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Introduction

Network medicine is a promising recent approach in which the goal is to analyze the dysregulation of a disease through its specific molecular interactions [START_REF] Saqi | Systems medicine: The future of medical genomics, healthcare, and wellness[END_REF], [START_REF] Tian | Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (p4) medicine[END_REF]). The key analytic power of this approach is that knowledge about disease-drivers and specific pathway deregulations can be combined with mechanistic knowledge of drug mechanisms to identify optimal drug combinations, and do this dynamically throughout the evolution of the disease.

An exciting aspect of this approach is that it can, in principle, be applied in a personalized way, taking into account patient-specific aspects such as comorbidities, previous treatments, and the patient's own molecular data (such as her mutations, gene expression anomalies, corrupted signaling pathways).

Therefore, a disease is seen as part of a patient's own molecular and clinical context, through the cumulative effect of various deregulations and anomalies. Also, drug therapies are seen as external interventions aiming to compensate for the effects of these anomalies in the patient-specific disease network. The focus is on identifying tailored drug combinations uniquely suited to that patient's disease network, in the current step of her disease progression. This chapter introduces several network modeling methods and demon-strates their potential applicability in personalized medicine. We survey several network centrality measures, aiming to identify parts of the network that are unusual in the context of its topology; we discuss their definitions and the intuition of their significance. We also discuss two systems controllability methods: network controllability and maximum dominating sets. The aim of these methods is to identify efficient interventions to change the network's configuration, and in principle to change from a setup associated with disease to one associated with a healthy state.

We demonstrate how these network modeling methods can be used in precision medicine for identifying targeted, personalized drug combinations. Our case study is multiple myeloma, an incurable cancer of the blood. We analyze a dataset consisting of the genetic mutations of three different patients. For each of them we construct their own personalized protein-protein directed interaction networks, and we analyze them with some of the methods in this chapter to extract personalized predictions of optimal drug combinations. We compare these results with the standard therapy lines in multiple myeloma.

We also include a brief discussion on the availability of software tools supporting this line of research.

The chapter is written in a tutorial style to facilitate the adoption of these methods.

Network modeling methods

We discuss in this section a number of network analysis methods: network centrality measures (including degree centralities, proximity centralities, path centralities and spectral centralities) and two systems controllability methods (network controllability and minimum dominating sets). We apply several of these methods to a medical case-study in Section 11.3.

Network centrality methods

Real-world networks often include a large number of nodes and connections, but the importance of the nodes is generally not the same. The simplest way to measure the importance of a given node is to compute its degree: the number of incident edges. However, in many cases, more sophisticated approaches are required to produce meaningful measures of importance. In the most general sense, a centrality measure can be defined in the following way. This definition imposes no constraints on f , but most centrality measures take into account the structural properties of the network G -node connectivity, edge weights, etc. Based on which structural properties they take into account, centrality measures can be grouped into the following categories:

• degree centralities: measures based on the degree of a node;

• proximity centralities: measures based on how close a node is to the other nodes in the network;

• path centralities: measures based on the role the node plays in paths that traverse it;

• spectral centralities: measures related to the algebraic properties of the adjacency matrix of the network (in particular its eigenvectors and eigenvalues).

While the majority of centralities focus on individual nodes, one can define measures focused on other structures: edges, subsets of nodes, etc. Most of these measures are straightforward derivations from node-based centralities (e.g., edge and group betweenness in [START_REF] Brandes | On variants of shortest-path betweenness centrality and their generic computation[END_REF]), and we will not discuss them here. Furthermore, we only consider unweighted networks, and we focus on structural measures which do not take into account any possible dynamical states.

In the rest of this subsection, we discuss some well-known and often used centrality measures in detail. In particular, we give the intuitive motivations, the formal definitions, and the highlighted properties of the network. Furthermore, we give references to algorithms for computing the centrality measures and briefly discuss their time complexities. Finally, we describe network centrality indices -network-wide scores measuring the centralization of a network as a whole, and allowing for comparisons between networks.

While we aim at a comprehensive overview of the state of the art, we do not always provide a fully detailed discussion of all subjects. For in-depth treatment, we refer the reader to [START_REF] Koschützki | Centrality analysis methods for biological networks and their application to gene regulatory networks[END_REF], Brandes and Erlebach, 2005[START_REF] Mark | Networks: An Introduction[END_REF].

In the following sections we will frequently refer to undirected and directed star-topology networks. The k-node undirected star-topology network is U k = (V, E) (also known as the full bipartite graph K 1,k ), where V = {1, . . . , k} and E = {{i, 1} | 2 ≤ i ≤ k}. The k-node directed star-topology network is G k = (V, E ), where V is the same as in U k and E = {(i, 1) | 2 ≤ i ≤ k}. Note that E consist of unordered pairs of vertices, while E consist of ordered pairs. We will also write U and G to refer to the general notion of undirected and directed star-topology networks respectively.

Running example

We will use the directed network in Figure 11.1 to illustrate the centrality measures and the related concepts. This is a scale-free random network generated using the Python library NetworkX [Hagberg et al., 2008, 2021c] with the following line of code: networkx.scale free graph(10, alpha=.7, beta=.2, gamma=.1, seed=3). 

Degree centralities

Degree centrality was first introduced in [START_REF] Shaw | Group structure and the behavior of individuals in small groups[END_REF] to study the structure and behavior of groups of individuals in a society. It measures the importance of a node by directly counting the adjacent edges. Definition 11.2(Degree centrality): Let G = (V, E) be a network.

• If G is undirected, then the degree centrality is the function C D : V → R assigning to every node its degree:

C D (v) = deg(v).
• If G is directed, then the in-degree centrality is the function C - D : V → R, assigning to every node its in-degree:

C - D (v) = deg -(v). The out-degree centrality C + D : V → R assigns to every node its out-degree C + D (v) = deg + (v).
The (full) degree centrality is the function

C D (v) = C + D (v) + C - D (v).
It follows from these definitions that C D (v) (or

C + D (v) and C - D (v)) is large
when the node v is adjacent to a high number of nodes. The extreme cases are

C D (v) = k -1, in which v is connected to all other nodes in a k-node network and C(v) = 0, when v is isolated in the network.
The degree centrality is strongly related to the number of nodes in a network. As a trivial example, consider the degree centrality of the central node in the star-topology network

U k : C + D (1) = k -1.
The centrality of node 1 is larger in larger networks with this topology, even though the intuitive idea of the importance of this node is essentially the same: it is connected to all other nodes of the network in both cases. Normalized degree centrality may be used to better capture the independence of the notion of centrality on the size of the network.

Definition 11.3(Normalized degree centrality): Let G = (V, E) be a (either directed, or undirected) network. The normalized degree centrality is the function C D : V → R defined as follows:

C D (v) = C D (v) |V | -1 .
Normalized degree centrality C D (v) therefore gives the ratio of the nodes adjacent to v, and it follows from the definition that 0

≤ C D (v) ≤ 1. C D (v) can
be thought of as the probability of v to be connected to another node w picked at random, an intuition that can be useful when generating random networks with a fixed degree distribution.

Example 11.1: The following table gives the degree, in-degree, and outdegree centralities respectively for the example network in Figure 11.1.

v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C D (v) 2 7 6 1 2 1 2 1 1 1 1 1 1 2 1 C - D (v) 1 5 5 0 1 0 2 0 0 0 0 0 0 1 0 C + D (v) 1 2 1 1 1 1 0 1 1 1 1 1 1 1 1
The complexity of computing the degree centrality of every individual node of a network depends linearly on the number of nodes and edges:

O(|V | + |E|)
(e.g., [START_REF] Das | Study on centrality measures in social networks: a survey[END_REF]). Computing the centrality of any given node may be of the complexity O(|V |) or O(|E|), depending on the data structure used to represent the connections.

The degree centrality is a useful tool for identifying "targets" in a given network, but also for deciding which nodes may be discarded without impacting the quality of the model. This is common in network biology, see [START_REF] Hahn | Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks[END_REF], [START_REF] Koschützki | Centrality analysis methods for biological networks and their application to gene regulatory networks[END_REF]. However, degree centrality is a strongly local measure, mostly focusing on individual nodes and their immediate neighborhoods. In practice, this means that many nodes may often have close degree centralities, requiring finer measures to discern relevant features (e.g. [START_REF] Kang | Centralities in large networks: Algorithms and observations[END_REF]).

Proximity centralities

In this section we discuss closeness, harmonic, and eccentricity centralities.

The degree centrality measure is a very straightforward approach to evaluate the importance of a node in a network. However, the nodes which are connected by a small number of edges to many others in a network are also important: their "influence" can reach many other nodes quickly. Counting the neighbors of a node clearly does not suffice to asses this kind of closeness to other nodes. The important aspect is rather having a small average distance to the other nodes in the network. This leads to the following definition of the closeness centrality measure as the reciprocal of farness [START_REF] Bavelas | Communication patterns in task-oriented groups[END_REF][START_REF] Harold | Some effects of certain communication patterns upon group performance[END_REF][START_REF] Sabidussi | The centrality index of a graph[END_REF].

Definition 11.4(Closeness centrality): Let G = (V, E) be an undirected network. The closeness centrality is the function C C : V → R defined as follows:

C C (v) = 1 u∈V d(u, v)
.

As in the case of degree centralities, the size of the network has an impact on the closeness centrality of its nodes: the larger the network, the more paths it contains, and the lower closeness centralities tend to become. To make closeness centralities more uniform, [START_REF] Beauchamp | An improved index of centrality[END_REF] proposed the normalized version of this measure. A major drawback of closeness centrality is that it does not yield meaningful values on disconnected networks. Indeed, if no path connects nodes u and v, by definition d(u, v) = ∞, and therefore a single isolated node would make the sums of distances in the definition of closeness infinite, and the closeness centralities themselves will all become 0. There are several different ways in which this can be addressed:

• Restrict the notion of closeness centrality to strongly connected graphs (or strongly connected components of arbitrary graphs). This avoids the problem is having pairs of nodes (u, v) whose distance is infinite, on the grounds of v being unreachable from u.

• Restrict the sum of distances in the definition of closeness centrality to pairs of reachable nodes, addressing the same issue of infinite distances.

• Replace any infinite distances with a large enough constant, as proposed in [START_REF] Rochat | Closeness centrality extended to unconnected graphs: The harmonic centrality index[END_REF] and [START_REF] Csárdi | The igraph software package for complex network research[END_REF].

Closeness centrality can also be defined for directed networks. To do this, we can consider in the definition either the distances d(u, v) from all ancestors of v to v, or distances d(v, u) from v to all its descendants. This is important when using the closeness centrality measure as a proxy for the notion of either a node that is reachable (and modifiable) from many directions, or that of a node that is influential in being able to reach many other nodes. One example of such a definition is the Lin index [START_REF] Lin | Foundations of social research[END_REF]. C C (v) 0.03 0.04 0.05 0.00 1.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 C C (v) 0.40 0.48 0.60 0.00 1.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 [START_REF] Bergamini | Computing top-k closeness centrality faster in unweighted graphs[END_REF].

C u C (v) 0.
Due to its non-locality, closeness centrality is a finer tool for structural network analysis than degree centrality. For example, closeness fares better in identifying influential groups of nodes which may not individually have high degree centrality. Closeness centrality has been show to perform particularly well in biological network analysis. For example, [START_REF] Ma | The connectivity structure, giant strong component and centrality of metabolic networks[END_REF] shows that a slightly modified closeness measure allows for associating 8 of the top 10 metabolites of the metabolic network of E. coli with the glycolysis and citric acid cycle pathways.

A modification of closeness centrality, addressing the difficulty of infinite distances, consists in swapping the summation out of the denominator, effectively transforming what is an inverse arithmetic mean in normalized closeness centrality into inverse harmonic mean. This new centrality measure was first discussed in [START_REF] Marchiori | Harmony in the small-world[END_REF], then independently introduced in [START_REF] Dekker | Conceptual distance in social network analysis[END_REF] under the name "valued centrality", and finally gained its current name of harmonic centrality in [START_REF] Rochat | Closeness centrality extended to unconnected graphs: The harmonic centrality index[END_REF].

Definition 11.6(Harmonic centrality): Let G = (V, E) be a (either directed, or undirected) network. The harmonic centrality is the function C H :

V → R defined as follows: u, v) .

C H (v) = u∈V \{v} 1 d(
Note that all nodes u which are not connected to v do not contribute to

C H (v), because d(u, v) = ∞, meaning that 1/d(u, v) = 0.
As with closeness centrality, the same definition of harmonic centrality can be used for directed networks, in which case the order of nodes in the denominator d(u, v) becomes important. If v has in-degree 0, C H (v) = 0 by direct computation of the formula in the definition.

To avoid an increase in harmonic centrality only due to the increase in the size of the network, one defines the normalized version.

Definition 11.7(Normalized harmonic centrality): Let G = (V, E) be a (either directed, or undirected) network. The normalized harmonic centrality is the function C H : V → R defined as follows:

C H (v) = 1 |V | -1 u∈V \{v} 1 d(u, v)
. C H (v) 5.42 7.58 8.33 0.00 1.00 0.00 6.37 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 C H (v) 0.39 0.54 0.60 0.00 0.07 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 [START_REF] Bergamini | Computing top-k closeness centrality faster in unweighted graphs[END_REF].

It follows that 0 ≤ C H (v) ≤ 1 (and 0 ≤ C H (v) ≤ |V | -1) both in directed and undirected networks. C H (v) = 0 for isolated vertices, while C H (v) = 1 (C H (v) = |V | -1)
C u H (v)
Like closeness centrality, harmonic centrality has great potential for analysis of biological networks, because it captures the intuition of the influence of a node decaying with the distance, while also naturally handling disconnected networks. Online resources for systems biology offer tools to compute harmonic centrality (e.g., [START_REF] Zhang | A protein network descriptor server and its use in studying protein, disease, metabolic and drug targeted networks[END_REF]), and this centrality measure is used in analysing simulations of growth of biological networks [START_REF] Torsten | Biological network growth in complex environments: A computational framework[END_REF]. We remark however that several papers use the term "harmonic centrality" to refer to a rather different centrality measure, e.g. [START_REF] Ren | Discovering essential proteins based on PPI network and protein complex[END_REF][START_REF] Mao | A network analysis revealed the essential and common downstream proteins related to inguinal hernia[END_REF].

Another modification to closeness centrality we will briefly consider in this subsection was introduced in [START_REF] Dangalchev | Residual closeness in networks[END_REF]. This work goes beyond harmonic centrality and adds an exponential to the denominator: u,v) .

D(v) = u∈V \{v} 1 2 d(
Like harmonic centrality, D treats disconnected networks naturally. In addition, D interacts conveniently with various operations on graphs, in particular with different kinds of graph union [Dangalchev, 2006, Section 2]. Finally, this centrality measure can be generalized to the following form [START_REF] Dangalchev | Residual closeness and generalized closeness[END_REF]: u,v) ,

D (v) = u∈V \{v} α d(
where α ∈ (0, 1). Clearly, for α = 1 2 , D (v) = D C (v)
, and as α increases between 0 and 1, D moves from local (mostly immediate neighbours count) to global (even long-distance connections count).

Even though the centrality measures we surveyed so far in this subsection are all based on the notion of closeness, one should underline that they are not true extensions of the closeness centrality. Indeed, the paper [START_REF] Yang | Extensions of closeness centrality[END_REF] shows that, even on a 7-node tree, these centrality measures yield close, but different values.

The last centrality measure based on the length of paths to a given node that we discuss is the eccentricity centrality. It formalizes the intuition that important nodes are those from which any other node is quickly reachable. It was originally introduced in [START_REF] Hage | Eccentricity and centrality in networks[END_REF], but we give here the mathematical definition from [START_REF] Koschützki | Centrality analysis methods for biological networks and their application to gene regulatory networks[END_REF].

Definition 11.8(Eccentricity centrality): Let G = (V, E) be a strongly connected (either directed, or undirected) network. The eccentricity centrality is the function C e : V → R defined as follows:

C e (v) = 1 max u∈V d(v, u) .
The value in the denominator of C e is the longest shortest path in G starting at v and is usually referred to as the eccentricity of v.

The same definition of eccentricity centrality can be used for undirected and directed networks. In the latter case, the order of v and u in d becomes important, and the directed network is often required to be strongly connected [START_REF] Koschützki | Centrality analysis methods for biological networks and their application to gene regulatory networks[END_REF]. In networks which are not strongly connected, the shortest is computed only to nodes reachable from v. Moreover, if the out-degree of v is 0, then by definition C e (v) = 0.

The bounds on eccentricity centrality are the same as for normalized closeness centrality: 0 ≤ C e (v) ≤ 1. C e reaches its maximal value for every node which is directly connected to other nodes, as is the case of the center of a star-topology network or any node of a complete network.

Unlike closeness or harmonic centralities, eccentricity centrality does not directly depend on the size of the network, which is why normalization is not generally considered for this measure.

Example 11.4: The following table gives the eccentricity centralities for the nodes of the example network in Figure 11.1. Since the example network is not strongly connected, the centralities C e (v) are computed as inverses of the lengths of the longest shortest paths to reachable nodes. The line labeled with C u e (v)

takes this network to be undirected, meaning that the directed edges appearing in the figure can be traversed both ways.

v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C e (v) 1 2 1 2 1 3 1 4 1 4 1 3 0 1 4 1 4 1 5 1 3 1 3 1 1 1 3 1 4 C u e (v) 1 3 1 3 1 3 1 4 1 4 1 4 1 4 1 4 1 4 1 5 1 4 1 4 1 5 1 4 1 5
Similarly to closeness centrality, computing the eccentricity centrality of a node v requires finding the shortest paths to all other nodes in the network,

meaning that computing C e (v) is of time complexity O(|V | • |E|).
Like closeness centrality, eccentricity centrality is able to capture well the notion of importance of a node as a function of its connections to the other nodes. For example, [START_REF] Wuchty | Centers of complex networks[END_REF]] uses several centrality measures to analyse the networks of E. coli and S. cerevisiae, and shows that both closeness and eccentricity centralities produce very similar rankings of the top metabolites. On the other hand, eccentricity centrality was not able to distinguish essential from non-essential proteins in the PPI network of S. cerevisiae.

Path centrality: betweenness

Betweenness centrality measures the importance of a node by counting in how many connections between other nodes it is implicated. For example, the central node 1 of U k is involved in all shortest paths between all other nodes. The idea of betweenness, i.e. being situated between other nodes, was introduced in the discussion of point centrality in [START_REF] Bavelas | A mathematical model for group structures[END_REF], and the first formal definition was given in [START_REF] Linton | A set of measures of centrality based on betweenness[END_REF].

Given a (either directed, or undirected) network, we denote the set of all shortest paths (also referred to as geodesics) between nodes u and w by ρ uw , and by ρ uw (v) the set of those shortest paths from ρ uw which pass through v. We further denote g uw = |ρ uw | and g uw (v) = |ρ uw (v)|. Finally, we use the following notation:

p uw (v) =        g uw (v) g uw , ρ uw = ∅, 0, otherwise.
p uw (v) can be seen as the probability of finding v in a shortest path between u and w chosen at random from g uw , in the case in which w is reachable from u [START_REF] Linton | A set of measures of centrality based on betweenness[END_REF][START_REF] Linton | Centrality in social networks conceptual clarification[END_REF].

Definition 11.9(Betweenness centrality): Let G = (V, E) be a (either directed, or undirected) network. The betweenness centrality is the function

C B : V → R defined as follows: C B (v) = u,w∈V \{v} u =w p uw (v).
Note that in this case too, there are subtle distinctions between directed and undirected networks. Thus, while in the case of undirected networks ρ uw (as well as ρ uw (v)) is conceptually the same as ρ wu (ρ wu (v), resp.), and consequently the pair is not considered separately, this is not the case of directed networks. Hence, while the betweenness centrality function involves a (k -1)(k -2)/2 summation for undirected networks, i.e., the number of unordered pairs of nodes distinct from v, in the case of directed networks it consists of a (k -1)(k -2) summation.

Betweenness centrality reaches its minimal value 0 for isolated nodes and its maximal value for nodes v situated on all shortest paths between all other nodes of the network. For a k-node network with k ≥ 2, this maximal value equals the number of pairs of nodes different from v:

C B (v) = (k -1)(k -2)/2
for undirected networks, and C B (v) = (k -1)(k -2) for the directed ones.

In the case of undirected networks, this value will be reached for the central node of a k-node star-topology network U k . In the case of directed networks, this maximal value will be reached for the central node of the k-node star topology network, in which there are two symmetric edges between the central node and the non-central nodes:

Ḡ k = (V, E), with V = {1, . . . , k} and E = {(1, i), (i, 1) | 2 ≤ i ≤ k}.
In fact, not only C B reaches its maximal value for the central node of a star-topology network, but the existence of a node for which C B reaches its maximal value is sufficient to guarantee that the network is a star.

Lemma 11.1: Let k ≥ 2 and let U = (V, E) be a k-node undirected network

(|V | = k) having a node v ∈ V for which C B (v) = (k -1)(k -2)/2. Then U is isomorphic to U k . Proof. The fact that C B (v) = (k -1)(k -2)/2 means that v appears in
all shortest paths between all other nodes. This implies on the one hand that v is connected to all other nodes, and on the other hand that there are no other edges in U . Indeed, if v were not connected to some of the other nodes, then there would exist a pair of nodes u, w ∈ V with the property g uw (v) = 0,

meaning that C B (v) < (k -1)(k -2)/2.
On the other hand, if there existed an edge between two vertices u, w ∈ V , then the only shortest path from u to w would not traverse v, which again would mean that g uw (v) = 0 and

C B (v) < (k -1)(k -2)/2.
A similar result for directed networks imposes that any directed network G having a node with maximal betweenness centrality should be isomorphic

to Ḡ k . Lemma 11.2: Let k ≥ 2 and let G = (V, E) be a k-node directed network (|V | = k) having a node v ∈ V for which C B (v) = (k -1)(k -2). Then G is isomorphic to Ḡ k .
Note that in the case of the star-topology directed network G k in which there are arcs going from all non-central nodes to the central node 1 and no arcs going out of 1, the betweenness centrality of all nodes will be 0, because all paths in this network have length 1.

To avoid the increase in betweenness centrality due only to the increase in the size of the network, one typically defines its normalized version. Unlike normalized closeness and harmonic centralities, in the case of betweenness one needs to normalize with respect to the number of pairs of nodes, rather than the number of nodes.

Definition 11.10(Normalized betweenness centrality):

Let G = (V, E)
be a (either directed, or undirected) network. The normalized betweenness centrality is the function

C B : V → R defined as follows: a) C B (v) = 2 (|V | -1)(|V | -2) u,w∈V \{v} u =w p uw (v), for undirected networks, b) C B (v) = 1 (|V | -1)(|V | -2) u,w∈V \{v} u =w p uw (v), for directed networks.
Normalized betweenness centrality ranges between 0 for isolated vertices and 1 for central notes of star-topology networks.

Example 11.5: The following table gives the betweenness centralities and the normalized betweenness centralities, rounded to two digits after the decimal point, for the nodes of the example network in Figure 11.1. The lines

C u B (v)
and C u B (v) take this network to be undirected, meaning that the directed edges appearing in the figure can be traversed both ways.

v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CB(v) 12.00 23.00 21.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 CB(v) 0.07 0.13 0.12 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 C u B (v) 0.00 68.00 54.00 0.00 13.00 0.00 13.00 0.00 0.00 0.00 0.00 0.00 0.00 13.00 0.00 C u B (v) 0.00 0.75 0.59 0.00 0.14 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 20 Enumerating all shortest paths between all pairs of nodes different from a given node v is rather expensive. The seminal work [START_REF] Linton | A set of measures of centrality based on betweenness[END_REF] suggests computing powers of the adjacency matrix of the network to count the shortest paths, according to the methods detailed in [START_REF] Harary | Structural Models: An Introduction to the Theory of Directed Graphs[END_REF].

However, [START_REF] Brandes | A faster algorithm for betweenness centrality[END_REF] proposes a less expensive algorithm running in time

O(|V | • |E|)
, and avoiding extra non-optimal paths which matrix multiplication would reveal. A more recent work [START_REF] Nasre | Betweenness centrality -incremental and faster[END_REF] proposes an even faster incremental algorithm, which updates the betweenness centralities of all nodes when a new edge is added. This algorithm runs in time

O(m|V |),
where m is the maximal length of the shortest path in the network. Finally, the paper [START_REF] Borassi | KADABRA is an ADaptive Algorithm for Betweenness via Random Approximation[END_REF] proposes a random approximation algorithm which computes betweenness centralities in time |E| 1/2+o(1) with high probability, much faster than exact algorithms.

Betweenness centrality has been successfully applied in biological network analysis to identify significant nodes. For example, the work [Sahoo et al., 2016] used betweenness centrality to identify proteins significant in the context of cancer growth. In [START_REF] Yu | The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics[END_REF], the authors rely on betweenness centrality to identify bottlenecks in PPI networks. Moreover, the authors show that these nodes have a high tendency of representing essential proteins. The work [START_REF] Maliackal | Highbetweenness proteins in the yeast protein interaction network[END_REF] shows that nodes with high betweenness centrality in yeast PPI networks are more likely to be essential and that the evolutionary age of proteins is positively correlated with their betweenness centrality.

We conclude this subsection by mentioning a well-known extension of the a factor derived from the degree to which the nodes in the paths from u to w are involved in the spread of some value (information, infection, etc.) through the network. Since percolation centrality considers network states, we do not discuss it in this section.

Spectral centralities

In this section we discuss eigenvector-based centralities: the eigenvector centrality, Katz centrality, and PageRank centrality.

The idea of using eigenvectors for assessing the importance of nodes in networks was first introduced in [START_REF] Bonacich | Power and centrality: A family of measures[END_REF] and further discussed in several fundamental works, e.g. [START_REF] Ruhnau | Eigenvector-centrality -a node-centrality?[END_REF][START_REF] Mark | Mathematics of Networks[END_REF] with the goal of taking into account the fact that not all connections in a network are equalbeing connected to a highly central node has more impact than being connected to a more peripheral node. Before defining eigenvector centrality, we introduce some additional notations.

Given a (either directed, or undirected) network G = (V, E), we denote its adjacency matrix by A, in which A uv = 1 if and only if G contains an edge from node u to node v. For a centrality measure C : V → R, we will denote by c the vector obtained by computing C for every node of G, i.e.

c v = C(v).
For a fixed node v, the idea that the contributions of its neighbors are proportional to their own centralities can be expressed as follows:

C(v) = 1 λ u∈V A uv C(u),
where λ > 0 is a real constant. This relation can be rewritten in the matrix form: Eigenvalue centrality is sometimes referred to as eigencentrality or eigenvector prestige. The same definition can be used for directed networks, in which case the adjacency matrix A may not be diagonally symmetric.

λc = Ac, ( 11 
We will refer to eigenvectors c satisfying the constraints of the previous definition as principal eigenvectors of A and of the network G. In fact, it follows from (11.1) that any other vector αc, α > 0, is also a principal eigenvector of A.

This means that the components of c (and therefore the values of C E ) indicate relative centralities of the nodes of G with respect to one another, rather than some absolute centrality score.

A standard way of fixing a preferred principal eigenvector c to avoid ambiguity is by normalizing c. Several ways to normalize eigenvectors for centrality exist; we focus here on three norms studied in [START_REF] Ruhnau | Eigenvector-centrality -a node-centrality?[END_REF] and we discuss implications of these normalizations for the eigenvector centrality index -a network-wide measure of centralization. The results from [START_REF] Ruhnau | Eigenvector-centrality -a node-centrality?[END_REF] also rely on the work of [START_REF] Papendieck | On maximal entries in the principal eigenvector of graphs[END_REF] which studies maximal entries in the principal eigenvector of a graph.

Normalizing an n-vector a typically consists in dividing its components by a p-norm, which is commonly defined as follows:

a p =          n i=1 a p i 1 p , 1 ≤ p < ∞, max 1≤i≤n |a i |, p = ∞.
One of the ways of normalizing the vector c from Definition 11.11 is by dividing all of its components by the ∞-norm, also known as the maximum norm.

Definition 11.12(∞-norm eigenvector centrality): Let G = (V, E) be a (either directed, or undirected) network and c be the principal eigenvector of G. The ∞-norm eigenvector centrality is the function

C (∞) E : V → R defined as follows: C (∞) E (v) = c v c ∞ = c v max u∈|V | c u .
It follows directly from this definition that 0 ≤ C (∞)

E (v) ≤ 1, and that every connected network G has a node v * for which C (∞) E (v * ) = 1.
Another way of normalizing the eigenvector centrality is by using the 1norm, also known as the sum norm. C

(1)

E (v) = c v c 1 = c v u∈V c u . C (1) 
E (v) can be seen as the proportion of centrality that v reaches in G. The bounds on the values of the 1-norm eigenvector centrality are as follows [START_REF] Ruhnau | Eigenvector-centrality -a node-centrality?[END_REF]:

0 ≤ C (1) E (v) ≤ 1 1 + (2 cos π n+1 ) -1 .
This centrality measure cannot ever reach 1 for any network with 2 or more connected nodes. The upper bound is only reached for the nodes of a network which only contains one edge [START_REF] Papendieck | On maximal entries in the principal eigenvector of graphs[END_REF]]. In the case of networks with more than 2 connected nodes, it is not known what is the actual maximal value C

(1)

E can achieve, nor in which kind of network topologies this value can be achieved. For example, the central node of a star-topology network does not reach the maximal value.

One last way of normalizing the eigenvector centrality which we consider in this section is by using the 2-norm, also known as the Euclidean norm. (2)

E : V → R defined as follows: C (2) E (v) = c v c 2 = c v u∈V c 2 u .
The bounds on the 2-norm eigenvector centrality are 0 ≤ C

(2)

E (v) ≤ 1 √ 2 .
The maximal value 1 √ 2 is only reached by the center of the star topology network [START_REF] Ruhnau | Eigenvector-centrality -a node-centrality?[END_REF]. One may define a derived measure ranging from 0 to 1 by multiplying

C (2) E by √ 2.
Finding eigenvectors and eigenvalues of a given square matrix is closely related to finding the roots of polynomials. It follows from the Abel-Ruffini theorem that there exists no algorithm computing exactly the eigenvectors and eigenvalues for square matrices of size greater than 4 (e.g., [START_REF] Golub | Eigenvalue computation in the 20th century[END_REF]). Therefore, iterative algorithms are usually used, one of the most popular being the power iteration method (used e.g., in NetworkX [START_REF] Aric | Exploring network structure, dynamics, and function using NetworkX[END_REF]). The complexity of such iterative methods is generally between O(|V | 2 ) and O(|V | 3 ), while the convergence rate ranges from linear to cubic [START_REF] Demmel | Chapter 7. Iterative Methods for Eigenvalue Problems[END_REF].

Eigenvalue centrality measures are a fine instrument for measuring the importance of nodes in a network, because they acknowledge the difference in impact between a connection to a high-centrality neighbor and a connection to a low-centrality one. With eigenvalue centrality, a node with a smaller number of "high-quality" connections may outrank a node with a larger number of "low-quality" connections [START_REF] Mark | Mathematics of Networks[END_REF]. The work [START_REF] Estrada | Virtual identification of essential proteins within the protein interaction network of yeast[END_REF] applies closeness, betweenness, and eigenvector centralities to identifying essential proteins in PPI networks, and concludes that spectral centralities show the best performance. The paper [START_REF] Christian | Eigenvector centrality for characterization of protein allosteric pathways[END_REF] uses eigenvector centrality to pinpoint key amino acids in terms of their relevance in the allosteric regulation.

The study [START_REF] Melak | Comparative genome and network centrality analysis to identify drug targets of Mycobacterium tuberculosis H37Rv[END_REF] uses different centrality measures to identify potential drug targets of Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), and show that eigenvalue centrality fares best.

Another centrality measure based on the algebraic properties of the adjacency matrix is Katz centrality (also referred to as Katz prestige or Katz status index ). This method was proposed in [START_REF] Katz | A new status index derived from sociometric analysis[END_REF] and it gives a centrality score by taking into consideration all the nodes of a given network. According to a reasoning similar to the one made for closeness centrality and its variants (Subsection 11.2.1.3), a node is of high importance if it is connected to many other nodes, but nodes situated farther away count less toward the total centrality score.

Definition 11.15(Katz centrality): Let G = (V, E) be a (either directed, or undirected) loop-free network. Let A be its adjacency matrix and λ be its largest positive eigenvalue. The Katz centrality is the function

C K : V → R
defined as follows:

C K (v) = ∞ i=1 u∈V α i (A i ) uv ,
where α is a constant, 0 ≤ α ≤ 1/λ, and (A i ) uv is the element in row u and column v of the i-th power of A.

Since (A i ) uv is non-zero if and only if there exists a path of length exactly i between u and v, Katz centrality can be interpreted as a generalization of degree centrality [START_REF] Koschützki | Centrality analysis methods for biological networks and their application to gene regulatory networks[END_REF]. Indeed, the role of the factor α i is to scale down the contributions of longer paths, and without it C K (v) essentially becomes the reachability index : the number of nodes from which v can be reached. If α is close to 0, the contributions of longer paths are essentially discarded, and C K approaches a form of degree centrality. On the other hand, as α approaches 1/λ, C K approaches eigenvector centrality [START_REF] Mark | Networks: An Introduction[END_REF].

Let c K be the vector collecting Katz centralities of a node in a given net-

work: (c K ) v = C K (v).
Then c K can be expressed in a more compact matrix multiplication form in the following way [START_REF] Koschützki | Centrality analysis methods for biological networks and their application to gene regulatory networks[END_REF]:

c K = ((I -αA T ) -1 -I)1,
where I is the identity matrix of the same size as A, A T is the transpose of A, (•) -1 denotes matrix inversion, and 1 is a |V |-vector whose components are all 1.

Due to similarities with eigenvector centrality, exact Katz centrality can be computed by similar algorithms with similar running time complexities. In particular, the power iteration method can be applied (e.g., [Hagberg et al., 2021b]). Faster approximate algorithms exist, in particular [START_REF] Foster | A faster Katz status score algorithm[END_REF] presents 

C P (v) = u∈V A uv C P (u) deg + (u)
,

where deg + (u) is the out-degree of the node u.

According to this definition, the centrality C P (v) depends on the centralities of the nodes u from which there is an edge going to v (A uv = 0). The contribution of each of these nodes u to C P (v) is inversely proportional to the number of edges going out of u. Thus, nodes connected to many other nodes contribute less to each of their neighbors than nodes which are connected to fewer nodes.

The complete definition of PageRank centrality (which was used in the first versions of the Google search engine) includes two additional parameters:

C (0) P (v) = α u∈V A uv C P (u) deg + (u) + β,
where α can be seen as a decay factor, and β as a vector of initial centralities (source ranks), scaled by α. We take this definition from [Franceschet, 2021], which gives a slightly simplified and generalized version of the original definition from [START_REF] Page | The PageRank citation ranking: Bringing order to the web[END_REF].

The PageRank centrality is related to eigenvector centrality in the way the adjacency matrix of the network is exploited to define relative centrality scores. Since the formulae for computing PageRank are more complex, using iterative algorithms is often preferred, especially for large networks [START_REF] Langville | A survey of eigenvector methods for web information retrieval[END_REF]Meyer, 2005, Page et al., 1999]. Several specific and faster algorithms have been proposed for computing PageRank. In particular, the paper [START_REF] Del Corso | Fast PageRank computation via a sparse linear system[END_REF] proposes an algorithm consisting in reducing PageRank computation to computing solutions of linear systems, while the article [START_REF] Bahmani | Fast incremental and personalized PageRank[END_REF] proposes Monte Carlo methods for incremental computation of PageRank.

PageRank is a relatively recent centrality measure, but it has already shown some promising performance in analysis of biological networks. In the work [START_REF] Iván | When the Web meets the cell: using personalized PageRank for analyzing protein interaction networks[END_REF] C X E 0.50 0.50 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C X K 0.26 0.35 0.36 0.23 0.25 0.23 0.29 0.23 0.23 0.23 0.23 0.23 0.23 0.25 0.23 C X P 0.19 0.25 0.20 0.02 0.03 0.02 0.14 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02

System controllability methods

One of the important aspects when dealing with a biomedical network is to be able to influence part of, or even the totality of its nodes. This objective is not restricted to biomedical networks, but is one of the earliest and most studied network theory problems, generally known as the (target) network controllability problem. This is intrinsically an optimization problem, as any network can be controlled from a sufficiently large controlling set, e.g., the entire set of nodes. However, one is interested in finding the minimal set of nodes needed in order to achieve such control. Early works in the field come from the 60's, however it was in early 2010's that one of the key results from the field has been provided in [START_REF] Liu | Controllability of complex networks[END_REF], namely the possibility of efficiently determining the minimum set of nodes needed to control an entire network.

This result sparked a new interest in the field, with a strong emphasis on possible applications in the biomedical field.

The prospect of enforcing control over a biomedical network has been investigated within two main methodological approaches: that of (structural) network controllability, see, e.g., [START_REF] Liu | Controllability of complex networks[END_REF], Czeizler et al., 2018[START_REF] Guo | A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification[END_REF][START_REF] Kanhaiya | Controlling directed protein interaction networks in cancer[END_REF] and that of dominating sets [START_REF] Wuchty | Controllability in protein interaction networks[END_REF][START_REF] Nacher | Minimum dominating set-based methods for analyzing biological networks[END_REF][START_REF] Zhang | Determining minimum set of driver nodes in protein-protein interaction networks[END_REF]]. In the current section we review both approaches, detailing the theoretical, algorithmic and biomedical applicability aspects of these methods.

Network Controlability

In general terms, we say that a directed network, or generally any dynamical system, is controllable from a set of input nodes if, with a suitable selection of input values for these nodes, the entire network can be driven from any initial state to any desired final state within a finite time. The state of a node is given by its numerical value; in the context of biomedical networks this could be for example the expression level of a gene/protein. From one time point to another this value/state evolves depending (linearly) on the values/states of its neighbors; this is why such systems are also known as linear time invariant dynamical systems (LTIS), as their evolution can be described by the system of linear differential equations: 11.2) where x(t) = (x 1 (t), ..., x n (t)) T is the n-dimensional vector describing the system's state at time t, and A ∈ R n×n is the time-invariant state transition matrix, describing how each of these states are influencing the dynamics of the system. Namely, for any nodes i, j, 1 ≤ i, j ≤ n within the network, the entry a i,j of matrix A either documents the weight of the influence of node j over the node i, if there exists a (directed) edge (i, j), or is equal to 0 otherwise.

dx(t) dt = Ax(t), ( 
By convention, from now on during this section, all vectors are considered to be column vectors so that the matrix-vector multiplications are well defined.

Assume we allow the system to be influenced through an m-dimensional input controller, i.e. an input vector u of real functions, u : R → R m acting upon some m nodes of the network. Consider the subset of input nodes I ⊆ {1, 2, . . . , n}, I = {i 1 , . . . , i m }, 1 ≤ m ≤ n, as the nodes of the network on which the external input is applied to; such nodes are also known as driver/driven nodes. The system (11.2) becomes: 11.3) where B I ∈ R n×m is the characteristic matrix associated to the subset I, B I (r, s) = 1 if r = i s and B I (r, s) = 0 otherwise, for all 1 ≤ r ≤ n and

dx(t) dt = Ax(t) + B I u(t), ( 
1 ≤ s ≤ m.
It is often the case, particularly in the bio-medical field, that it is enough to enforce control only over a subset of the network nodes to get the desired change in the network dynamics. The associated optimization problem is known as the target controllability problem, or more generally as the output controlability problem. Thus, consider a subset of target nodes T ⊆ {1, 2, . . . , n}, T = {t 1 , . . . , t l }, m ≤ l ≤ n, thought of as a subset of the nodes of the linear dynamical system, whose dynamics we aim to control (as defined below)

through a suitable choice of input nodes and of an input vector. The subset of target nodes can also be defined through its characteristic matrix C T ∈ R l×n , defined as C T (r, s) = 1 if t r = s and C T (r, s) = 0 otherwise, for all 1 ≤ r ≤ l and 1 ≤ s ≤ n. We will denote by the triplet (A, I, T ) the targeted linear (time-invariant) dynamical system defined by matrix A, with input set I, and target set T . In case T is the entire network, we can omit it from the notation.

Definition 11.17(Target controllability of linear networks): Given a target linear dynamical system (A, I, T ) (or similarly a linear network), we say that this system is target controllable (or simply controllable if the target is the entire network) if for any x(0) ∈ R n and any α ∈ R l , there is an input vector u : R → R m such that the solution x of (11.3) eventually coincides with α on its T -components, i.e., C T x(τ ) = α, for some τ ≥ 0.

Note that, the general case of output controlability is defined similarly, with the only difference that instead of a 0-1 characteristic matrix C T we have an arbitrary matrix C ∈ R n×m , with m ≤ n, defining the output y ∈ R m of the LTIS as a linear combination of the solution x(t) of equation (11.3).

Intuitively, the system being target controllable means that for any input state x 0 and any desired final state α of the target nodes, there is a suitable input vector u driving the target nodes to α. Obviously, the input vector u depends on x 0 and α.

It is known from [START_REF] Kalman | Mathematical description of linear dynamical systems[END_REF] that the system (A, I) is controllable from some input controller u(t) if and only if the rank of the matrix (B

I | AB I | A 2 B I | . . . | A n-1 B I )
, known as the controlability matrix, is equal to n, the number of nodes in the network. The operator | denotes here the simple matrix concatenation operation. This criterion is known as the Kalman's criterion for full controllability [START_REF] Kalman | Mathematical description of linear dynamical systems[END_REF], and it is easily extendable to the case of target (or generally, output) controllability:

Theorem 11.1: A targeted linear dynamical system with inputs (A, I, T ) is controllable if and only if the rank of its controllability matrix [START_REF] Kalman | Mathematical description of linear dynamical systems[END_REF].

(C T B I | C T AB I | C T A 2 B I | . . . | C T A n-1 B I ) is equal with |T | [
Intuitively, the controllability matrix describes all weighted paths from the input nodes to the target nodes in the directed graph associated to the linear dynamical system. This leads to the notion of control path from an input node to a target node and an input node controlling a target node. This line of thought can be further developed into a structural formulation of the targeted controllability. Thus, although the Kalman controlability criterion seems to suggest that the (target) controllability problem is strictly related to a particular valuation of the state transition matrix A, it turns out that this is actually a network property. To explain this, we define two matrices C, D of the same size to be equivalent if they have the same set of non-zero entries. The key concept here is that of structural controlability:

Definition 11.18(Structural target controllability of linear networks):

We say that a given targeted linear dynamical system (A, I, T ) (or similarly a linear network) is structural target controllable if there exists a matrix A equivalent with A such that the system (A , I, T ) is target controllable. That is, (A, I, T ) becomes controllable by replacing A with any suitable equivalent matrix A , or similarly, by replacing the weights of the network's edges with any other non-zero values.

They key result, proved in [Lin, 1974, Shields and[START_REF] Shields | Structural controllability of multi-input linear systems[END_REF], is that if a system (A, I) is structurally controllable, then it is controllable for all, except a thin set, of equivalent matrices A . We recall that a thin subset of the n-dimensional complex space is nowhere dense and has Lebesgue measure 0. This indicates that the controlability problem can indeed be reduced to its structural version, known as the structural (target) controllability problem, which is ultimately a property of the network's connectivity rather than of the effective edge weights. This problem can be defined both as a decision problem (is the linear time-invariant dynamical system (A, I, T ) structurally target controllable?) as well as an optimization problem (given matrix A of size n × n and a subset of target nodes T ⊆ {1, 2, . . . , n}, find the minimal m, m ≤ n, and a suitable choice for the size-m set of input nodes I such that (A, I, T ) is structurally target controllable). We are most interested in the latter formulation of the problem.

From an algorithmic standpoint, the Kalman criterion for controllability from Theorem 11.1 can lead to an efficient/polynomial time algorithm for verifying whether a given network can be (target) controlled from a given input controller, acting upon some of the network nodes. However, it does not lead to an efficient way of computing the composition of such a minimal controller, or even its (minimal) size. As it turns out, the (target) control optimization

problem has been open for more than 20 years, before it was shown in [START_REF] Liu | Controllability of complex networks[END_REF] that there exists a low polynomial time algorithm (i.e., cubic in the size of the network) that can provide both the size and the composition of the minimum input controller needed to control an entire network. It was thus surprising that the corresponding result for the target control optimization problem was proved by [START_REF] Czeizler | Structural target controllability of linear networks[END_REF] to be NP-hard, meaning that any exact optimization algorithm would have to run in exponential time. Several approximation algorithms have been developed for this latter problem, with good results when applied to both real-word networks, e.g. bio-medical, social, electrical etc., as well as artificial networks [START_REF] Kanhaiya | Controlling directed protein interaction networks in cancer[END_REF], Czeizler et al., 2018[START_REF] Gao | Target control of complex networks[END_REF].

Another generalization coming from the practical application of network controllability in pharmacology and biomedicine considers the case when the input controller should, or it is desired to, be selected mostly from a subset P ⊆ {1, 2, . . . , n} of the network nodes. For example, in network pharmacology studies, it is more advantageous to consider controllers consisting of those genes/proteins for which there already exist approved drugs known to target that particular element. This leads to the so-called input-constrained targeted structural controllability problem:

Definition 11.19(Input-constrained, structural target controllability):

Given a linear dynamical system defined by a matrix A ∈ R n×n , a set of target nodes T and a set of preferred nodes P , the input-constrained structural targeted controllability problem asks to find a smallest-sized input set I whose intersection with P is maximal, such that the targeted linear dynamical system with inputs (A, I, T ) is controllable, i.e., such that the rank of the matrix

(C T B I | C T AB I | C T A 2 B I | . . . | C T A n-1 B I ) is equal with |T |.
While this optimization problem is also NP-hard (as a generalization of the previous case), several efficient approximation algorithms have been introduced

in [START_REF] Kanhaiya | Controlling directed protein interaction networks in cancer[END_REF] and [START_REF] Victor-Bogdan | Identifying efficient controls of complex interaction networks using genetic algorithms[END_REF] and analyzed particularly with respect to bio-medical networks.

Minimum dominating sets

The second frequently used controllability technique, applied especially in the case of undirected networks, relies on the notion of domination. From an algorithmic point of view MDSP is a classical NP-hard problem [START_REF] Garey | Computers and Intractability; A Guide to the Theory of NP-Completeness[END_REF]. However, as before, there are many efficient approximation algorithms providing efficient solutions even in the case of large networks [START_REF] Hedar | Simulated annealing with stochastic local search for minimum dominating set problem[END_REF][START_REF] Alon | Transversal numbers of uniform hypergraphs[END_REF][START_REF] Nacher | Analysis of critical and redundant nodes in controlling directed and undirected complex networks using dominating sets[END_REF].

The MDS approach has been applied in connection to various fields such as the controllability of biological networks [START_REF] Wuchty | Controllability in protein interaction networks[END_REF][START_REF] Nacher | Minimum dominating set-based methods for analyzing biological networks[END_REF][START_REF] Zhang | Determining minimum set of driver nodes in protein-protein interaction networks[END_REF], design and analysis of wireless computer networks [START_REF] Yu | Connected dominating sets in wireless ad hoc and sensor networks -a comprehensive survey[END_REF][START_REF] Wu | Extended dominating set and its applications in ad hoc networks using cooperative communication[END_REF], the study of social networks [START_REF] Mehdi | Minimum positive influence dominating set and its application in influence maximization: a learning automata approach[END_REF][START_REF] Wang | On positive influence dominating sets in social networks[END_REF], etc. Several generalizations of MDSP have also Such generalizations were considered in [Penso and [START_REF] Lucia | A distributed algorithm to find k-dominating sets[END_REF][START_REF] Nguyen | Solving the k -dominating set problem on very large-scale networks[END_REF][START_REF] Santos Coelho | The k-hop connected dominating set problem: approximation and hardness[END_REF] and in [START_REF] Faisal | An exact algorithm for connected red-blue dominating set[END_REF], respectively. All these generalizations, while preserving the algorithmic complexity of the original MDSP, provide sometimes a closer connection to practical applications.

Compared to the structural network controllability formalism, the dominating set methodology enforces a reachability type of control. Indeed, in the latter case, the dominating nodes are controlling the network either by direct interactions, in case of MDSP, or by paths of length at most k, for MkDSP. This is different than within the structural network controllability formalism,

where each controller node is asked to enforce an independent control over its dominating nodes. This requirement imposes that each controlled node, i.e.

target node, is positioned at the end of a different lengthed path starting from the controller, i.e., the driver node.

Software

In this section we briefly present several applications and libraries which can be used for generating, visualizing or analyzing graphs and networks. All of the mentioned software is open-source, free to use and still supported as of the time of writing (namely, it was updated in the past two years and it runs on the latest versions of the most common operating systems or using the most recent versions of the corresponding programming languages).

NetworkX

NetworkX [START_REF] Aric | Exploring network structure, dynamics, and function using NetworkX[END_REF]) is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks ([Hagberg et al., 2021c]). As all of the networks described in this chapter (except the simple demonstrative network from Figure 11.1) represent personalized protein-protein interaction networks and have been generated

externally, we have focused the usage of the NetworkX package solely on analyzing them. The package provides out-of-the-box implemented algorithms and functions for identifying all of the centrality measures presented in this chapter.

It is worth noting that NetworkX also provides several algorithms for different layout routines, and basic interconnections with dedicated graph visualization packages, such as Matplotlib ([Matplotlib, 2021]) and Graphviz ( [START_REF] Ellson | Graphviz -graph visualization software[END_REF]). However, graph visualization does not represent the main goal of Net-workX, and its creators recommend using a dedicated and fully-featured tool instead.

An alternative to NetworkX is the igraph collection ([igraph core team, 2021]), which provides network analysis libraries and packages for R, Mathematica and C/C++ in addition to Python. We used the NetworkX package to compute the centrality measures corresponding to the nodes in all of the networks presented in this chapter. Specifically, the functions used for ranking the nodes according to the corresponding centrality method described in Section 11.2.1 are presented in Table 11.1.

Additionally, we used the dominating set function with the default parameters to run the MDS analysis described in Section 11.2.2 for each network.

While the package does not provide a direct equivalent for the MkDS algorithm, it allows for the initial network manipulation (i.e. parsing the network and adding specific edges) required to transform the default MDS analysis into an MkDS one. The methodology and results are presented in detail in Section 11.3.3.

Cytoscape

Cytoscape ( [START_REF] Shannon | Cytoscape: a software environment for integrated models of biomolecular interaction networks[END_REF]) is a standalone software platform implemented in Java for visualizing complex networks, together with attribute data integration ( [START_REF] Shannon | Cytoscape: An open source platform for complex network analysis and visualization[END_REF]). Cytoscape was initially developed for biological research and biological networks visualization and analysis. In addition to the basic functionality, Cytoscape provides extended functionality through is proportional to its indegree (darker nodes have higher indegree), while the size of a node is proportional to its outdegree (larger nodes have higher outdegree).

the use of so-called apps, which can be community-developed and add support for additional analysis methods, layouts, or database connections, among others.

Another well-established desktop network visualization software is Gephi [START_REF] Mathieu Bastian | Gephi -the open graph viz platform[END_REF]), a Java application with the same capabilities, including the usage of plugins for extended functionality.

We have used the Cytoscape application to render all of the network visualizations presented throughout this chapter. The layout of the nodes was automatically calculated and applied using the default preferred layout algorithm, while the general design of the networks (e.g. labels, colors, or sizes) is based on the default style. A screenshot with the visualization of a network, can be seen in Figure 11.2. 

NetControl4BioMed

NetControl4BioMed ( [START_REF] Kanhaiya | Netcontrol4biomed: a pipeline for biomedical data acquisition and analysis of network controllability[END_REF], updated version in [START_REF] Victor-Bogdan | Netcontrol4biomed: a platform for biomedical network synthesis and analysis[END_REF]) is a C# (.NET Core) web application for the generation and structural target controllability analysis of protein-protein interaction networks, freely available at https://netcontrol.combio.org/. To this end, the application integrates and combines multiple protein and protein-protein interaction databases which, based on the user input, are used in the process.

We have used the NetControl4BioMed platform to generate the personalized protein-protein interaction networks presented in this chapter. The details of the network generation method (e.g. used interaction databases, or algorithm parameters) are presented in Section 11.3.1. A screenshot with the home page of the application can be seen in Figure 11.3.

Additionally, we used the network analysis section of the application, with the default parameters, to run the structural target controllability analysis described in Section 11.2.2 for each network. The methodology and results are presented in detail in Section 11.3.3.

Applications of network modeling in personalized medicine

We demonstrate our approach to personalized medicine on three multiple myeloma patients, through the analysis of customized networks built around the mutated genes of each patient, the disease-specific survivability-essential genes, and the genes targeted by drugs in the standard therapy for multiple myeloma.

Constructing personalized disease networks

We used the patient data documented in [START_REF] Lohr | Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy[END_REF], which includes information about the evolution of the mutation, the mutated genes, and the stage of treatment, as well as details about the patient characteristics, such as age, race, and gender, among others. In this study we focus on the mutated genetic information for tumor samples 28, 38 and 191.

We used a list of 70 multiple myeloma-specific essential genes presented in [START_REF] Matthews | Characterization of lineage vs. context-dependent essential genes in multiple myeloma using crispr-cas9 genome editing[END_REF][START_REF] Tiedemann | Identification of molecular vulnerabilities in human multiple myeloma cells by rna interference lethality screening of the druggable genome[END_REF][START_REF] Krönke | Lenalidomide induces degradation of ikzf1 and ikzf3[END_REF] and shown in Table 11.2.

We used the multiple myeloma standard treatment drugs described in [Foundation, 2019[START_REF] Engelhardt | Carfilzomib combination treatment as first-line therapy in multiple myeloma: where do we go from the carthadex (ktd)-trial update?[END_REF][START_REF] Mateos | Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma[END_REF] and their corresponding drug-targets from DrugBank [START_REF] David S Wishart | Drugbank 5.0: a major update to the drugbank database for 2018[END_REF]. The list thus obtained is presented in Table 11.3 while the associated drugs and the standard drug therapies are documented in Tables 11.4 and 11.5, respectively. The disease-specific survivability-essential genes for multiple myeloma [START_REF] Matthews | Characterization of lineage vs. context-dependent essential genes in multiple myeloma using crispr-cas9 genome editing[END_REF][START_REF] Tiedemann | Identification of molecular vulnerabilities in human multiple myeloma cells by rna interference lethality screening of the druggable genome[END_REF][START_REF] Krönke | Lenalidomide induces degradation of ikzf1 and ikzf3[END_REF] We used the NetControl4BioMed application, briefly presented in Section 11.2.3.3, to build a personalized protein-protein interaction network for each multiple myeloma patient around the seed genes defined by the patientspecific mutated genes, the disease-specific survivability-essential genes, and the drug-target genes corresponding to the standard treatment drugs. We used the interaction data from the KEGG, OmniPath, InnateDB and SIGNOR databases. The networks include all paths of length at most three between the seed proteins that could be formed with these interactions. We added to the network all intermediary nodes that were not part of the set of seed nodes. An

Table 11.7:

The top ranked genes based on their in-degree centrality, for each network.

Tumor sample 28

Tumor sample 38 Tumor sample 191

IKBKB AURKB IKBKB CCND2 RELA CCND2 RELA XPO1 RELA XPO1 IKBKB XPO1 NFKB1 EIF3C NFKB1 EIF3C NFKB1 EIF3C PSMC4 TNK2 PSMC4 TNK2 PSMC4 TNK2 PSMC5 CSNK1A1 PSMC5 CSNK1A1 PSMC5 RPL38 PSMA4 KIF11 PSMA4 KIF11 UBB CSNK1A1 UBB EFNA2 UBB CDK11B PSMA4 SNW1 PSMC3 CDK11B PSMC3 SNW1 PSMC3 CDK11B NFKB2 SNW1 NFKB2 EFNA2 NFKB2 KIF11 PLK1 USP8 PLK1 IKZF3 PLK1 IKZF3 PSMA6 IKZF3 MCL1 MED14 MCL1 IKZF1 PSMA3 RSF1 PSMA6 USP8 PSMA6 EFNA2 MCL1 IKZF1 WEE1 RSF1 WEE1 RRM1 WEE1 RPL38 PSMA3 IKZF1 PSMA3 USP8 PSMA1 TRIM21 RELB RPL38 RELB TRIM21 CCND2 MAF PSMA1 TRIM21 PSMA1 RSF1 RELB AURKB AURKB RPL27
Table 11.8:

The top ranked genes based on their closeness centrality, for each network.

Tumor sample 28

Tumor sample 38 Tumor sample 191

UBB CSNK1A1 IKBKB PSMA4 RELA PSMA4 IKBKB PSMA4 UBB XPO1 UBB CSNK1A1 RELA XPO1 RELA CSNK1A1 IKBKB PSMC3 NFKB1 PLK1 NFKB1 PSMC3 NFKB1 XPO1 NFKB2 SNW1 NFKB2 SNW1 NFKB2 SNW1 RELB PSMC3 RELB TRIM21 RELB PSMC4 WEE1 PSMC4 PSMA3 PIM2 WEE1 AURKB PSMA3 PSMC5 MCL1 PSMC4 PSMA3 PSMC5 MCL1 TRIM21 WEE1 PSMC5 MCL1 PIM2 RSF1 KIF11 RSF1 PSMA1 RSF1 PSMA1 CCND2 PSMA1 CCND2 KIF11 CCND2 TRIM21 PSMA6 PIM2 PLK1 TNK2 PSMA6 KIF11 PSMA6 AURKB PLK1 TNK2
Table 11.9:

The top ranked genes based on their harmonic centrality, for each network.

Tumor sample 28

Tumor sample 38 Tumor sample 191

IKBKB PSMC3 IKBKB PSMC5 RELA PSMC3 RELA PSMA6 RELA PLK1 IKBKB PLK1 NFKB1 MCL1 NFKB1 CCND2 NFKB1 PSMA6 UBB CCND2 UBB RSF1 UBB RSF1 NFKB2 RSF1 NFKB2 XPO1 NFKB2 CCND2 PSMA4 PLK1 RELB PSMA1 RELB PSMA1 RELB XPO1 PSMA4 CSNK1A1 PSMA4 AURKB PSMA3 PSMA1 PSMA3 SNW1 WEE1 CSNK1A1 WEE1 CSNK1A1 WEE1 TRIM21 PSMA3 XPO1 PSMC4 SNW1 MCL1 PIM2 PSMC4 SNW1 PSMC5 PSMC3 AURKB MCL1 PIM2 PSMA6 TNK2 PSMC5 TRIM21 PSMC4 KIF11
Table 11.10:

The top ranked genes based on their eccentricity, for each network.

Tumor sample 28

Tumor sample 38 Tumor sample 191

IKBKB RELB IKBKB EFNA2 IKBKB EFNA2 RELA MCL1 RELA RELB RELA MCL1 NFKB1 EFNA2 NFKB1 MCL1 NFKB1 TNK2 PSMA4 TNK2 PLK1 TNK2 PLK1 CCND2 PLK1 CCND2 PSMA4 CCND2 PSMA4 EIF3C PSMC3 EIF3C PSMC3 EIF3C PSMC5 CDK11B PSMC5 CDK11B PSMC5 CDK11B PSMC4 XPO1 PSMC4 XPO1 PSMC4 XPO1 PSMC3 SNW1 PSMA6 IRF4 PSMA6 IRF4 PSMA6 RPL38 PSMA1 SNW1 PSMA1 SNW1 PSMA1 IRF4 PSMA3 USP8 PSMA3 PIM2 PSMA3 PIM2 UBB PIM2 UBB MED14 UBB USP8 NFKB2 HIP1 NFKB2 USP8 NFKB2 IKZF1 WEE1 KIF11 WEE1 RSF1 CSNK1A1 HIP1 CSNK1A1 RSF1 AURKB HIP1 WEE1 KIF11 AURKB CSNK1A1 KIF11 AURKB IKZF3 RELB RAB11A
Table 11.11:

The top ranked genes based on their betweenness centrality, for each network.

Tumor sample 28

Tumor sample 38 Tumor sample 191

IKBKB PSMA6 IKBKB RELB IKBKB RELB NFKB1 EIF3C RELA CCND2 RELA UBB RELA RELB NFKB1 EIF3C NFKB1 PSMA6 PLK1 PSMA1 PLK1 PSMA1 PLK1 PSMA1 CSNK1A1 PSMA4 PSMC3 PSMA4 NFKB2 PSMC5 NFKB2 PSMC5 NFKB2 PSMC5 WEE1 PSMA4 PSMA3 EFNA2 WEE1 EFNA2 CSNK1A1 EFNA2 WEE1 USP8 PSMA3 MED14 CDK11B PSMC4 PSMC3 PIM2 CDK11B USP8 PSMA3 RAB11A CDK11B PSMC4 CSNK1A1 PIM2 MCL1 USP8 MCL1 MED14 TNK2 PSMC4 AURKB MED14 TNK2 RPL38 AURKB RSF1 EIF3C MAF AURKB MAF MCL1 SNW1 PSMC3 PIM2 XPO1 RSF1 XPO1 RPL38 TNK2 SNW1 CCND2 SNW1 PSMA6 MAF XPO1 RPL38 UBB UBB CCND2 RSF1
Table 11.12:

The top ranked genes based on their eigenvector-based prestige, for each network. to run the minimum dominating set analyses with the previously described setup. An additional step was required in order to enable the default function to perform the required minimum k-dominating set analysis. To this end, we transformed the analyzed networks by adding a direct edge between each pair of nodes indirectly connected by path of length of k or less. We set k = 3, and used the default parameters. The analysis outputs a set of genes that can dominate the entire target set, from which only the dominating drug-targets are selected and further considered.

Results

In this section, we present and discuss the results of the analyses described in Section 11.3.2, with the aim of suggesting personalized treatments.

Structural controllability analysis

We applied the input-constrained structural target controllability method on the complete networks and sets of essential and drug-target genes. The drugtarget genes in the obtained controlling sets are presented in Table 11.13.

Next, we applied the method once more on the subgraphs described in Section 11.3.2 and corresponding to each centrality measure. The drug-target genes in the controlling sets obtained for each measure are presented in Ta-Table 11.14:

The drug-target genes in the controlling set obtained by the structural target controllability analysis corresponding to the top ranked essential genes based on their in-degree centrality. bles 11.14, 11.15, 11.16, 11.17, 11.18 and 11.19.

Next, we studied the results in the context of drug therapy. For each network and centrality measure, the drug-target genes were matched with all the multiple myeloma standard treatment drug targeting them, while the latter was sorted according to the number of top ranked essential genes controlled through one or more of their drug-target genes. Then, we selected the three top drugs as our proposed drug combination for that patient's treatment. Informally, this approach aims for a reinforced influential effect over as many essential genes as possible through a minimal combination of at most 3 drugs.

The chosen drugs are documented in Tables 11.20,11.22,11.24,11.26,11.28 Table 11.16:

The drug-target genes in the controlling set obtained by the structural target controllability analysis corresponding to the top ranked essential genes based on their harmonic centrality. Table 11.17:

The drug-target genes in the controlling set obtained by the structural target controllability analysis corresponding to the top ranked essential genes based on their eccentricity. Table 11.18:

The drug-target genes in the controlling set obtained by the structural target controllability analysis corresponding to the top ranked essential genes based on their betweenness centrality. The drug-target genes in the controlling set obtained by the structural target controllability analysis corresponding to the top ranked essential genes based on their eigenvector-based prestige. The proposed drug therapy and the number of essential genes it dominates, for the minimum dominating set corresponding to the top ranked essential genes based on their betweenness. The most effective standard drug therapy and the number of essential genes it dominates, for the minimum dominating set corresponding to the top ranked essential genes based on their betweenness. Table 11.51:

The proposed drug therapy and the number of essential genes it dominates, for the minimum dominating set corresponding to the top ranked essential genes based on their eigenvector centrality. Table 11.52:

The most effective standard drug therapy and the number of essential genes it dominates, for the minimum dominating set corresponding to the top ranked essential genes based on their eigenvector centrality. Table 11.53:

The proposed drug therapy and the number of essential genes it dominates, for the minimum dominating set corresponding to the essential genes in the patient network. The most effective standard drug therapy and the number of essential genes it dominates, for the minimum dominating set corresponding to the essential genes in the patient network. hub genes ascertained by the centrality analysis of a disease network to be considered as basis for the discovery of new essential genes and drug targets.

Conclusion

Network medicine is an exciting and promising field of research, with a high potential for personalized approaches. It brings together approaches in graph theory, network science, systems biology, bioinformatics and medicine, opening the door to detailed patient-and disease-specific insights. We discussed in this chapter several basic methods of network modeling and their potential applicability in personalized medicine. We also demonstrated their potential on three multiple myeloma patient datasets. We showed how various methods (topological analysis, systems controllability) can be combined to predict optimal and personalized drug combinations therapies. In some cases, they differ from the initial standard therapy lines routinely offered to multiple myeloma patients, and resemble in part the options becoming available later in the disease progression. More studies (especially longitudinal studies) are needed to explore the full potential of these methods and convincingly demonstrate their applicability in the clinical practice.

The results we obtained on the three datasets differ slightly from method to method. This is not surprising, as each method identifies different nodes and paths in the graphs that are of interest from various computational points of view. Which ones work best in practice should be explored with other research instruments, and it is likely the results may differ from case to case.

The results in network medicine are critically dependent on the quality of the patient networks being applied to. The patient data that can be included in such networks can be quite diverse, including genetic mutations, copy number variations, differential gene expression, co-morbidities, and concurrent treatments. All these data sources contribute to the set of nodes in the network. The interactions included in the network typically come from various interaction databases (some of which we discussed in this chapter). The data going into these databases is very diverse: some of it is experimental (but not always on human samples), some is inferred from other experiments, while others are deduced through various machine learning methods. The importance of curating these datasets or at least choosing carefully which to include in the analyses cannot be underestimated.

Definition 11 .

 11 1(Centrality): Let G = (V, E) be a network. A centrality measure is any function f : V → R.

Figure 11 . 1 :

 111 Figure 11.1: The network serving as a running example to illustrate centralities and the related concepts.

Definition 11 . 5 (

 115 Normalized closeness centrality): Let G = (V, E) be a connected undirected network. The normalized closeness centrality is the function C C : V → R is defined as follows: can be thought of as the inverse of the mean of the distances to v from all other nodes. The bounds on the values of the normalized closeness centrality C C are the same as the bounds on the values of C C : 0 < C C (v) ≤ 1, but C C (v) reaches its maximal value 1 for any node v adjacent to all the other nodes of a given network.

  betweenness centrality: percolation centrality. This measure was introduced in [Piraveenan et al., 2013] with the goal of taking into account the dynamical states of the nodes of the network. Intuitively, percolation centrality extends the definition of betweenness centrality by multiplying p uw (v) by percolation:

  .1) which effectively defines c as an eigenvector, and λ as an eigenvalue of the adjacency matrix A of the network G. Since A is a real square matrix (its elements are 0 and 1 in the case of unweighted networks), according to the Perron-Frobenius theorem of linear algebra, A has a unique largest real eigenvalue λ and one can choose the corresponding eigenvector c to be strictly positive, which allows defining a meaningful centrality measure[START_REF] Mark | Mathematics of Networks[END_REF]. Definition 11.11(Eigenvector centrality): Let G = (V, E) be a (either directed, or undirected) network and A its adjacency matrix. Let λ be the largest real eigenvalue of A and c a corresponding eigenvector with strictly positive components. An eigenvector centrality is a function C E : V → R defined as follows: C E (v) = c v .

Definition 11 .

 11 13(1-norm eigenvector centrality): Let G = (V, E) be a (either directed, or undirected) network and c be the principal eigenvector of G. The 1-norm eigenvector centrality is the function C (1) E : V → R defined as follows:

Definition 11 .

 11 14(2-norm eigenvector centrality): Let G = (V, E) be a (either directed, or undirected) network and c be the principal eigenvector of G. The 2-norm eigenvector centrality is the function C

  an iterative algorithm with time complexity O(|V | + |E|), given a constant desired precision.Typical applications of Katz centrality concern directed networks, in particular directed acyclic networks, in which eigenvector centrality appears less useful[START_REF] Mark | Networks: An Introduction[END_REF]. Katz centrality has found promising applications in neuroscience. The work[START_REF] Mckay | From structure to activity: Using centrality measures to predict neuronal activity[END_REF] shows that Katz centrality is the best predictor of firing rate given the network structure, with almost perfect correlation in all cases studied. The paper[START_REF] Mantzaris | Dynamic network centrality summarizes learning in the human brain[END_REF] uses Katz centrality to analyse fMRI data of human brain activity during learning, and shows how key brain regions contributing to the process can be discovered.A third eigenvalue and eigenvector-related centrality measure we briefly discuss in this section is PageRank, one of the algorithms used by Google to measure the importance of web pages[Google, 2011]. Multiple variants of PageRank have been proposed. We start with the definition from[START_REF] Langville | A survey of eigenvector methods for web information retrieval[END_REF]. Definition 11.16(PageRank): Let G = (V, E) be a directed network and A its adjacency matrix. The PageRank centrality is the function C P : V → R satisfying the following equation:

Definition 11 .

 11 20(Dominating set): Given a size n network, we say that a subset D ⊆ {1, 2, . . . , n} of its nodes is dominating the network if any node within the network is either in D or it is adjacent to a node in D. Definition 11.21(The Minimum Dominating Set Problem): Given a (undirected) network, the Minimum Dominating Set Problem (MDSP) asks to find a dominating set of minimum cardinality. Such MDS can thus be considered as an efficient first-hand controlling set for the respective network.

  Definition 11.22(The Minimum k-Dominating Set Problem): Given a (undirected) network, a set D of its nodes is k-path dominating if any node from the network is either in D or it is connected to a node in D through a path of length at most k. The minimum k-dominating set problem (MkDP), also known as the d-hop dominating problem, asks to find a k-path dominating set of minimal cardinality. Definition 11.23(The Red-Blue (k-)Dominating Problem): Given a network and two subsets of its nodes, Red and Blue, the Red-Blue (k-)domination problem, asks to find a minimum subset of the Blue nodes (k-path) dominating all the Red nodes.
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 112 Figure 11.2: Example of network visualization with Cytoscape. The color of a node
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 113 Figure 11.3: Screenshot with the home page of NetControl4BioMed.

  -Tumor Bortezomib;Thalidomide;Dexamethasone 27 MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 27

  -Tumor Bortezomib;Thalidomide;Dexamethasone 31

  The software package NetworkX computes the distances from the nodes which reach v [Hagberg et al., 2021a],and normalizes with respect to the number of these nodes. The difficulties with infinite distances for pairs of unreachable nodes persist also in the directed case, with possible solutions similar to those for the undirected case.

	Example 11.2: The following table gives the closeness centralities and the
	normalized closeness centralities, rounded to two digits after the decimal point,
	for the nodes of the example network in Figure 11.1. The lines C u C (v) and C u C (v)
	take this network to be undirected, meaning that the directed edges appearing
	in the figure can be traversed both ways. The calculations for directed networks
	were done with NetworkX, using the approach explained above.
	v 0	1	2	3	4	5	6	7	8	9	10 11 12 13 14

  for the center of a star network, in both directed and undirected cases, because both in U k and G k every node is connected to the

	central node 1.								
	Note that central nodes in large connected components will have greater
	values of harmonic centrality than central nodes in small connected compo-
	nents. Furthermore, nodes in disconnected networks will tend to have lower
	harmonic centralities than nodes in connected networks.
	Example 11.3: The following table gives the harmonic centralities and the
	normalized harmonic centralities, rounded to two digits after the decimal point,
	for the nodes of the example network in Figure 11.1. The lines C u H (v) and C u H (v)
	take this network to be undirected, meaning that the directed edges appearing
	in the figure can be traversed both ways.			
	v 0	1	2	3	4	5	6	7	8	9 10 11 12 13 14

Table 11 . 1 :

 111 The NetworkX functions used for computing the centrality methods.

	Method	Function	Parameters
	Degree centrality	in degree centrality	-
	Closeness centrality	closeness centrality	default
	Harmonic centrality	harmonic centrality	default
	Eccentricity centrality	eccentricity	default
	Betweenness centrality	betweenness centrality	default
	Eigenvector-based prestige eigenvector centrality	default

Table 11

 11 

	.2:

  ).

	AGTRAP EIF3C	KIFC2	PLK1	RGAG1	TRIM68
	AURKB	EIF4A3 LEPROT PRPF8	RPL27	TUBGCP6
	CARS	GNRH2 MAF	PSMA1	RPL38	UBB
	CCND2	GPR77 MCL1	PSMA3	RRM1	UBQLNL
	CDK11	HIP1	MED14	PSMA4	RSF1	ULK3
	CDK11A	IK	MED15	PSMA6	SF3A1	USP36
	CDK11B	IKBKB NDC80	PSMC3	SLC25A23 USP8
	CKAP5	IKZF1	NFKB1	PSMC4	SNRPA1	WBSCR22
	COPB2	IKZF3	NFKB2	PSMC5	SNW1	WEE1
	CSNK1A1 IRF4	NUF2	RAB11A TNK2	XPO1
	CUL9	KIF11	PCDH18 RELA	TPMT	
	EFNA2	KIF18A PIM2	RELB	TRIM21	

Table 11

 11 

	.3:	The targets of the drugs used in standard therapy lines
	for multiple myeloma.		
	ANXA1 GSR	NR0B1	PSMB2 SLAMF7 TUBB
	CD38	HSD11B1 NR1I2	PSMB5 TNF	XPO1
	CDH5	NFKB1	NR3C1	PSMB8 TNFSF11
	CRBN	NOLC1	PSMB1	PSMB9 TOP2A
	FGFR2 NOS2	PSMB10 PTGS2 TUBA4A

Table 11 . 13 :

 1113 The drug-target genes in the controlling set obtained by the structural target controllability analysis.

	Tumor sample 28 Tumor sample 38 Tumor sample 191
	ANXA1 NOLC1	ANXA1 PSMB1	ANXA1 PSMB2
	NFKB1	NOLC1 TNF	

Table 11 .

 11 15:The drug-target genes in the controlling set obtained by the structural target controllability analysis corresponding to the top ranked essential genes based on their closeness centrality.

	Tumor sample 28 Tumor sample 38 Tumor sample 191
	ANXA1 NOLC1	ANXA1 TNF	ANXA1 NOLC1
	NFKB1 TNF	NFKB1	NFKB1 TNF
	Tumor sample 28 Tumor sample 38 Tumor sample 191
	ANXA1 PSMB8	FGFR2 PSMB5	ANXA1 PSMB1
	NFKB1 TNF	NFKB1 TNF	NFKB1 TNF
		NR3C1	NR3C1 XPO1

Table 11 .

 11 19:

	Tumor sample 28 Tumor sample 38 Tumor sample 191
	ANXA1 TNF	ANXA1	PTGS2	ANXA1 PTGS2
	NFKB1	NFKB1	TNF	NFKB1 TNF
		PSMB10		

Table 11 .

 11 49:

Table 11 .

 11 50:

	Tumor Sample Proposed therapy	Dominated EG
	MM-0028-Tumor Thalidomide;Pomalidomide;Dexamethasone	27
	MM-0038-Tumor Thalidomide;Pomalidomide;Dexamethasone	27
	MM-0191-Tumor Thalidomide;Pomalidomide;Dexamethasone	27

Table 11 .

 11 54:

	Tumor Sample Proposed therapy	Dominated EG
	MM-0028-Tumor Thalidomide;Pomalidomide;Dexamethasone	31
	MM-0038-Tumor Thalidomide;Pomalidomide;Dexamethasone	31
	MM-0191-Tumor Thalidomide;Pomalidomide;Dexamethasone	31

We used the NetworkX package, briefly presented in Section 11.2.3.1, to rank the genes in each of the generated networks based on the centrality measures described in Section 11.2.1. Tables 11.7,11.8,11.9,11.10,11.11,[START_REF] Kanhaiya | Controlling directed protein interaction networks in cancer[END_REF]12 present, for each network, the essential genes that have the corresponding centrality measure higher than the median among all other genes in the network. 

Analysis methods

In this section, we describe the methodology applied for the analysis of the data presented in Section 11.3.1, and using the centrality measures presented in Section 11.2.1 and the controllability methods presented in Section 11.2.2.

All analyses follow a similar flow, aiming to identify, through the different controllability methods, a subset of "important" drug-target genes in the network, ranked according to the number of essential genes that they control. Once a set has been identified, the corresponding drugs are ranked based on a very similar criterion, taking into account the number of essential genes that their drug-targets control. The three top ranked drugs are then reported as a personalized drug combination therapy customized to the patient, and compared with the standard lines of therapy.

Firstly, we ran each type of analysis on the complete networks and data sets, considering as targets the essential genes presented in Table 11.2 and as preferred inputs the drug-target genes in Table 11.3. Then, to reduce the noise in the data, for each network and each centrality measure we focused on the subgraphs formed by the top ranked essential genes and the drug-targets that can reach them through a path of length of 3 or less, and all the interactions between them. For each such subgraph, all analyses consider as targets the corresponding essential genes, and as preferred inputs the corresponding drugtarget genes.

We used the NetControl4BioMed application, briefly presented in Section 11.2.3.3, to run the structural target controllability analyses with the previously described setup. We used the default parameters, with a set maximum path length of 3. The analysis outputs a set of genes that can control the entire target set, from which only the controlling drug-targets are selected and further considered.

Similarly, we used the NetworkX package, presented in Section 11.2.3.1, Table 11.20:

The proposed drug therapy and the number of essential genes it controls, for the structural target controllability analysis corresponding to the top ranked essential genes based on their in-degree.

Tumor Sample Proposed therapy

Controlled EG MM-0028-Tumor Dexamethasone;Thalidomide;Doxorubicin 29 MM-0038-Tumor Dexamethasone;Thalidomide;Pomalidomide 24 MM-0191-Tumor Dexamethasone;Thalidomide;Pomalidomide 28

Table 11.21:

The most effective standard drug therapy and the number of essential genes it controls, for the structural target controllability analysis corresponding to the top ranked essential genes based on their in-degree.

Tumor Sample Standard therapy

Controlled EG MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 27 MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 24 MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 28 and 11.30. Following an identical procedure, we also suggest a personalized drug combination in Table 11.32 based on the conclusions reached by the controllability analysis on the whole tumor network. The associated most effective standard drug therapy for each tumor sample and centrality measure are given in Tables 11.21,11.23,11.25,11.27,11.29,11.31 and 11.33.

It is immediate to see that Thalidomide and Dexamethasone are predicted to be extremely suitable for treating the unique disease circumstances afflicting all the patients. These two drugs are commonly preferred as a first choice The proposed drug therapy and the number of essential genes it controls, for structural target controllability analysis corresponding to the top ranked essential genes based on their closeness.

Tumor Sample Proposed therapy

Controlled EG MM-0028-Tumor Thalidomide;Dexamethasone;Pomalidomide 21 MM-0038-Tumor Thalidomide;Pomalidomide;Dexamethasone 23 MM-0191-Tumor Thalidomide;Dexamethasone;Selinexor 24

Table 11.23:

The most effective standard drug therapy and the number of essential genes it controls, for the structural target controllability analysis corresponding to the top ranked essential genes based on their closeness.

Tumor Sample Standard therapy

Controlled EG MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 21 MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 24 MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 24

Table 11.24:

The proposed drug therapy and the number of essential genes it controls, for the structural target controllability analysis corresponding to the top ranked essential genes based on their harmonic centrality.

Tumor Sample Proposed therapy

Controlled EG MM-0028-Tumor Thalidomide;Dexamethasone;Selinexor 21 MM-0038-Tumor Dexamethasone;Thalidomide;Pomalidomide 22 MM-0191-Tumor Dexamethasone;Thalidomide;Bortezomib 22

Table 11.25:

The most effective standard drug therapy and the number of essential genes it controls, for the structural target controllability analysis corresponding to the top ranked essential genes based on their harmonic centrality.

Tumor Sample Standard therapy

Controlled EG MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 20 MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 22 MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 22

Table 11.26:

The proposed drug therapy and the number of essential genes it controls, for the structural target controllability analysis corresponding to the top ranked essential genes based on their eccentricity.

Tumor Sample Proposed therapy

Controlled EG MM-0028-Tumor Thalidomide;Pomalidomide;Bortezomib 25 MM-0038-Tumor Dexamethasone;Prednisone;Thalidomide 3 MM-0191-Tumor Thalidomide;Dexamethasone 26

Table 11.27:

The most effective standard drug therapy and the number of essential genes it controls, for the structural target controllability analysis corresponding to the top ranked essential genes based on their eccentricity.

Tumor Sample Standard therapy

Controlled EG MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 26 MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 3 MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 26

Table 11.28:

The proposed drug therapy and the number of essential genes it controls, for the structural target controllability analysis corresponding to the top ranked essential genes based on their betweenness. The proposed drug therapy and the number of essential genes it controls, for the structural target controllability analysis corresponding to the top ranked essential genes based on their eigenvector centrality.

Tumor Sample Proposed therapy

Controlled EG MM-0028-Tumor Thalidomide;Selinexor;Bortezomib 3 MM-0038-Tumor Dexamethasone;Thalidomide;Pomalidomide 19 MM-0191-Tumor Thalidomide;Dexamethasone;Pomalidomide 21

Table 11.31:

The most effective standard drug therapy and the number of essential genes it controls, for the structural target controllability analysis corresponding to the top ranked essential genes based on their eigenvector centrality.

Tumor Sample Standard therapy

Controlled EG MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 2 MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 19 MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 21

Table 11.32:

The proposed drug therapy and the number of essential genes it controls, for the structural target controllability analysis corresponding to the essential genes in the patient network.

Tumor Sample Proposed therapy

Controlled EG MM-0028-Tumor Thalidomide;Doxorubicin;Dexamethasone 31 MM-0038-Tumor Thalidomide;Pomalidomide;Doxorubicin 28 MM-0191-Tumor Dexamethasone;Carfilzomib 25

Table 11.33:

The most effective standard drug therapy and the number of essential genes it controls, for the structural target controllability analysis corresponding to the essential genes in the patient network. The third drug combination spot is usually taken by Pomalidomide. While this drug is mostly considered in later stages of the treatment in the context of traditional care, the analysis predicts this drug to have a strong reinforcement impact on the activity of Thalidomide for these specific cases, as it shares the same controlled essential genes with the latter. Our approach also identifies several outliers to the predominant 3-drug combination, namely Selinexor, Doxorubicin, Prednisone, Bortezomib, and Carfilzomib. The first two drugs are not considered until the last stages of the treatment in standard therapy lines.

Although the conclusions collected by this study for these three patients align with this traditional approach, they still provide grounds to consider them over other late stage drugs if the treatment progresses to an evolved phase. On the other hand, the remaining three are relevant in starting medical diagnosis, with Bortezomib being specially remarkable. Following a more traditional approach, these three drugs may be given preference over Pomalidomide for the first prescriptions.

Table 11.34:

The drug-target genes in the dominating set obtained by the minimum dominating set analysis.

Tumor sample 28

Tumor sample 38 Tumor sample 191

The suggested drug therapies are predicted to control most of the considered essential genes in the whole network and each of the centrality subnetworks. Consequently, it is expected for them to have a significant favorable impact on the condition of our targeted patients. Furthermore, the prescribed sequence of drugs are very close to the known therapies frequently used in the current state of the art treatment. All of these events provide a strong foundation for the feasibility of this method in personalized medicine.

Minimum dominating set analysis

We applied the input-constrained minimum 3-dominating set method on the complete networks and sets of essential and drug-target genes. The drug-target genes in the obtained dominating sets are shown in Table 11.34.

Next, we applied the method once more on the subgraphs described in Section 11.3.2 and corresponding to each centrality measure. The drug-target genes in the dominating set obtained for each measure are presented in Tables 11.35, 11.36, 11.37, 11.38, 11.39 and 11.40.

The examination of these results follows an analogous procedure to the one introduced for target controllability. For each network and centrality measure, Table 11.35:

The drug-target genes in the dominating set obtained by the minimum dominating set analysis corresponding to the top ranked essential genes based on their in-degree centrality.

Tumor sample 28

Tumor sample 38 Tumor sample 191

Table 11.36:

The drug-target genes in the dominating set obtained by the minimum dominating set analysis corresponding to the top ranked essential genes based on their closeness centrality.

Tumor sample 28

Tumor sample 38 Tumor sample 191 ANXA1 TNF ANXA1 TNF ANXA1 TNF NFKB1 TNFSF11 NFKB1 TNFSF11 NFKB1 TNFSF11 NR3C1 NR3C1 NR3C1

Table 11.37:

The drug-target genes in the dominating set obtained by the minimum dominating set analysis corresponding to the top ranked essential genes based on their harmonic centrality. Table 11.38:

The drug-target genes in the dominating set obtained by the minimum dominating set analysis corresponding to the top ranked essential genes based on their eccentricity.

Tumor sample 28

Tumor sample 38 Tumor sample 191 ANXA1 TNF ANXA1 TNF ANXA1 NR3C1 NFKB1 TNFSF11 NFKB1 TNFSF11 NFKB1 TNF NR3C1 NR3C1 NOLC1 TNFSF11

Table 11.39:

The drug-target genes in the dominating set obtained by the minimum dominating set analysis corresponding to the top ranked essential genes based on their betweenness centrality.

Tumor sample 28

Tumor sample 38 Tumor sample 191

Table 11.40:

The drug-target genes in the dominating set obtained by the minimum dominating set analysis corresponding to the top ranked essential genes based on their eigenvector-based prestige. as well as the network associated to the whole minimum dominating set, we ascertain a drug therapy including the top ranked drugs on terms of reached essential genes. The chosen drugs are documented in Tables 11.41,11.43,11.45,11.47,11.49 and 11.51. Furthermore, the drugs corresponding to the dominating set associated to all the essential genes in the original patient network are shown in Table 11.53. The associated most effective standard drug therapy for each tumor sample and centrality measure are given in Tables 11.42,11.44,11.46,11.48,11.50,11.52 and 11.54.

From the point of view of centrality analysis, the results are consistent over all the networks and centrality measures with the prescription of the 3-drug combination of Thalidomide, Pomalidomide and Dexamethasone. The parallel outcomes yielded by this approach and the one focused on target controllability support our hypothesis of an interrelationship between the network topological properties and the genes influencing the disease. On these grounds, we propose The proposed drug therapy and the number of essential genes it dominates, for the minimum dominating set corresponding to the top ranked essential genes based on their in-degree. The most effective standard drug therapy and the number of essential genes it dominates, for the minimum dominating set corresponding to the top ranked essential genes based on their in-degree. The proposed drug therapy and the number of essential genes it dominates, for the minimum dominating set corresponding to the top ranked essential genes based on their harmonic centrality. Table 11.46:

The most effective standard drug therapy and the number of essential genes it dominates, for the minimum dominating set corresponding to the top ranked essential genes based on their harmonic centrality. Table 11.47:

The proposed drug therapy and the number of essential genes it dominates, for the minimum dominating set corresponding to the top ranked essential genes based on their eccentricity. The most effective standard drug therapy and the number of essential genes it dominates, for the minimum dominating set corresponding to the top ranked essential genes based on their eccentricity.