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Abstract

This paper presents the design and modeling of a new aerial manipulator system,

called Q-PRR, composed of three joints with a fixed base in the center of mass

of the multirotor considered as a whole system. This structure has a prismatic

joint as a first joint which allows to keep the center of gravity of the Q-PRR as

close as possible to the center of gravity of the multirotor. This will also allow

to reduce the influence of arm motion on the multirotor roll thus to ensure

the stability of the system on trajectory tracking with dynamic changes in the

multirotor’s center of gravity. Furthermore, the configuration of the manipulator

arm for the desired position of the end-effector given by the inverse kinematics

model is kept without any change in the position and attitude of the multirotor.

This paper develops both forward and inverse kinematics models for a nonlinear

underactuated system using the Denavit-Hartenberg notation. When a new

algorithm is presented for the inverse kinematics based on Levenberg-Marquardt

algorithm. Then, the dynamic model in the joint spaces is developed with the

Lagrangian formalism. The Q-PRR is controlled using a model-free control with

a comparison of two states, a free fly and disturbance forces applied to the whole

system with manipulator arm movement.
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1. Introduction

Unmanned Aerial Vehicles (UAVs) have seen a growing interest due to nu-

merous applications such as search and rescue, film industry, civil engineering,

and so on. New applications such as aerial transportation or aerial manipulation

have led to the combination of an aerial vehicle with a robotic arm, that can

accomplish manipulation tasks that the human could not in the most danger-

ous situations and area. Quadcopters are the most popular aircraft platforms

in the aerial manipulation applications, nearly all systems consider a quad-rotor

with a revolute joints manipulator. The system support is placed on the first

joint while the other joints generate the workspace of the robot arm during

the UAV hovering. Many tools are attached to the UAV for grasping and ob-

ject manipulation, by using gripper, multi-fingered hand (flying hand FH) also

multi-link robotic arms. In this case, the object can be manipulated during

the flight and manipulators are usually placed as close as possible to the UAV

center of mass. These design and positioning choices are intended to avoid an

important change in the UAV’s inertia property and to reduce the effect of the

manipulator dynamics and generated torques on UAV. Several projects have

launched in Europe with aerial manipulation systems, namely remote aerial

inspection (AIRobot Marconi et al. (2012); Airobots), cooperative robot sys-

tem assembly and structural construction (ARCAS arcas), collaborative aerial

robotic workers (Aeroworks Aeroworks ), multi-arms aerial robotic system in-

tegration and advanced inspection and maintenance manipulation capabilities

(AEROARMSAeroarms). Aerial manipulators system can be classified by dif-

ferent properties, dimensions, number of rotors, mechanical configuration, robot

arm type, actuators, also with a number of multirotor. For the gripper tools,

many applications are presented for different Multirotors, low-complexity grip-

pers are designed for quadrotors to grasp beams and pick up of objects and

its presented in Mellinger et al. (2011), and for the carrying and transporting

payload with the helicopter is studying in Backus et al. (2014). By dimension
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there are small craft aerial manipulation when a very light robot arm is at-

tached to the quadrotor, helicopter platform and a fully actuated seven Degrees

of Freedom redundant industrial robotic arm for a heavyweight manipulator in

Huber et al. (2013). Several dimensions of UAVs and multi-rotor can be used to

carry a robot arm in manipulation tasks, in Ibrahim et al. (2017), the authors

present a hexacopter with a 3-Dof manipulator arm modeled with a Newton-

Euler method.

It is possible to distinguish various types and configurations of manipulators

mounted on the multi-rotors, serial robots as well as parallel robots. The Delta

manipulator fixed on one side of an UAV is presented in Fumagalli et al. (2014),

while in Cho and Shim (2017) and Danko et al. (2015), an aerial parallel manip-

ulator is designed. For the interaction of a manipulator with an object, forces

and torques are applied by using a dual 4-Dof arm on UAV Korpela et al. (2013).

In Yang and Lee (2015) a team of quad-rotors equipped with a 2-Dof robot arm

for cooperative tasks is designed. In Staub et al. (2017), the system composed

by a ground manipulator and one aerial robot collaborate with each other for

many ground-aerial tasks. A team of quad-rotors connected with an airborne

base where the robot arm is fixed in the system center is also considered Kim

et al. (2015).

For the aerial manipulation with a serial robotic arm, different configurations

varying from 1-Dof Thomas et al. (2013); Yang et al. (2014), an avian-inspired

1-Dof arm was applied to accomplish bird-like grasping under a multirotor, 2-

Dof Kim et al. (2013); Khalifa et al. (2015) to Pick up a small woodblock and

put it in a box, 3-Dof in Mersha et al. (2014), or even to seven-Dof in Heredia

et al. (2014). A hyper-redundant aerial manipulation arm has been designed

with a 9-Dof in Danko and Oh (2014). Moreover, a dual four degrees-of-freedom

manipulators attached to the gantry system perform grasping and manipulating

tasks is developed in Korpela et al. (2012).

Some works suggested compensating the position changing of the center of

mass CoM by putting a counterweight mass on the UAV when usually the center
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of the multirotor fixed frame is chosen to coincide with the center of gravity

(CoG). Since, it is profoundly affected by the movement of a manipulating

tool. With a parallel structure, authors in Keemink et al. (2012) use a Delta

mechanism, a design with 2-Dof passive rotational joints with a defined balance

for overcoming gravity and defining a stable position. The revolute joint is the

most widely used for the robot arm in the aerial manipulation field. However,

there is little work in aerial robotics where a prismatic joint is used, in Forte

et al. (2012), a manipulator arm composed of a prismatic joint is mounted on the

aircraft. In Mersha et al. (2014), the 1-Dof manipulator with a prismatic joint is

mounted on the quadrotor. In Backus and Dollar (2017) the prismatic-revolute-

revolute joint finger is used to grasp an object and fixed on the multirotor, the

function of that prismatic joint is to adapt the grasping device to the dimension

of the object.

A lightweight prototype 3-arms manipulator is used in Orsag et al. (2013)

to build an efficient system considered as legs of multirotor during the landing

and handling operations.

The literature lists many control strategies for aerial manipulation. For

instance, a Hierarchical Control of Aerial Manipulation Vehicle using PID con-

troller in operational space is presented in Kannan et al. (2017), when in Orsag

et al. (2013) a model reference adaptive control is proposed for a light-weight

prototype three-arm manipulator, each arm with 2 Dofs. While an adaptive hi-

erarchical control to compensate uncertain modelling is presented in Pierri et al.

(2018). To overcome contact force effects and external disturbances, the Carte-

sian impedance control is designed in Lippiello and Ruggiero (2012a). In Ko-

rpela et al. (2013), the proportional-integral-derivative (PID)-based controller

estimates the inertia moments and mass of two robotic arms and their motion

is considered to also be disturbances of the multirotor model. In Garimella and

Kobilarov (2015), a non-linear model predictive control (NMPC) approach is

proposed to achieve optimized performance for aerial pick-and-place task. In

Orsag et al. (2014), hybrid adaptive control is provided to achieve dynamic sta-

bility through a combination of Gain scheduling and Lyapunov based model
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adaptive control (MRAC). A proportional-derivative with sliding mode con-

troller (PD-SMC) based decoupled aerial manipulation is presented in Bouzgou

et al. (2020).

Model-free has recently attracted considerable attention from researchers, as

it does not require a precise system model to be controlled. As one of the free-

control strategies, (MFC) model free control, authors in Younes et al. (2016)

use a basic controller along with an ultra-local model to compensate for sys-

tem uncertainties and disturbances. Another technique is the artificial neural

networks, in Imanberdiyev and Kayacan (2019), for the outer adaptive position

controller of the aerial manipulator, the fusion of the artificial neural networks

and type-2 fuzzy logic controllers is presented. A variable parameter integral

backstepping algorithm is used for compensating the motion of a manipulator

Acosta et al. (2020).

The principle of stabilizing the global system with the control of the center

of gravity using mechanical devices is presented in some works. This device is

passive, its movement is provided just for aerial manipulator stabilization. A

structure with a moving battery to maintain the Center of Gravity (CoG) of

the whole system in a position as close as possible to the vertical axis and to

counterweight the effect of the 6-Dof robotic arm is presented in Ruggiero et al.

(2015). However, the battery movement is very limited when the end-effector

tried to reach a desired position and cannot ensure the alignment of both UAV

and robot arm center of gravity.

The principle of stabilizing the global system with the control of the center

of gravity using mechanical devices is presented in some works. This device is

passive, its movement is provided just for aerial manipulator stabilization. A

structure with a moving battery to maintain the Center of Gravity (CoG) of

the whole system in a position as close as possible to the vertical axis and to

counterweight the effect of the 6-Dof robotic arm is presented in Ruggiero et al.

(2015). However, the battery movement is very limited when the end-effector

tried to reach a desired position and cannot ensure the alignment of both UAV

and robot arm center of gravity.
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Figure 1: The structure of Q-PRR with principal frames

In this paper, the design of an aerial 3-Dof manipulator arm is developed

Bouzgou et al. (2019), offering several features such as: 1) This structure can

be mounted on any UAV such as multi-rotor or helicopter. 2) It ensures a wide

workspace and stability of the flying system. 3) It offers many configurations

of robot arm, the choice of the position and joints value for a specific task

are provided by using the equation of the center of gravity as a constraint on

the inverse kinematics model. 4) The first prismatic joint can compensate a

small revolute joint displacement of the second and third joints due to the UAV

oscillation. 5) The control of the system is ensured by a combination of CoGs

in the kinematics model solutions. 6) The interaction between multirotor and

moving manipulator. 7) The interaction between whole system and the object

environment. There are multiple functions of the prismatic joint for the desired

end-effector orientation, the first is to keep the center of gravity of the overall

system as close as possible to the vertical z-axis, the second is to ensure a small

displacement of the system along (x, y) axes when the target is reached and to

maintain the same configuration of the manipulator.

This article is organized as follows. The next section describes the modelling

part, while in the first subsection, the forward and inverse kinematic modelling
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is presented using the D-H convention. In the next subsection, a new algorithm

to obtain the inverse kinematic model is developed, when the dynamic model

for the coupled system is introduced using a Lagrange formalism in the last

subsection. In section 3, the control approach of the Q-PRR is presented.

Simulations and scenarios are shown with discussions of results in section 4.

Finally, conclusions and research prospects are presented in the last section.

2. System Modeling

Modeling and control are the important challenges of aerial manipulation.

There are two approaches to address modeling and control problems. The first

independent approach divides the system into two separate parts and models are

designed of each component Pereira et al. (2016). This approach considers the

motion and dynamics of the manipulator as external disturbances that disturb

the multirotor stability, therefore, it is easier to implement it. The second is a

global modeling approach Xilun et al. (2019); Lippiello and Ruggiero (2012b), by

considering the multirotor and attached manipulator arm as an overall system.

The challenge is that the center of mass (CoM) is constantly changing and the

complex dynamics of the aerial manipulator present an important modification

of the system center of mass and inertia parameters when the robot arm is

moving to the desired position. Therefore, the robot arm interaction with the

UAV base generates forces and torques that disturb the system.

Consider a system composed by a Multirotor vehicle equipped with a n−Dof

robotic arm attached to the bottom, depicted in Fig (1), Let
−→
E : {−→e1 ,−→e2 ,−→e3}

be the inertial reference frame, let
−→
B :

{−→
b1 ,
−→
b2 ,
−→
b3

}
be the mobile frame placed

at the vehicle center of mass, and ~Oi the body frame of i-th link, where i=1..n

denotes the link number. All body-fixed coordinate frames are located at the

center of mass of their corresponding rigid body.

The position of the frame
−→
B with respect to the inertial frame

−→
E , is given by

the (3×1) vector denoted by pb, while its orientation matrix denoted by Rb is

described by the sequence of rotations (XYZ) around axes of the fixed frame. It
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can be computed via premultiplication of three elementary rotation Rφ around

x, Rθ around y and Rψ around z. Hence, the attitude of multirotor can be

expressed by the vector ϕb =
[
φ θ ψ

]T
of roll-pitch-yaw Euler angles. Rb

can be written as follows

Rb =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφsψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (1)

where s∗ = sin(∗), c∗ = cos(∗), Rψ, Rθ, Rφ and Rb are matrices defined in the

special orthogonal group SO(3), which has the following property

SO(3) =
{
R ∈ R3×3|RTR = I, det(R) = 1

}
The translation coordinates of the multirotor center of gravity relative to inertial

frame
−→
E is given by the vector pb =

[
xb yb zb

]T
∈ R(3×1), where the pair

(pb, Rb) ∈ SE(3). Let Rbe be the orientation matrix of the frame attached to

the end-effector and pbe =
[
xeb yeb zeb

]T
be the position vector of origin of

such a frame with respect to
−→
B . The absolute position vector and orientation

matrix of the end-effector with respect to
−→
E is given by pe =

[
xe ye ze

]T
and Re respectively, the coordinate frame assignment is depicted in Figure (1).

2.1. kinematic Modeling

The Forward kinematic Model (FKM) gives the end-effector position that

corresponds to a given joint configuration of both the Q-PRR and the robot

arm. It is written as follows:

k : N (R9×1) −→M(R6×1)

ξi 7−→ χi = k(ξi)
(2)

where χi =
[
xe ye ze φe θe ψe

]
is the operational joint of the end-

effector, and ξi =
[
xb yb zb φ θ ψ q1...qn

]
is the generalized joints vec-

tor of nξ = 6 + n vector of the joint coordinates of the Q-PRR system. The

Forward kinematic model (FKM) can be decomposed in two sub-FKMs. The
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first is to determine the generalized end-effector coordinates in the base frame
−→
B as a function of the joint coordinates qeb =

[
r0 θ2 θ3

]
of the robot arm.

Hence, the FKM of the 3 Dof robot arm based on Denvit-Hartenberg conven-

tion is determined by considering the multirotor as the base for the manipulator.

Thus, it will be assumed that the first joint is static and fixed to the ground.

The second is to define the kinematics model of the overall system, where the

generalized end-effector coordinates (χi) are expressed in the reference frame
−→
E

as a function of the (ξi) joint coordinates using algebra and vector calculus.

The algorithm summarizing steps to obtain the Forward kinematics model is

described as follows

Algorithm 1 FKM Algorithm

1: Identify joint coordinates.

2: Identify geometric parameters that define the system.

3: Associate a reference frame to each joint.

4: Determine the orientation matrix R, position vector p of each attached frame

relative to the previous one.

5: Generate table Denavit-Hartenberg.

6: Formulate matrices of homogeneous transformations from the D-H table.

7: Compute the FGM of the Q-PRR system.

The FGM of the robot arm in the
−→
B frame needs some measures to establish

the D-H parameters. Such parameters must be obtained by putting the arm in

its zero position, i.e. when the values of the joints are zero; otherwise, for each

joint, a reference frame is allocated according to its type of joint, see Figure (2).

Substantiated assumptions on the modified parameters of Denavit-Hartenber

in Klug et al. (2019), should be taken into consideration when establishing the

D-H parameters, subsequently, are used to form homogeneous transformation

matrices that mathematically define the relative position and orientation of the

reference frames corresponding to the end-effector.
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Figure 2: Frame assignments according to the Denavit-Hartenberg (D-H) notations

Hypothesis 1. The transition between the reference frame, which the origin is

in the center of mass of the multirotor to the manipulator arm frame, is made

by two transformation matrices. The first is the rotation around the y-axis by

π
2 angle and the second is by the rotation around the z-axis with a π angle.

Hypothesis 2. The passage from the 3T4 frame to the attached end-effector

frame expressed in the
−→
B frame by 4Teb matrix is done by two transformation

matrices, π
2 is the rotation around the y-axis, then, -π2 around the z-axis.

The following table summarizes the values of the D-H parameters for the PRR

robot.

Table 1: Denavit–Hartenberg parameters for the PRR Manipulator

Link number (i) σi αi [rad] di [mm] θi [rad] ri [mm]

0 1 0 d0 0 r0

1 0 π d1 θ2 0

2 0 0 d2 θ3 0

3 0 0 d3 0 0
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Since the D-H parameters are already identified in the table 1. The transfor-

mation matrices from joint i-1 to joint i can be computed using (3) as follows:

iTi−1 =


cos(θi) sin(θi) 0 ai−1

cos(αi−1)sin(θi) cos(αi−1)cos(θi) −sin(αi−1) −risin(αi−1)

sin(αi−1)sin(θi) sin(αi−1)cos(θi) cos(αi−1) ricos(αi−1)

0 0 0 1


(3)

The manipulator transformation matrixbTeb is obtained by multiplying all

the transformation matrices as follows: bTeb =b T0
0T1

1T2
2T3

3T4
4Teb, and the

matrix that presents position and orientation of the PRR robot arm can be

written as follows

bTeb =


c23 0 s23 r0 + d2s2 + d3s23

0 1 0 0

−s23 0 c23 d0 + d1 + d2c2 + d3c23

0 0 0 1

 (4)

The following equivalence can be found for the global forward kinematic

model

bTeb =

Reb peb

01×3 1

 (5)

By multiplying the transformation matrix of the multirotor center of mass

with the matrix in (5). The position and orientation of the end-effector with

respect to the inertial frame
−→
E , can be defined with the following equations

 pe = pb +Rb p
b
eb

Re = Rb.R
b
eb

(6a)

(6b)

The position vector given by (6a), can be written as :

pe =


xe

ye

ze

 =


xb + zeb(sφsψ + cφcψsθ) + cψcθxeb

yb − zeb(cψsφ − cφsψsθ) + cθcψxeb

zb − sθxeb + cφcθzeb


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The rotation matrix in (6b) of the end-effector to respect to the inertial frame
−→
E is written as a function of ϕb vector, and θ2, θ3 rotation joint angles of the

robot arm, Re can be expressed as

Re =


c23cψcθ − s23(sφsψ + cφcψsθ) cψsφsθ − cφs

s23(cψsφ − cφsψsθ) + c23cθs cφcψ + sφsψsθ

−c23sθ − s23cφcθ cθsφ

c23(sφsψ + cφcψsθ) + s23cψcθ

s23cθsψ − c23(cψsφ − cφsψsθ)

c23cφcθ − s23sθ

 (7)

Given the orientation of the end-effector as a function of Euler angles (φe, θe,

ψe), the equation (7) can be rewritten in matrix elements form as

Re =


r11 r12 r13

r21 r22 r23

r31 r32 r33


It is useful to solve the inverse problem, i.e. Determine Euler angles correspond-

ing to the rotation matrix of the end-effector.

Assuming that r13 6= 0 and r33 6= 0 the following equations can be written

φe = atan2(r23, r13)

θe = atan2(
√
r213 + r223, r33)

ψe = atan2(r32,−r31)

Finally, equations of the Forward kinematics model of the whole system can be

given as follows
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

xe = xb + cψcθ(r0 + d2s2 + d3s23) + (d0 + d1 + d2c2 + d3c23)(sφsψ + cφcψsθ)

ye = yb + cθsψ(r0 + d2s2 + d3s23)− (d0 + d1 + d2c2 + d3c23)(cψsφ − cφsψsθ)

ze = zb − sθ(r0 + d2s2 + d3s23) + cφcθ(d0 + d1 + d2c2 + d3c23)

φe = atan2(r23, r13)

θe = atan2(
√
r213 + r223, r33)

ψe = atan2(r32,−r31)

(8)

2.2. Inverse Kinematics modeling

The inverse kinematics (IK) problem is to compute joint variables that corre-

spond to the desired position and orientation of the end-effector. In other words,

find qe for desired position pe and orientation matrix Re of the end-effector. The

inverse of 2 can be defined as

k−1 :M(R6×1) −→ N (R9×1)

χi 7−→ ξi = k−1(χi)
(9)

In the literature, several techniques for computing inverse kinematic equa-

tions are used to find closed-form solutions: Iterative methods defined as a

closed-loop inverse kinematic algorithm (CLIKA) is described inLippiello and

Ruggiero (2012b), numerical methods presented in Bouzgou and Ahmed-Foitih

(2014). In this paper a new numerical algorithm for the inverse kinematics

model is presented. It is based on the principle that multirotor should be in a

stable attitude for manipulation tasks and it will be when roll and pitch angles

are close zero. For the manipulation task, the ideal is that the multirotor is in

an equilibrium position, thus, motion along the x and y axis should be close

to zero, and since the θ and φ angles are the ones that generate the displace-

ment, they must also be either zero.Therefore, a following hypothesis can be

considered
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Hypothesis 3.

In the hovering flight:

1) ∀ pe ∈ R3, 2) φ = θ = 0, 3) zb > ze And zb >
i=3∑
i=0

di.

For desired end-effector position and orientation χi ∈ R6×1, a vector of

generalized coordinates ξ ∈ R9×1 will be found with an inhomogeneous set of

equations and under that assumption 3, a novel algorithm called (NAIK) which

combines the numerical method, the concept of the prismatic joint to achieve

the ideal position of the Center of mass of the manipulator and the Levenberg-

Marquardt algorithm is presented as

Algorithm 2 NAIK Algorithm

1: Desired position and orientation pde , ϕ
d
e .

2: Let θ = φ = 0.

3: Simplifying equation (8) with new value of θ and φ (10).

4: Computing ψ and (θ2 + θ3) (11)(12)

5: Substitution of variables (13)

6: Apply the (LM) non-linear optimization algorithm.

7: Computing zb.

8: Compute r0 from the center of the mass equation (18) using θ2,θ3values.

9: Compute xb and yb.

The simplified equation (8) in the hovering flight of the Q-PRR is written

as follows



xe = xb + cψ(r0 + d2s2 + d3s23)

ye = yb + sψ(r0 + d2s2 + d3s23)

ze = zb + d0 + d1 + d2c2 + d3c23

φe = atan2(sψc23, cψs23)

θe = atan2(s23, c23)

ψe = − 1
2 (π(sgn(s23))− 1)

(10)
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ψ is calculated from the 4th line of (10).


ψ = φe

or

ψ = φe − π

(11)

In the same way, (θ2 + θ3) is computed from the 5th line of (10).

tan(θe) = tan (θ2 + θ3). Then


θ2 + θ3 = θe

or

θ2 + θ3 = θe − π

(12)

Substituting the (11) and (12) results in the equation system (10) and by re-

moving the r0 variable. the new Q-PRR position equation is given:

 x′b = xb + cψr0

y′b = yb + sψr0
(13)

Therefore, from (11), (12) and (13), system of equations will be defined from

R9 to R4 with only three equations
xe = x′b + cφe(r0 + d2s2 + d3sθe)

ye = y′b + sφe(r0 + d2s2 + d3sθe)

ze = zb + d0 + d1 + d2c2 + d3cθe

(14)

Three equations with four unknown x′b,y
′
b,zb and θ2. It is a non-linear and non-

homogeneous scheme. To resolve it, the Levenberg-Marquardt Algorithm will

be used.

The variables x′b,y
′
b,zb,ψ,θ2 and θ3 are now determined, and in order to obtain

the values of xb,yb and r0. It is useful to make the (13) system on homogeneous

form. For that, the equation of the center of mass of the whole system is used

and it will be defined as follows:

pcm =
1

mG

[
mbp

T
cb +

n∑
i=1

mip
T
ci +mlp

T
cl

]
(15)
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where

mG = mb +

n∑
i=1

mi +ml

And

pcm: Position vector of the center of mass of the whole system Q-PRR.

mb: Mass of the multirotor.

mi: Mass of the joint i .

ml: Mass of the payload attached in the end-effector tool.

pcb: Position vector of the center of mass of the Multirotor.

pci: Position vector of the center of mass of link i.

pcl: Position vector of the center of mass of the payload l.

dcl: Distance between the end-effector and the center of mass of the payload.

To simplify a dynamic model of the system, and to neglect additional terms

in the inertial matrix, a following hypothesis can be written

Hypothesis 4.

- Manipulator links are considered to be homogeneous.

- The center of gravity of the multirotor coincides with its geometric center.

- Since θ2 = θ3 = 0, both zb, ze axes are still parallel.

Furthermore, the equation (15) can be expressed in the ~B frame as


xcm = 1

mG

(∑3
i=1mi r0 + ( 1

2m2 +m3)d2s2 + 1
2m3d3s23 + xcl

)
ycm = 0

zcm = 1
mG

(∑3
i=1mi(d0 + d1) + 1

2 (m2 +m3)d2c2 + 1
2m3d3c23 + zcl

) (16)

Hypothesis 5.

- All position vectors are expressed with respect to ~B frame.

- For the free flight, it is assumed that pcl =
[
0 0 0

]T
.

- When pcm =
[
xb yb ∗

]T
, external forces and torques are neglected.
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The manipulator arm generates torques and forces that affect the stability

of the overall system, in this case, the center of gravity of the manipulator arm

must be as close as possible to the vertical axis passing through the center of

mass of the multirotor.

Therefore, a minimization problem must be dealt such as zcm < ε presented as

a function of three manipulator joints

f(r0, θ2, θ3) =
1

mG

[
(m1 +m2 +m3)r0 + (

1

2
m2 +m3)d2sθ2 +

1

2
(m3d3s(θ2+θ3))

]
(17)

The reformulation of that equation to the constrained optimization problem of

the Q-PRR position, which is encoded by a cost function that is to be minimized,

is presented as follows

min f(r0, θ2, θ3)

Subject to

x′b = xb + cψr0

y′b = yb + sψr0

where r0min ≤ r0 ≤ r0max

(18)

Regarding the boundary of the slide mechanism, care should be taken during the

positioning of the arm prismatic joint. Let be r0min ,r0max boundaries of the first

actuated joint r0, its solutions are found when the distance of the center of mass

to the z-axis is minimized, it should check conditions presented in the following

algorithm
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Algorithm 3 Test Algorithm for the r0 value

1: Begin

2: Read r0;

3: if (−r∗0 ≤ r0 ≤ r∗0)

4: xb = xb

5: else

6: ||xb|| = ||xb||+ (||r0|| − ||r∗0 ||);

7: xb = sgn(xb).||xb||;

8: End

where sgn symbol represents the sign function.

2.3. Kinematics modeling

By differentiating equations (6a) and (6b), the translational and angular

velocities of the end-effector frame with respect to
−→
E are obtained

 ṗe = ṗb − (Rb p
b
eb)̂ ωb +Rb ṗ

b
eb

ωe = ωb +Rb ω
b
eb

(19a)

(19b)

 ṗe = ṗb −Rb p̂ beb T (ϕb) ϕ̇b +Rb ṗ
b
eb

ωe = T (ϕb) ϕ̇b +Rb ω
b
eb

(20a)

(20b)

where ṗb, ωb are the linear and angular velocities of the mobile frame
−→
B

with respect to the
−→
E frame, respectively, and ṗbeb, ω

b
eb for the translational and

angular velocities of the end-effector fixed frame with respect to the mobile

frame
−→
B . Where ( .̂ ) is the hat map that denotes the skew-symmetric matrix

operator defined as follows

( .̂ ) : R3 −→ SO(3), x̂y = x× y, ∀x, y ∈ R3 Kamel et al. (2017).

T (ϕb) is the transformation matrix between the time derivative of the Euler

angles ϕb and the angular velocity of the multirotor ωb:
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T (ϕb) =


1 0 −sθ
0 cφ sφcθ

0 −sφ cφcθ


Let vbeb =

[
ṗbTeb ωbTeb

]T
the (6×1) vector of the generalized velocity of the end-

effector with respect to
−→
B , it can be rewritten in terms of q̇eb via the jacobian

matrix Jbeb of the manipulator,

vbeb = Jbeb(qeb) q̇eb (21)

According to (6a), (6b) and 21, the generalized end-effector velocity, ve =[
ṗTe ωTe

]T
with respect to the reference frame

−→
E , can be expressed as

ve = Jb TA(ϕb) q̇b + Jeb q̇eb (22)

ve =
[
Jb TA(ϕb) Jeb

]
ξ̇

ve = Je ξ̇

.

Matrices Jb and Jeb are given by

Jb =

I3 −Rb p̂beb
03 I3

, Jeb =

Rb 03

03 Rb

 Jbeb , TA(ϕb) =

I3 03

03 T (ϕb)


where I3,03 ∈ R3×3 are the identity and zeros matrices, respectively. The jaco-

bian matrix of the manipulator arm can be written as

Jbeb =



1 (d2c2 + d3c23) d3c23

0 0 0

0 −(d2s2 + d3s23) −d3s23
0 0 0

0 1 1

0 0 0


(23)

Furthermore, Jbeb can be partitioned into the (3×3) matrices as Jbeb =
[
Jbeb1Jbeb2

]T
,

and Jbeb1 and Jbeb2 can be computed by using relationship of the jacobian of the

manipulator arm depicted in Siliciano et al. (2010).
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2.4. Dynamics modeling

The dynamic model of Q-PRR can be derived by considering the Lagrange

formulation. The Lagrangian is expressed by L = E − U where E , U denote

the kinematics and potential energy of the whole system, respectively. The

Lagrange equations are given by

d

dt

δL
δξ̇i
− δL
δξi

= ui + uext (24)

where i = 1, ..., 6 + n is the i− th coordinate of ξ, the generalized variables and

ui is the ((6 + n)× 1) vector of generalized forces and torques.

The kinetic energy of the global system expressed in ~B frame is given by:

E = Eb +

n∑
i=1

Eci (25)

Where Eb is the kinetic energy of multirotor and Eci is the kinetic energy of the

i link of manipulator arm.

The kinematic energy of the multirotor can be expressed as

Eb =
1

2
mb ṗ

T
b ṗb +

1

2
ωTb Rb Ib R

T
b ωb

where Ib and mb are the inertia matrix and the mass of the multirotor expressed

with the respect to ~B frame, respectively. Taking into account that Q = RTb Tb,

the kinetic energy of multirotor can be rewritten on the new form as

Eb =
1

2
mb ṗ

T
b ṗb +

1

2
ϕ̇Tb Q

T Ib Q ϕ̇b (26)

whereas, the kinetic energy of i− th link of the robotic manipulator is given by

Eci =
1

2
mci ṗ

T
ci ṗci +

1

2
ωTci Rb R

b
ci I

i
ci (Rbci)

T RTb ωci (27)

where mci and Iici are the mass and the moment of inertia of the i-th link about

their center of mass expressed in their body fixed frame. From (25), (26) and

(27), the kinetic energy of the whole system can be written as:

E =
1

2
ξ̇T

(
mQ BQ1 +

n∑
i=1

mci Bci1 B
T
ci1

)
+

1

2
ξ̇T

(
BQ2 IQB

T
Q2 +

n∑
i=1

Bci2 I
i
ci B

T
ci2

)
ξ̇ (28)
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E =
1

2
ξ̇T B ξ̇ (29)

B is the (3 × 3) matrix of (3 × 3) inertia matrix elements, B ∈ M(3×3) and

Bij ∈ R(3×3), more details of elements of B matrix are presented in Lippiello

and Ruggiero (2012b).

The potential energy of the whole system is given by the sum of the multi-

rotor and each link of the manipulator arm potential energies:

U = Ub +

n∑
i=1

Uci (30)

The potential energy of the multirotor is given by:

Pb = mbge
T
3 pb (31)

On the other hand, the potential energy of each link i of manipulator is given

by:

Uci = mcige
T
3 (pb +Rbp

b
ci) (32)

The total potential energy of overall system is the sum of equations (31) and

(32) therefore:

U = mbge
T
3 pb +

n∑
i=1

mcige
T
3 (pb +Rbp

b
ci) (33)

where g is the gravity acceleration value and e3 = [0 0 1] unit vector along

z axis. Considering equations (24), (25), and (33), the dynamic model of the

global system can be written as:

B(ξi)ξ̈i + C(ξi, ξ̇i)ξ̇i +G(ξi) +D(ξi) = u+ uext (34)

D = 0 is therefore considered when aerodynamic forces are assumed to be

negligible. G is a (6+n) vector of gravitational terms given by deriving the

potential energy as follows

G(ξ) =
δP
δξ

(35)
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C is the matrix of Coriolis and centrifugal terms given by

Cij =

6+n∑
k=1

1

2

(
δbij
δξk

+
δbik
δξj
− δbjk

δξi

)
ξ̇k (36)

where B(ξi) is (6+n) symmetric and positive define inertia matrix, and bij is its

generic element, it represents the moment of inertia at Joint i. u is the vector

of generalized forces at the i-th joint level. With the property Ḃ(ξi)−2C(ξi, ξ̇i)

is the skew symmetric matrix. External forces and moments are given by uext,

and the vector of forces and torques generated by actuators is represented by u

as follows

u =


ufb

uτb

uµ

 =


Rb fb

RTb Tϕb τb

µ

 (37)

where

fb =


0

0

fbz

 , τb =


τφ

τθ

τψ

 , µ =


fr0

τθ2

τθ3


fbz is the collective thrust of the rotors directed along the vertical axis zb,

whereas τφ,τθ and τψ are the three rotational torques acting around xb,yb and

zb-axes, respectively. In addition, fr0 is the force applied to the prismatic joint

along the xb-axis, where τθ2 and τθ3 are the torques acting on the rotational

joints of the robot arm. Furthermore, both fbz and τb are related to the four

actuation forces output by the multirotor motors fi via the following relation

fbz
τb

 =


1 1 1 1

0 l 0 −l

−l 0 l 0

c −c c −c




f1

f2

f3

f4

 (38)

where l is the distance from each motor to the multirotor center of mass. When

c is the drag factor.
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3. Q-PRR Controller

The proposed control strategy consists of three-layers, the inverse kinematics

algorithm called (NAIK) computes from the desired position and orientation of

the end-effector, the joint variables of the Q-PRR within the upper-layer. Then,

in the middle layer, an internal loop is implemented to compute desired pitch and

roll angles using the proportional integral derivative controller. In the bottom

layer, the Model-Free controller is designed to track desired trajectories. The

whole scheme of the proposed controller is presented in Fig (3). The desired

position will be introduced, then the inverse kinematic algorithm computes a

center of mass position and joint values of the manipulator when a position is

reached, the robot arm move with respect to the best configuration that ensures

the stability and keeps the attitude angles close to zero. Nevertheless, where

there is a difference in the distances among points, i.e desired and center of mass

of the multirotor, the compensation task for the prismatic joint value will be

changed.

Figure 3: The control block diagram of the Q-PRR
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3.1. Multirotor Controller

From the relation in (37), ufb can be rewritten in the three axes with the

following equation

ufb =


ufbx

ufby

ufbz

 =


(cψsθcφ + sψsφ)fbz

(sψsθcφ − cψsφ)fbz

cθcφfbz

 (39)

The thrust force and the roll and pitch angle control vector can be extracted

from the equation (39), and by assuming that fbz 6= 0, θd 6= ±π2 and φd 6= ±π2 .

Desired φd and θd angles can be computed as follows


θd = arctan

(
ufbxcψd + ufbysψd

ufbz

)
φd = arcsin

(
ufbxsψd − ufbycψd

ufbz

) (40a)

(40b)

The input control vector of the desired θd and φd can therefore be expressed

as uθd = θ̈d + kθ,1ėθd + kθ,2eθd

uφd = φ̈d + kφ,1ėφd + kφ,2eφd

(41a)

(41b)

where ėθd = (θ̇d− θ̇), and ėφd = (φ̇d− φ̇) are the trajectory errors. kθ,1,kθ,2,kφ,1

and kφ,2 are positive gains.

3.2. System control based on the Free model controller

Ultra-local model control consists of attempting to approximate by input

and output calculations that can be compensated by control in order to obtain

a better output tracking. It includes the creation of a pure ultra-local system

model, which replaces equation of the whole dynamics system in(34) and it can

be written as follows

y(v)(t) = F (t) + αu(t) (42)
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In the case of this study, the order v can be equal to 2, which leads to the

simplified equation as

ÿ(t) = F (t) + αu(t) (43)

where F represents the real dynamics of the model, it is a continuously updated

value and it could be approximated to attenuate the noise that could damage

the output-system performances. y is the system output that represent the

coordinate joints of multirotor and the manipulator arm, u is the control input.

α is the estimate of the input factor which can be designed by the operator. The

principle of this method is to estimate the unknown term F. Several estimation

methods have been used in the literature. In this paper, the method proposed

in Younes et al. (2016) is used. It should be noted that the estimation value is

true for a short period of time and should be modified continuously Fliess and

Join (2013); Levant (2003).

F (t) ≈ F̂ (t) = F (t− ε) = ÿ(t− ε)− αu(t− ε) (44)

The estimation method using differentiators depicted in Younes et al. (2016) is

used, where ε should be sufficiently small.

The intelligent (iPID) controller for a second order system (v = 2) is im-

plemented for the Q-PRR model. Therefore, the model-free control law can be

written as follows

u(t) =
F̂ (t)− ÿd(t)−KP e(t)−KI

∫ t
0
e(τ)dτ −KD ė(t)

α
(45)

The F̂ is a real-time estimation of F , where yd(t) is the desired trajectory

and its error e is defined as e(t) = yd(t)− y(t). The usual proportional integral

derivative tuning gains are defined as, KP ,KI ,KD ∈ R, they are positive con-

stants for each controlled variable.

At each iteration, the value of F will be calculated and the new value predicts

the system dynamics and injects the adjustment into the system input.
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4. Simulation results and discussion

The aerial manipulator controller can be subdivided into two parts. First,

the overall system controller is designed using the inverse dynamic controller.

This approach is based on the concept of having a control vector u, as a function

of the system state, capable of achieving a linear form input / output relation-

ship. The result is an accurate linearization of the system dynamics obtained by

nonlinear state feedback, the modelling structure and functions of the inverse

dynamic controller can be explained for more details inBouzgou (2019). The

second part consists of the model-free control, This approach assumes the sys-

tem to be a black box and manipulates the input/output of the model, and it

uses a local linear approximation of a process model that is accurate for a short

period time and a fast estimator is used to update this approximation. In this

case, the efficiency of the proposed controller is tested with three scenarios, first

where the Q-PRR is in free motion, i.e. without external forces and torques.

Second, under a gust of wind. Finally, where the system is under a pulse signal

as abrupt external forces. The disturbance force has the same value projected

on −→e1 , −→e2 and −→e3 axes of the inertial frame
−→
E .

The Q-PRR is designed using SolidWorks, and the simulation was executed

in the Matlab/Simulink. Manipulator masses and inertias values have been

estimated from the mass properties tools and are presented in the table (2).

Table 2: Dynamic parameters of each Link

Link mass [g] length [cm] Ixx[kg.m2] Iyy[kg.m2] Izz[kg.m
2]

Base 33 6 1.67e-6 1.32e-6 2.56e-6

1 117.2 32 1.981e-5 1.972e-5 2.28e-5

2 277.3 53 2.274e-5 5.013e-5 2.2767e-5

3 96.1 28 4.33e-6 7.99e-6 3.94e-6
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Although the off-diagonal components called inertia products are ignored

due to the symmetry of the multi-rotor when the axes passing through the

center of mass are respected. Parameters of the multirotor are presented in the

table (3)

Table 3: Dynamic parameters of Multirotor

Multirotor mass [kg] Ixx Iyy Izz Ixy Ixz Iyz

3.029 6.98664e-3 7.23191e-3 11.57173e-3 −3.6e-7 2.876e-4 −8.01e-5

For simulation tests, the acceleration ξ̈i of the Q-PRR have been calculated

using equations 34 and 45, and it can be written as

ξ̈i(t) = B(ξi)
−1(t)

[
1

α
F̂ (t)− ÿd(t)−KP e(t)−KI

∫ t

0

e(τ)dτ −KD ė(t)

− C(ξi, ξ̇i)ξ̇i(t)−G(ξi)(t) +D(ξi)(t) + uext(t)] (46)

The Q-PRR should reach a desired point in a 3-D space. After the take-off,

the multirotor tracks a z reference trajectory and when it arrives at the desired

altitude, the multirotor hovers for a horizontal point along the x-axis then along

y-axis. This trajectory is equivalent to avoiding obstacles in the shape of a cube.

When the desired position is reached, the manipulation tasks of the robot arm

can be started to ensure the desired position of the end-effector. Therefore, the

total simulation time is 60 sec, and the reference trajectory is expressed as:

σ(t) =


0, 0s ≤ t ≤ t1
LQp

(t−t1)5
(t−t1)5+(Ts−t+t1)5 , t1 ≤ t ≤ t2

LQp , t2 ≤ t ≤ tf

with Ts = 5 seconds, tf = 60 seconds, and each coordinates joints value is

presented in the table 4.
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Table 4: Desired position value for the Multirotor center of mass and joint coordinates

of robot arm

σ(t) LQp t1[s] t2[s]

xr 3[m] 5 10

yr 6[m] 10 15

zr 10[m] 0 5

r0r 0.04[rad] 25 45

rθ2r 0.2[rad] 25 45

rθ3r 0.6[rad] 25 45

The inverse dynamic model is explicitly based on the system model and

compensates, through inverse dynamics, non-linear dynamic terms of the model,

by decoupling the interactions between system joint. The Proportional-Integral-

Derivative controller is used in the first bloc of positions, which the values

of its parameters are, (KPx=1.4, KIx=1.5, KDx=0.1) and the PI controller

for the robot arm (KPr0
=2.5, KIr0

=2.7), (KPθ2
=3.9, KIθ2

=4.1), (KPθ3
=2.5,

KIθ3
=2.9). Figures 4 depict responses of all coordinate joints to follow the

desired trajectory. For the started simulation to t=10 sec, the stability of the

robot arm is not ensured, and the tracking performance is slightly worse, with

some extra oscillations and overflow from starting t=8 sec.
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Figure 4: Inverse Dynamic model applied to the Q-PRR with PID Position Controller

(PID-IDC)

The proportional-integral controller is used to resolve the overflow of the de-

sired position of the robot arm. The system’s stability to track desired trajectory

is expected. Therefore, a noise signal is added as a disturbance to validate the

proposed controller. Figure 5 shows the system output with the pulse signal of

the disturbance noise applied at t=35 sec with a simulation period of 1.67%.

Nevertheless the disturbance on the robot arm is displayed from t=7 sec to t=12

sec and it represents 12.6 percent of the final output signal.
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Figure 5: (PID-IDC-PI) Controller applied to the Q-PRR

The tracking of the desired orientation angles is very slow, the output reaches

the desired final value in 8s where that accuracy is not appropriate. Therefore,

Model-Free Control (MFC) is implemented in this section, as a local model-

based control technique, especially in non-linear modes, MFC is constantly up-

dated with input-output behaviour to overcome the un-modelled system dy-

namics and uncertainties. The system flight is performed in two steps, the first

is to carry the multirotor to the desired position, the second is when the UAV

has achieved location, the arm manipulation process will start. Three aspects

will be examined, the first is when the system is in a free environment, .i.e there

are no disturbance forces applied on the Q-PRR. The second is when the flight

is affected by a gust of wind or random disturbances. The third case is an im-

provement of the previous one when adding a control part to keep the system

30



close to the desired position. MFC works with a classical PID controller, that

combination is known as intelligent-PID controller. Gains of controller using

Simulink/Matlab are chosen in order to have no oscillations and to reach de-

sired values as soon as possible. Control parameters used are shown in the Table

(5).

Table 5: Attitude control gains

Attitude Kp KI KD

Pitch 30 20 4

Roll 30 20 1.5

Yaw 10 18 2.5

The experimental results for the desired trajectory are summarized bellow, in

Figure 6, a 3-D space trajectory figure depicts the allure of multirotor hovering.

In addition, the position (x, y, and z) response of the UAV center of gravity is

depicted in Figures (7, 8 and 9) Simulation results of the Model Free Control

Figure 6: 3D trajectory path

are compared with results extracted by using the inverse dynamics method

described in Bouzgou (2019), when the desired trajectory was same. Figures 4
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depict final values of all coordinate joint positions when the end-effector follows

the desired trajectory, the simulation starts from t=10 sec, therefore, the robot

arm stability is not guaranteed. In second simulation with model free control

(MFC), The performance and behaviour tracking is better. However, for the

first simulation, the tracking performance is slightly worse, with some extra

oscillations and overflow from starting to t=8 sec.
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Figure 7: Position of the Q-PRR using the (i-PID)-MFC Controller
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Figure 8: Orientation of the Q-PRR using the (i-PID)-MFC Controller
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Figure 9: Positions of the Q-PRR arm using the (i-PID)-MFC Controller

A comparison between the different controller strategies is proved by us-

ing Euclidean RMSE (Root Mean Square Error) to validate the efficiency of
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methods applied, with a dynamic inverse method and Model Free Control with

disturbance. Table (6) shows the RMSE and ISE values for different control

strategies. Figure 10 shows a position, attitude and position joints of the last

simulation.
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When a disturbance force is applied to the Q-PRR system in three directions

of the
−→
E reference frame at t=35sec, the error increases with 1 percent for the

position and 0.6 percent for the attitude, and the error on the robot arm’s joint
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position increases to 12.5 percent due to the base arm’s relationship with the

Multirotor orientation. In addition, the results show the appropriateness of the

proposed control strategy.

Table 6: Metric Comparison

RMSE ISE

DIC 0.0024 2.4012e− 04

DIC+PID 0.0124 0.0410

MFC+i-PID 0.0049 2.4012e− 05

It can be noticed that MFC-PID controller decreases the MFC controller

RMSE value by around 48%. As a result, the hovering and manipulation per-

formance of the Q-PRR which uses intelligent MFC-PID structure becomes

significantly better compared to the case when the MFC controller is only used.

5. Conclusions and future work

The main topic of this paper is the design and modelling of novel aerial ma-

nipulator structure. A prismatic joint that can keep and stabilize the system

center of gravity is implemented. A new algorithm for the inverse kinematics

problem is presented for the Q-PRR and its solutions are resolved on the prin-

ciple of a numerical approach that is combined with the Levenberg-Marquardt

algorithm. The proposed design may be used by applying of disturbance uncer-

tainty associated with external forces, torques and unknown flying environment

to ensure stability and tracking of the multirotor end-effector and center of grav-

ity. Three different controllers and scenarios are presented, demonstrating the

efficiency of the proposed approach and verifying by simulation that the Free

model controller is robust compared to the inverse dynamic method when the

disturbance forces are introduced. The next step will be the robustness test by

attaching different masses on the end-effector and for several joints position of

the manipulator arm. More simulations will need to be done to support this,

especially in situations where the mass is unknown.
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