8.11±0.19 7.66±0.14 5.87±0.11

Model 2
(Fig. 5b) LSTM (Serial) 6.71±0.08 6.77±0.08 8.03±0.19 7.23±0.11 7.63±0.32

Model 3
(Fig. 6) Bi-LSTM (Serial) 6.9±0.10 6.38±0.10 7.06±0.18 7.2±0.10 7.78±0.22

Model 4
(Fig. 7a) MTL, 5 Bi-LSTMs 6.26±0.08 5.8±0.11 6.99±0.019 6.57±0.12 5.24±0.13

Model 5
(Fig. 7b) MTL, 5 Gated Bi-LSTMs 6.67±0.08 6.11±0.09 7.73±0.29 6.22±0.14 6.07±0.21

Model 6
(Fig. 7c) MTL, 5 Bi-LSTMs + Conv Layer 5.75±0.08 6.08±0.12 7.16±0.24 6.2±0.12 6.58±0.14

Model 7
(Fig. 7d) MTL, 5 Gated Bi-LSTMs + Conv Layer 6.31±0.12 7.59±0.13 6.24±0.14 6.00±0.14 7.02±0.07

Bold entries denote the lowest average RMSE over all limbs having a given disease.
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Table 5. Performance of different models in prediction of post-treatment knee gait with respect to
different diseases

Model
No. and
Fig. Ref-
erence

Model Type

Spinal
cord
injury
(SCI)

Multiple
sclerosis
(MS)

Stroke
Cerebral
palsy
(CP)

Traumatic
brain in-
jury
(TBI)

No. of patients

11 12 9 3 3

No. of Cycles

474 530 322 148 148

RMSE Mean ± Standard Error

Model 1 LSTM (Serial) 7.73±0.09 8.05±0.11 8.62±0.21 10.16±0.13 6.66±0.09

Model 2 LSTM (Serial) 7.58±0.08 8.26±0.09 7.85±0.17 8.56±0.12 8.05±0.27

Model 3 Bi-LSTM (Serial) 8.11±0.13 7.41±0.12 7.77±0.21 7.42±0.11 7.89±0.28

Model 4 MTL, 5 Bi-LSTMs 7.51±0.08 7.23±0.14 7.14±0.018 6.75±0.11 5.81±0.13

Model 5 MTL, 5 Gated Bi-LSTMs 7.62±0.10 7.23±0.11 8.02±0.25 7.00±13 5.60±0.06

Model 6 MTL, 5 Bi-LSTMs + Conv Layer 6.94±0.09 6.78±0.14 7.19±0.25 8.63±0.18 8.24±0.17

Model 7 MTL, 5 Gated Bi-LSTMs + Conv Layer 8.14±0.12 8.52±0.13 6.21±0.14 7.82±0.14 5.94±0.07

Table 6. Performance of different models in prediction of post-treatment ankle gait with respect to
different disease

Model
No. and
Fig. Ref-
erence

Model Type

Spinal
cord
injury
(SCI)

Multiple
sclerosis
(MS)

Stroke
Cerebral
palsy
(CP)

Traumatic
brain in-
jury
(TBI)

No. of patients

11 12 9 3 3

No. of Cycles

474 530 322 148 148

RMSE Mean ± Standard Error

Model 1 LSTM (Serial) 5.91±0.08 5.73±0.08 7.61±0.16 5.16±0.14 5.09±0.13

Model 2 LSTM (Serial) 5.85±0.07 5.29±0.07 8.21±0.21 5.89±0.10 7.22±0.36

Model 3 Bi-LSTM (Serial) 5.69±0.007 5.35±0.07 6.34±0.15 6.99±0.09 5.66±0.15

Model 4 MTL, 5 Bi-LSTMs 5.01±0.08 4.38±0.08 6.85±0.19 6.4±0.12 4.68±0.13

Model 5 MTL, 5 Gated Bi-LSTMs 4.56±0.06 5.39±0.10 7.14±0.22 3.77±0.05 4.93±0.10

Model 6 MTL, 5 Bi-LSTMs + Conv Layer 5.72±0.06 5.00±0.06 7.44±0.32 5.45±0.14 6.54±0.36

Model 7 MTL, 5 Gated Bi-LSTMs + Conv Layer 4.49±0.06 6.66±0.19 6.26±0.26 4.17±0.09 10.63±0.26
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From a different perspective, the following graphs (in Fig. 8 and 9) illustrate the 294

trajectories (pre-treatment, real post-treatment, predicted post-treatment of the patient, and 295

standard trajectory of an adult) of two patients. The Y-axis represents the ankle dorsiflexion 296

or knee flexion, and the X-axis represents the gait cycle of a patient. 297

Figure 8 compares the prediction of different models on the knee and ankle joints 298

in a patient diagnosed with CP. These figures differentiate the prediction between MTL 299

models and others. Figures 8a, 8b and 8c illustrate the predictions on the Knee angles 300

made by Model 1, Model 2, and Model 3, which are not MTL models. Figure 8d shows the 301

corresponding prediction of Model 7, that is MTL model. Predictions of post-treatment 302

gait from Model 7 are better than others. In other words, it is closer than the expected 303

post-treatment gait trajectory for that patient (average of all his/her target gait cycles in the 304

training set). On the other hand, sub-figures 8e, 8f, 8g, and 8h compare the prediction of 305

the ankle joint of the same patient. Figures 8e and 8f illustrate the prediction of Model 1 306

and Model 3, respectively. Figures 8g and 8h show the predictions of Model 4 and Model 7, 307

respectively, that are MTL models. We notice that the predicted post-treatment trajectory in 308

the Fig. 8g is better than the first two models that are serial and we see the Fig. 8h improves 309

the prediction significantly at the end of the gait cycle, between 80% and 100%, compared 310

to Fig. 8g. On this patient, MTL models also perform better on the ankle joint. 311

Figure 9 compares the trajectories of the knee and ankle joints of another patient 312

diagnosed with MSs. Figures 9a and 9b, represent the predictions of Knee angles made by 313

Model 1 and Model 2, that are not MTL models. Figure 9c and 9d, represent the prediction 314

of Knee angles made by Model 4 and Model 6 respectively, that are MTL models. We can 315

see clearly that MTL models have better predictions than the first two models. Predicted 316

post-treatment trajectories are closer to real post-treatment trajectories. Last four sub-figures 317

9e, 9f, 9g, and 9h compare the trajectories of the ankle joint. Figures 9e, 9f, and 9g represent 318

the prediction of Model 1, Model 2, and Model 3. Although Model 3 is not a MTL model, 319

its predictions are much better than the first two serial models. But the prediction of the 320

MTL model (Model 5) in Figure 9h is better than all other models for this particular patient. 321

In general, as proven by Tables (4, 5, and 6), for almost every patient, MTL is performing 322

better. 323
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(a) Model 1: LSTM (Serial) (b) Model 2: LSTM with MTD (Serial)

(c) Model 3: Bi-LSTM (Serial) (d) Model 7: MTL, 5 Gated Bi-LSTMs + Conv Layer

(e) Model 1: LSTM (Serial) (f) Model 2: Bi-LSTM (Serial)

(g) Model 4: MTL, 5 Bi-LSTMs (h) Model 7: MTL, 5 Gated Bi-LSTMs + Conv Layer

Figure 8. Comparison of the post-treatment gait trajectory of the knee and ankle joint in a patient
diagnosed with CP. The first three models (a, b, and c) are serial (Model 1, Model 2, and Model 3),
and the fourth model (Model 7) is the MTL model that represents the prediction of the knee joint.
Sixth and seventh, two models (e and f) are serial (Model 1 and Model 3), and the last two models
(Model 4 and Model 7) are MTL models that represent the prediction of the ankle joint.
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(a) Model 1: LSTM (Serial) (b) Model 2: LSTM with MTD (Serial)

(c) Model 4: MTL, 5 Bi-LSTMs (d) Model 6: MTL, 5 Bi-LSTMs + Conv Layer

(e) Model 1: LSTM (Serial) (f) Model 2: LSTM with MTD (Serial)

(g) Model 3: Bi-LSTM (Serial) (h) Model 5: MTL, 5 Gated Bi-LSTMs

Figure 9. Comparison of the post-treatment gait trajectory of the knee and ankle joint in a patient
diagnosed with MS. The first two models (a and b) are serial (Model 1 and Model 2), and the third
and fourth models (Model 4 and Model 6) are the MTL model that represents the prediction of the
knee joint. Sixth, seventh and eighth, these three models (e, f, and g) are serial (Model 1, Model 2, and
Model 3), and the last model (Model 4) is MTL model that represents the prediction of the ankle joint.
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4. Discussion and Conclusion 324

In this study, we use MTL to design an LSTM model and its variants to predict the 325

post-treatment trajectory of adults with abnormal gait. To the best of our knowledge, this 326

specific prediction task, which exhibits greater inter- and intra-subject variability compared 327

to the trajectories of normal adults, has not been addressed before in the literature using 328

MTL. 329

In order to forecast the trajectories of the knee and the ankle in the sagittal plane, 330

we used LSTM. LSTM was chosen because it has been successfully applied to sequential 331

data and it is able to capture long-term dependencies through its learning [31]. To better 332

evaluate the performance of MTL on a given problem, we also implemented serial models 333

using LSTM as well. RMSE was used to compare the results of both sorts of models. The 334

RMSE of MTL models was lower for all types of patients (different pathologies). We can 335

conclude that MTL models perform better than serial models in our problem consisting of 336

multiple tasks (treatments). MTL architectures allow introducing the medical treatment 337

metadata into the model. Instead of performing a simple post-pre regression task, our 338

results imply that introducing the treatment information (i.e., muscles treated by BTX-A) 339

contributes to better performance. 340

Overall, the best prediction was obtained for TBI using Bi-LSTM with MTL (Model 4) 341

architecture. Results in Table 4 show that there is only a 5.24° average difference in actual 342

and predicted trajectories. The best maximum average RMSE error between actual and 343

predicted trajectories was 6.24° for stroke patients, using the MTL architecture with gated 344

Bi-LSTM and a convolutional layer (Model 7). For the knee and ankle separately, the best 345

results are 6.75° and 3.77° respectively for CP patients. Even though the proposed method 346

is not tested on the same database, these performances are better than the postoperative 347

predictions in cerebral palsy reported by Galarraga et al. [16], which are 9.0° and 7.5° for 348

knee and ankle gait trajectories respectively, using multiple linear regression. 349

It is concluded from the results that the number of patients and type of disease do 350

not directly affect the performance of the model. More precisely, we can say that inter- 351

and intra-subject variability affect the performance of the model more than the number of 352

patients (samples) and type of disease. Table 1 gives a detailed description of the number of 353

patients with each disease and Tables 4,5, and 6 report the number of training samples. The 354

minimum number of patients is 3 with CP and TBI diseases, while the maximum number 355

of patients is 12 in MS disease. We notice that the RMSE of CP patients and TBI patients 356

are 6.00° and 5.24°, respectively. On the other hand, the RMSE of MS patients is 5.8°. This 357

shows that having four times more patients for a given disease compared to others doesn’t 358

lead to a great difference in the RMSE value. 359

Finally, Bi-LSTM combined with MTL are highly effective at increasing the total 360

quantity of information that is accessible to the model, hence enhancing the context that is 361

provided to the algorithm. Future work will focus on MTL models with Bi-LSTM networks 362

for exploiting more precise information about treatments, such as the doses information, 363

for further enhancing the context given to the model. 364
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The following abbreviations are used in this manuscript: 383

384

CMA Clinical Movement Analysis
CGA Clinical Gait Analysis
AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
MTL Multi-task Learning
Single-task Learning (STL) Single-task Learning
DNN Deep Neural Network
MS multiple sclerosis
CP Cerebral Palsy
SCI Spinal Cord Injury
TBI Traumatic Brain Injury
BTX-A Botulinum Toxin type A
CNN Convolutional Neural Network
RNN recurrent neural network
LSTM Long Short-Term Memory
RMSE Root Mean Square Error
Standard Error (SE) Standard Error
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