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Abstract:

We discuss in this chapter several network modeling methods and their

applicability to precision medicine. We review several network centrality

methods (degree centrality, closeness centrality, eccentricity centrality, be-

tweenness centrality, and eigenvector-based prestige) and two systems con-

trolability methods (minimum dominating sets and network structural con-

trollability). We demonstrate their applicability to precision medicine on

three multiple myeloma patient disease networks. Each network consists of

protein-protein interactions built around a specific patient’s mutated genes,

around the targets of the drugs used in the standard of care in multiple

myeloma, and around multiple myeloma-specific essential genes. For each
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network we demonstrate how the network methods we discuss can be used

to identify personalized, targeted drug combinations uniquely suited to that

patient.

Keywords: Network medicine, computational modeling, precision medi-

cine, drug repurposing, centrality measures, systems controllability, graph

theory.

11.1. Introduction

Network medicine is a promising recent approach in which the goal is to analyze

the dysregulation of a disease through its specific molecular interactions (Saqi

et al. [2016], Tian et al. [2012]). The key analytic power of this approach is

that knowledge about disease-drivers and specific pathway deregulations can be

combined with mechanistic knowledge of drug mechanisms to identify optimal

drug combinations, and do this dynamically throughout the evolution of the

disease.

An exciting aspect of this approach is that it can, in principle, be applied

in a personalized way, taking into account patient-specific aspects such as co-

morbidities, previous treatments, and the patient’s own molecular data (such

as her mutations, gene expression anomalies, corrupted signaling pathways).

Therefore, a disease is seen as part of a patient’s own molecular and clinical

context, through the cumulative effect of various deregulations and anomalies.

Also, drug therapies are seen as external interventions aiming to compensate for

the effects of these anomalies in the patient-specific disease network. The focus

is on identifying tailored drug combinations uniquely suited to that patient’s

disease network, in the current step of her disease progression.

This chapter introduces several network modeling methods and demon-
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strates their potential applicability in personalized medicine. We survey sev-

eral network centrality measures, aiming to identify parts of the network that

are unusual in the context of its topology; we discuss their definitions and

the intuition of their significance. We also discuss two systems controllability

methods: network controllability and maximum dominating sets. The aim of

these methods is to identify efficient interventions to change the network’s con-

figuration, and in principle to change from a setup associated with disease to

one associated with a healthy state.

We demonstrate how these network modeling methods can be used in pre-

cision medicine for identifying targeted, personalized drug combinations. Our

case study is multiple myeloma, an incurable cancer of the blood. We analyze a

dataset consisting of the genetic mutations of three different patients. For each

of them we construct their own personalized protein-protein directed interac-

tion networks, and we analyze them with some of the methods in this chapter

to extract personalized predictions of optimal drug combinations. We compare

these results with the standard therapy lines in multiple myeloma.

We also include a brief discussion on the availability of software tools sup-

porting this line of research.

The chapter is written in a tutorial style to facilitate the adoption of these

methods.

11.2. Network modeling methods

We discuss in this section a number of network analysis methods: network

centrality measures (including degree centralities, proximity centralities, path

centralities and spectral centralities) and two systems controllability methods
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(network controllability and minimum dominating sets). We apply several of

these methods to a medical case-study in Section 11.3.

11.2.1. Network centrality methods

Real-world networks often include a large number of nodes and connections,

but the importance of the nodes is generally not the same. The simplest way to

measure the importance of a given node is to compute its degree: the number

of incident edges. However, in many cases, more sophisticated approaches are

required to produce meaningful measures of importance. In the most general

sense, a centrality measure can be defined in the following way.

Definition 11.1(Centrality): Let G = (V,E) be a network. A centrality

measure is any function f : V → R.

This definition imposes no constraints on f , but most centrality measures

take into account the structural properties of the network G — node connec-

tivity, edge weights, etc. Based on which structural properties they take into

account, centrality measures can be grouped into the following categories:

• degree centralities: measures based on the degree of a node;

• proximity centralities: measures based on how close a node is to the other

nodes in the network;

• path centralities: measures based on the role the node plays in paths that

traverse it;

• spectral centralities: measures related to the algebraic properties of the adja-

cency matrix of the network (in particular its eigenvectors and eigenvalues).

While the majority of centralities focus on individual nodes, one can define
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measures focused on other structures: edges, subsets of nodes, etc. Most of

these measures are straightforward derivations from node-based centralities

(e.g., edge and group betweenness in [Brandes, 2008]), and we will not discuss

them here. Furthermore, we only consider unweighted networks, and we focus

on structural measures which do not take into account any possible dynamical

states.

In the rest of this subsection, we discuss some well-known and often used

centrality measures in detail. In particular, we give the intuitive motivations,

the formal definitions, and the highlighted properties of the network. Further-

more, we give references to algorithms for computing the centrality measures

and briefly discuss their time complexities. Finally, we describe network cen-

trality indices — network-wide scores measuring the centralization of a network

as a whole, and allowing for comparisons between networks.

While we aim at a comprehensive overview of the state of the art, we

do not always provide a fully detailed discussion of all subjects. For in-depth

treatment, we refer the reader to [Koschützki, 2007, Brandes and Erlebach,

2005, Newman, 2010].

In the following sections we will frequently refer to undirected and directed

star-topology networks. The k-node undirected star-topology network is U?k =

(V,E) (also known as the full bipartite graph K1,k), where V = {1, . . . , k}

and E = {{i, 1} | 2 ≤ i ≤ k}. The k-node directed star-topology network is

G?k = (V,E′), where V is the same as in U?k and E′ = {(i, 1) | 2 ≤ i ≤ k}. Note

that E consist of unordered pairs of vertices, while E′ consist of ordered pairs.

We will also write U? and G? to refer to the general notion of undirected and

directed star-topology networks respectively.
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11.2.1.1. Running example

We will use the directed network in Figure 11.1 to illustrate the centrality mea-

sures and the related concepts. This is a scale-free random network generated

using the Python library NetworkX [Hagberg et al., 2008, 2021c] with the fol-

lowing line of code: networkx.scale free graph(10, alpha=.7, beta=.2,

gamma=.1, seed=3).

Figure 11.1: The network serving as a running example to illustrate centralities

and the related concepts.

11.2.1.2. Degree centralities

Degree centrality was first introduced in [Shaw, 1954] to study the structure

and behavior of groups of individuals in a society. It measures the importance

of a node by directly counting the adjacent edges.

Definition 11.2(Degree centrality): Let G = (V,E) be a network.

• If G is undirected, then the degree centrality is the function CD : V → R

assigning to every node its degree: CD(v) = deg(v).

• If G is directed, then the in-degree centrality is the function C−D : V →

R, assigning to every node its in-degree: C−D(v) = deg−(v). The out-degree
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centrality C+D : V → R assigns to every node its out-degree C+D(v) = deg+(v).

The (full) degree centrality is the function CD(v) = C+D(v) + C−D(v).

It follows from these definitions that CD(v) (or C+D(v) and C−D(v)) is large

when the node v is adjacent to a high number of nodes. The extreme cases are

CD(v) = k − 1, in which v is connected to all other nodes in a k-node network

and C(v) = 0, when v is isolated in the network.

The degree centrality is strongly related to the number of nodes in a net-

work. As a trivial example, consider the degree centrality of the central node

in the star-topology network U?k : C+D(1) = k − 1. The centrality of node 1 is

larger in larger networks with this topology, even though the intuitive idea of

the importance of this node is essentially the same: it is connected to all other

nodes of the network in both cases. Normalized degree centrality may be used

to better capture the independence of the notion of centrality on the size of

the network.

Definition 11.3(Normalized degree centrality): Let G = (V,E) be a

(either directed, or undirected) network. The normalized degree centrality is

the function C̃D : V → R defined as follows:

C̃D(v) =
CD(v)

|V | − 1
.

Normalized degree centrality C̃D(v) therefore gives the ratio of the nodes

adjacent to v, and it follows from the definition that 0 ≤ C̃D(v) ≤ 1. C̃D(v) can

be thought of as the probability of v to be connected to another node w picked

at random, an intuition that can be useful when generating random networks

with a fixed degree distribution.
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Example 11.1: The following table gives the degree, in-degree, and out-

degree centralities respectively for the example network in Figure 11.1.

v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

CD(v) 2 7 6 1 2 1 2 1 1 1 1 1 1 2 1

C−D(v) 1 5 5 0 1 0 2 0 0 0 0 0 0 1 0

C+D(v) 1 2 1 1 1 1 0 1 1 1 1 1 1 1 1

The complexity of computing the degree centrality of every individual node

of a network depends linearly on the number of nodes and edges: O(|V |+ |E|)

(e.g., [Das et al., 2018]). Computing the centrality of any given node may be

of the complexity O(|V |) or O(|E|), depending on the data structure used to

represent the connections.

The degree centrality is a useful tool for identifying “targets” in a given

network, but also for deciding which nodes may be discarded without impact-

ing the quality of the model. This is common in network biology, see [Hahn and

Kern, 2004], [Koschützki and Schreiber, 2008]. However, degree centrality is a

strongly local measure, mostly focusing on individual nodes and their imme-

diate neighborhoods. In practice, this means that many nodes may often have

close degree centralities, requiring finer measures to discern relevant features

(e.g. [Kang et al., 2011]).

11.2.1.3. Proximity centralities

In this section we discuss closeness, harmonic, and eccentricity centralities.

The degree centrality measure is a very straightforward approach to eval-

uate the importance of a node in a network. However, the nodes which are

connected by a small number of edges to many others in a network are also

important: their “influence” can reach many other nodes quickly. Counting the
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neighbors of a node clearly does not suffice to asses this kind of closeness to

other nodes. The important aspect is rather having a small average distance

to the other nodes in the network. This leads to the following definition of the

closeness centrality measure as the reciprocal of farness [Bavelas, 1950, Leavitt,

1949, Sabidussi, 1966].

Definition 11.4(Closeness centrality): Let G = (V,E) be an undirected

network. The closeness centrality is the function CC : V → R defined as follows:

CC(v) =
1∑

u∈V
d(u, v)

.

As in the case of degree centralities, the size of the network has an impact

on the closeness centrality of its nodes: the larger the network, the more paths it

contains, and the lower closeness centralities tend to become. To make closeness

centralities more uniform, [Beauchamp, 1965] proposed the normalized version

of this measure.

Definition 11.5(Normalized closeness centrality): Let G = (V,E) be

a connected undirected network. The normalized closeness centrality is the

function C̃C : V → R is defined as follows:

C̃C(v) =
|V | − 1∑

u∈V
d(u, v)

.

Normalized closeness centrality can be thought of as the inverse of the mean

of the distances to v from all other nodes. The bounds on the values of the

normalized closeness centrality C̃C are the same as the bounds on the values

of CC : 0 < C̃C(v) ≤ 1, but C̃C(v) reaches its maximal value 1 for any node v
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adjacent to all the other nodes of a given network.

A major drawback of closeness centrality is that it does not yield meaningful

values on disconnected networks. Indeed, if no path connects nodes u and v,

by definition d(u, v) = ∞, and therefore a single isolated node would make

the sums of distances in the definition of closeness infinite, and the closeness

centralities themselves will all become 0. There are several different ways in

which this can be addressed:

• Restrict the notion of closeness centrality to strongly connected graphs (or

strongly connected components of arbitrary graphs). This avoids the prob-

lem is having pairs of nodes (u, v) whose distance is infinite, on the grounds

of v being unreachable from u.

• Restrict the sum of distances in the definition of closeness centrality to pairs

of reachable nodes, addressing the same issue of infinite distances.

• Replace any infinite distances with a large enough constant, as proposed in

[Rochat, 2009] and [Csárdi and Nepusz, 2006].

Closeness centrality can also be defined for directed networks. To do this,

we can consider in the definition either the distances d(u, v) from all ancestors

of v to v, or distances d(v, u) from v to all its descendants. This is important

when using the closeness centrality measure as a proxy for the notion of either a

node that is reachable (and modifiable) from many directions, or that of a node

that is influential in being able to reach many other nodes. One example of

such a definition is the Lin index [Lin, 1976]. The software package NetworkX

computes the distances from the nodes which reach v [Hagberg et al., 2021a],

and normalizes with respect to the number of these nodes. The difficulties with

infinite distances for pairs of unreachable nodes persist also in the directed case,

with possible solutions similar to those for the undirected case.
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Example 11.2: The following table gives the closeness centralities and the

normalized closeness centralities, rounded to two digits after the decimal point,

for the nodes of the example network in Figure 11.1. The lines CuC(v) and C̃uC(v)

take this network to be undirected, meaning that the directed edges appearing

in the figure can be traversed both ways. The calculations for directed networks

were done with NetworkX, using the approach explained above.

v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

CC(v) 0.03 0.04 0.05 0.00 1.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

C̃C(v) 0.40 0.48 0.60 0.00 1.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

CuC(v) 0.03 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.02

C̃uC(v) 0.48 0.64 0.58 0.38 0.40 0.40 0.42 0.38 0.38 0.29 0.40 0.40 0.30 0.42 0.30

Computing the closeness centrality of a node v requires finding the shortest

paths to v from all other nodes of the network. Since constructing all shortest

path to one particular node v is of complexity O(|E|), using e.g. a breadth-first

search, computing the closeness centrality for all the nodes within a network is

of complexity O(|V | · |E|). This means that computing the exact value of close-

ness centrality is impractical for many biological networks, which often contain

thousands of nodes and tens of thousands of connections. It turns out that,

in practice, one often only needs the first k nodes with the highest closeness

centrality, without requiring the actual centrality values. Such rankings can be

computed in reasonable time even for very large networks, see, e.g., [Bergamini

et al., 2019].

Due to its non-locality, closeness centrality is a finer tool for structural

network analysis than degree centrality. For example, closeness fares better in

identifying influential groups of nodes which may not individually have high

degree centrality. Closeness centrality has been show to perform particularly
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well in biological network analysis. For example, [Ma and Zeng, 2003] shows

that a slightly modified closeness measure allows for associating 8 of the top 10

metabolites of the metabolic network of E. coli with the glycolysis and citric

acid cycle pathways.

A modification of closeness centrality, addressing the difficulty of infinite

distances, consists in swapping the summation out of the denominator, effec-

tively transforming what is an inverse arithmetic mean in normalized close-

ness centrality into inverse harmonic mean. This new centrality measure was

first discussed in [Marchiori and Latora, 2000], then independently introduced

in [Dekker, 2005] under the name “valued centrality”, and finally gained its

current name of harmonic centrality in [Rochat, 2009].

Definition 11.6(Harmonic centrality): Let G = (V,E) be a (either di-

rected, or undirected) network. The harmonic centrality is the function CH :

V → R defined as follows:

CH(v) =
∑

u∈V \{v}

1

d(u, v)
.

Note that all nodes u which are not connected to v do not contribute to

CH(v), because d(u, v) =∞, meaning that 1/d(u, v) = 0.

As with closeness centrality, the same definition of harmonic centrality

can be used for directed networks, in which case the order of nodes in the

denominator d(u, v) becomes important. If v has in-degree 0, CH(v) = 0 by

direct computation of the formula in the definition.

To avoid an increase in harmonic centrality only due to the increase in the

size of the network, one defines the normalized version.
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Definition 11.7(Normalized harmonic centrality): Let G = (V,E) be

a (either directed, or undirected) network. The normalized harmonic centrality

is the function C̃H : V → R defined as follows:

C̃H(v) =
1

|V | − 1

∑
u∈V \{v}

1

d(u, v)
.

It follows that 0 ≤ C̃H(v) ≤ 1 (and 0 ≤ CH(v) ≤ |V | − 1) both in directed

and undirected networks. C̃H(v) = 0 for isolated vertices, while C̃H(v) = 1

(CH(v) = |V | − 1) for the center of a star network, in both directed and

undirected cases, because both in U?k and G?k every node is connected to the

central node 1.

Note that central nodes in large connected components will have greater

values of harmonic centrality than central nodes in small connected compo-

nents. Furthermore, nodes in disconnected networks will tend to have lower

harmonic centralities than nodes in connected networks.

Example 11.3: The following table gives the harmonic centralities and the

normalized harmonic centralities, rounded to two digits after the decimal point,

for the nodes of the example network in Figure 11.1. The lines CuH(v) and C̃uH(v)

take this network to be undirected, meaning that the directed edges appearing

in the figure can be traversed both ways.

v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

CH(v) 5.42 7.58 8.33 0.00 1.00 0.00 6.37 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

C̃H(v) 0.39 0.54 0.60 0.00 0.07 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00

CuH(v) 7.50 10.33 9.67 6.00 6.67 6.25 6.92 6.00 6.00 4.82 6.25 6.25 4.95 6.92 4.95

C̃uH(v) 0.54 0.74 0.69 0.43 0.48 0.45 0.49 0.43 0.43 0.34 0.45 0.45 0.35 0.49 0.35

The computational complexities related to the harmonic centrality are the

13



same as those of the closeness centrality, because of the similarities in the def-

initions of the two measures. Since finding the shortest path is of complexity

O(|E|), computing the harmonic centrality in a given directed or undirected

network G = (V,E) is of complexity O(|V | · |E|). For very large networks, ap-

proximate calculation strategies can be used, or alternatively the direct com-

putation of centrality can be replaced by finding the top k nodes with the

highest centrality value, similarly to [Bergamini et al., 2019].

Like closeness centrality, harmonic centrality has great potential for anal-

ysis of biological networks, because it captures the intuition of the influence

of a node decaying with the distance, while also naturally handling discon-

nected networks. Online resources for systems biology offer tools to compute

harmonic centrality (e.g., [Zhang et al., 2016]), and this centrality measure

is used in analysing simulations of growth of biological networks [Paul and

Kollmannsberger, 2020]. We remark however that several papers use the term

“harmonic centrality” to refer to a rather different centrality measure, e.g. [Ren

et al., 2015, Mao et al., 2020].

Another modification to closeness centrality we will briefly consider in this

subsection was introduced in [Dangalchev, 2006]. This work goes beyond har-

monic centrality and adds an exponential to the denominator:

D(v) =
∑

u∈V \{v}

1

2d(u,v)
.

Like harmonic centrality, D treats disconnected networks naturally. In addi-

tion, D interacts conveniently with various operations on graphs, in particular

with different kinds of graph union [Dangalchev, 2006, Section 2]. Finally, this
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centrality measure can be generalized to the following form [Dangalchev, 2011]:

D′(v) =
∑

u∈V \{v}

αd(u,v),

where α ∈ (0, 1). Clearly, for α = 1
2 , D′(v) = DC(v), and as α increases between

0 and 1, D′ moves from local (mostly immediate neighbours count) to global

(even long-distance connections count).

Even though the centrality measures we surveyed so far in this subsection

are all based on the notion of closeness, one should underline that they are

not true extensions of the closeness centrality. Indeed, the paper [Yang and

Zhuhadar, 2011] shows that, even on a 7-node tree, these centrality measures

yield close, but different values.

The last centrality measure based on the length of paths to a given node

that we discuss is the eccentricity centrality. It formalizes the intuition that

important nodes are those from which any other node is quickly reachable. It

was originally introduced in [Hage and Harary, 1995], but we give here the

mathematical definition from [Koschützki, 2007].

Definition 11.8(Eccentricity centrality): Let G = (V,E) be a strongly

connected (either directed, or undirected) network. The eccentricity centrality

is the function Ce : V → R defined as follows:

Ce(v) =
1

maxu∈V d(v, u)
.

The value in the denominator of Ce is the longest shortest path in G starting

at v and is usually referred to as the eccentricity of v.

The same definition of eccentricity centrality can be used for undirected
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and directed networks. In the latter case, the order of v and u in d be-

comes important, and the directed network is often required to be strongly

connected [Koschützki, 2007]. In networks which are not strongly connected,

the shortest is computed only to nodes reachable from v. Moreover, if the

out-degree of v is 0, then by definition Ce(v) = 0.

The bounds on eccentricity centrality are the same as for normalized close-

ness centrality: 0 ≤ Ce(v) ≤ 1. Ce reaches its maximal value for every node

which is directly connected to other nodes, as is the case of the center of a

star-topology network or any node of a complete network.

Unlike closeness or harmonic centralities, eccentricity centrality does not

directly depend on the size of the network, which is why normalization is not

generally considered for this measure.

Example 11.4: The following table gives the eccentricity centralities for the

nodes of the example network in Figure 11.1. Since the example network is not

strongly connected, the centralities Ce(v) are computed as inverses of the lengths

of the longest shortest paths to reachable nodes. The line labeled with Cue (v)

takes this network to be undirected, meaning that the directed edges appearing

in the figure can be traversed both ways.

v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ce(v) 1
2

1
2

1
3

1
4

1
4

1
3 0 1

4
1
4

1
5

1
3

1
3

1
1

1
3

1
4

Cue (v) 1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
4

1
4

1
5

1
4

1
4

1
5

1
4

1
5

Similarly to closeness centrality, computing the eccentricity centrality of a

node v requires finding the shortest paths to all other nodes in the network,

meaning that computing Ce(v) is of time complexity O(|V | · |E|).

Like closeness centrality, eccentricity centrality is able to capture well the

notion of importance of a node as a function of its connections to the other
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nodes. For example, [Wuchty and Stadler, 2003] uses several centrality mea-

sures to analyse the networks of E. coli and S. cerevisiae, and shows that both

closeness and eccentricity centralities produce very similar rankings of the top

metabolites. On the other hand, eccentricity centrality was not able to distin-

guish essential from non-essential proteins in the PPI network of S. cerevisiae.

11.2.1.4. Path centrality: betweenness

Betweenness centrality measures the importance of a node by counting in how

many connections between other nodes it is implicated. For example, the cen-

tral node 1 of U?k is involved in all shortest paths between all other nodes. The

idea of betweenness, i.e. being situated between other nodes, was introduced

in the discussion of point centrality in [Bavelas, 1948], and the first formal

definition was given in [Freeman, 1977].

Given a (either directed, or undirected) network, we denote the set of all

shortest paths (also referred to as geodesics) between nodes u and w by ρuw,

and by ρuw(v) the set of those shortest paths from ρuw which pass through

v. We further denote guw = |ρuw| and guw(v) = |ρuw(v)|. Finally, we use the

following notation:

puw(v) =


guw(v)

guw
, ρuw 6= ∅,

0, otherwise.

puw(v) can be seen as the probability of finding v in a shortest path between

u and w chosen at random from guw, in the case in which w is reachable

from u [Freeman, 1977, 1978].

Definition 11.9(Betweenness centrality): Let G = (V,E) be a (either

17



directed, or undirected) network. The betweenness centrality is the function

CB : V → R defined as follows:

CB(v) =
∑

u,w∈V \{v}
u6=w

puw(v).

Note that in this case too, there are subtle distinctions between directed

and undirected networks. Thus, while in the case of undirected networks ρuw

(as well as ρuw(v)) is conceptually the same as ρwu (ρwu(v), resp.), and con-

sequently the pair is not considered separately, this is not the case of di-

rected networks. Hence, while the betweenness centrality function involves a

(k − 1)(k − 2)/2 summation for undirected networks, i.e., the number of un-

ordered pairs of nodes distinct from v, in the case of directed networks it

consists of a (k − 1)(k − 2) summation.

Betweenness centrality reaches its minimal value 0 for isolated nodes and

its maximal value for nodes v situated on all shortest paths between all other

nodes of the network. For a k-node network with k ≥ 2, this maximal value

equals the number of pairs of nodes different from v: CB(v) = (k− 1)(k− 2)/2

for undirected networks, and CB(v) = (k − 1)(k − 2) for the directed ones.

In the case of undirected networks, this value will be reached for the central

node of a k-node star-topology network U?k . In the case of directed networks,

this maximal value will be reached for the central node of the k-node star

topology network, in which there are two symmetric edges between the central

node and the non-central nodes: Ḡ?k = (V,E), with V = {1, . . . , k} and E =

{(1, i), (i, 1) | 2 ≤ i ≤ k}.

In fact, not only CB reaches its maximal value for the central node of a

star-topology network, but the existence of a node for which CB reaches its
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maximal value is sufficient to guarantee that the network is a star.

Lemma 11.1: Let k ≥ 2 and let U = (V,E) be a k-node undirected network

(|V | = k) having a node v ∈ V for which CB(v) = (k− 1)(k− 2)/2. Then U is

isomorphic to U?k .

Proof. The fact that CB(v) = (k − 1)(k − 2)/2 means that v appears in

all shortest paths between all other nodes. This implies on the one hand that

v is connected to all other nodes, and on the other hand that there are no

other edges in U . Indeed, if v were not connected to some of the other nodes,

then there would exist a pair of nodes u,w ∈ V with the property guw(v) = 0,

meaning that CB(v) < (k − 1)(k − 2)/2. On the other hand, if there existed

an edge between two vertices u,w ∈ V , then the only shortest path from u

to w would not traverse v, which again would mean that guw(v) = 0 and

CB(v) < (k − 1)(k − 2)/2.

A similar result for directed networks imposes that any directed network

G having a node with maximal betweenness centrality should be isomorphic

to Ḡ?k.

Lemma 11.2: Let k ≥ 2 and let G = (V,E) be a k-node directed network

(|V | = k) having a node v ∈ V for which CB(v) = (k − 1)(k − 2). Then G is

isomorphic to Ḡ?k.

Note that in the case of the star-topology directed network G?k in which

there are arcs going from all non-central nodes to the central node 1 and no

arcs going out of 1, the betweenness centrality of all nodes will be 0, because

all paths in this network have length 1.

To avoid the increase in betweenness centrality due only to the increase
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in the size of the network, one typically defines its normalized version. Unlike

normalized closeness and harmonic centralities, in the case of betweenness one

needs to normalize with respect to the number of pairs of nodes, rather than

the number of nodes.

Definition 11.10(Normalized betweenness centrality): Let G = (V,E)

be a (either directed, or undirected) network. The normalized betweenness cen-

trality is the function C̃B : V → R defined as follows:

a) C̃B(v) =
2

(|V | − 1)(|V | − 2)

∑
u,w∈V \{v}

u6=w

puw(v), for undirected networks,

b) C̃B(v) =
1

(|V | − 1)(|V | − 2)

∑
u,w∈V \{v}

u6=w

puw(v), for directed networks.

Normalized betweenness centrality ranges between 0 for isolated vertices

and 1 for central notes of star-topology networks.

Example 11.5: The following table gives the betweenness centralities and

the normalized betweenness centralities, rounded to two digits after the decimal

point, for the nodes of the example network in Figure 11.1. The lines CuB(v)

and C̃uB(v) take this network to be undirected, meaning that the directed edges

appearing in the figure can be traversed both ways.

v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

CB(v) 12.00 23.00 21.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00

C̃B(v) 0.07 0.13 0.12 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

Cu
B(v) 0.00 68.00 54.00 0.00 13.00 0.00 13.00 0.00 0.00 0.00 0.00 0.00 0.00 13.00 0.00

C̃u
B(v) 0.00 0.75 0.59 0.00 0.14 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00

20



Enumerating all shortest paths between all pairs of nodes different from

a given node v is rather expensive. The seminal work [Freeman, 1977] sug-

gests computing powers of the adjacency matrix of the network to count the

shortest paths, according to the methods detailed in [Harary et al., 1965].

However, [Brandes, 2001] proposes a less expensive algorithm running in time

O(|V | · |E|), and avoiding extra non-optimal paths which matrix multiplica-

tion would reveal. A more recent work [Nasre et al., 2014] proposes an even

faster incremental algorithm, which updates the betweenness centralities of

all nodes when a new edge is added. This algorithm runs in time O(m|V |),

where m is the maximal length of the shortest path in the network. Finally,

the paper [Borassi and Natale, 2019] proposes a random approximation algo-

rithm which computes betweenness centralities in time |E|1/2+o(1) with high

probability, much faster than exact algorithms.

Betweenness centrality has been successfully applied in biological network

analysis to identify significant nodes. For example, the work [Sahoo et al.,

2016] used betweenness centrality to identify proteins significant in the con-

text of cancer growth. In [Yu et al., 2007], the authors rely on betweenness

centrality to identify bottlenecks in PPI networks. Moreover, the authors show

that these nodes have a high tendency of representing essential proteins. The

work [Joy et al., 2005] shows that nodes with high betweenness centrality in

yeast PPI networks are more likely to be essential and that the evolutionary

age of proteins is positively correlated with their betweenness centrality.

We conclude this subsection by mentioning a well-known extension of the

betweenness centrality: percolation centrality. This measure was introduced

in [Piraveenan et al., 2013] with the goal of taking into account the dynamical

states of the nodes of the network. Intuitively, percolation centrality extends
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the definition of betweenness centrality by multiplying puw(v) by percolation:

a factor derived from the degree to which the nodes in the paths from u to w

are involved in the spread of some value (information, infection, etc.) through

the network. Since percolation centrality considers network states, we do not

discuss it in this section.

11.2.1.5. Spectral centralities

In this section we discuss eigenvector-based centralities: the eigenvector cen-

trality, Katz centrality, and PageRank centrality.

The idea of using eigenvectors for assessing the importance of nodes in

networks was first introduced in [Bonacich, 1987] and further discussed in

several fundamental works, e.g. [Ruhnau, 2000, Newman, 2008] with the goal

of taking into account the fact that not all connections in a network are equal —

being connected to a highly central node has more impact than being connected

to a more peripheral node. Before defining eigenvector centrality, we introduce

some additional notations.

Given a (either directed, or undirected) network G = (V,E), we denote its

adjacency matrix by A, in which Auv = 1 if and only if G contains an edge

from node u to node v. For a centrality measure C : V → R, we will denote by

c the vector obtained by computing C for every node of G, i.e. cv = C(v).

For a fixed node v, the idea that the contributions of its neighbors are

proportional to their own centralities can be expressed as follows:

C(v) =
1

λ

∑
u∈V

AuvC(u),

where λ > 0 is a real constant. This relation can be rewritten in the matrix
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form:

λc = Ac, (11.1)

which effectively defines c as an eigenvector, and λ as an eigenvalue of the adja-

cency matrix A of the network G. Since A is a real square matrix (its elements

are 0 and 1 in the case of unweighted networks), according to the Perron-

Frobenius theorem of linear algebra, A has a unique largest real eigenvalue

λ and one can choose the corresponding eigenvector c to be strictly positive,

which allows defining a meaningful centrality measure [Newman, 2008].

Definition 11.11(Eigenvector centrality): Let G = (V,E) be a (either

directed, or undirected) network and A its adjacency matrix. Let λ be the

largest real eigenvalue of A and c a corresponding eigenvector with strictly

positive components. An eigenvector centrality is a function CE : V → R

defined as follows: CE(v) = cv.

Eigenvalue centrality is sometimes referred to as eigencentrality or eigen-

vector prestige. The same definition can be used for directed networks, in which

case the adjacency matrix A may not be diagonally symmetric.

We will refer to eigenvectors c satisfying the constraints of the previous

definition as principal eigenvectors of A and of the network G. In fact, it follows

from (11.1) that any other vector αc, α > 0, is also a principal eigenvector of A.

This means that the components of c (and therefore the values of CE) indicate

relative centralities of the nodes of G with respect to one another, rather than

some absolute centrality score.

A standard way of fixing a preferred principal eigenvector c to avoid ambi-

guity is by normalizing c. Several ways to normalize eigenvectors for centrality

exist; we focus here on three norms studied in [Ruhnau, 2000] and we discuss
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implications of these normalizations for the eigenvector centrality index — a

network-wide measure of centralization. The results from [Ruhnau, 2000] also

rely on the work of [Papendieck and Recht, 2000] which studies maximal entries

in the principal eigenvector of a graph.

Normalizing an n-vector a typically consists in dividing its components by

a p-norm, which is commonly defined as follows:

‖a‖p =


(

n∑
i=1

api

) 1
p

, 1 ≤ p <∞,

max1≤i≤n |ai|, p =∞.

One of the ways of normalizing the vector c from Definition 11.11 is by

dividing all of its components by the ∞-norm, also known as the maximum

norm.

Definition 11.12(∞-norm eigenvector centrality): Let G = (V,E) be

a (either directed, or undirected) network and c be the principal eigenvector

of G. The ∞-norm eigenvector centrality is the function C(∞)
E : V → R defined

as follows:

C(∞)
E (v) =

cv
‖c‖∞

=
cv

maxu∈|V | cu
.

It follows directly from this definition that 0 ≤ C(∞)
E (v) ≤ 1, and that every

connected network G has a node v∗ for which C(∞)
E (v∗) = 1.

Another way of normalizing the eigenvector centrality is by using the 1-

norm, also known as the sum norm.

Definition 11.13(1-norm eigenvector centrality): Let G = (V,E) be a

(either directed, or undirected) network and c be the principal eigenvector of
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G. The 1-norm eigenvector centrality is the function C(1)E : V → R defined as

follows:

C(1)E (v) =
cv
‖c‖1

=
cv∑
u∈V cu

.

C(1)E (v) can be seen as the proportion of centrality that v reaches in G. The

bounds on the values of the 1-norm eigenvector centrality are as follows [Ruh-

nau, 2000]:

0 ≤ C(1)E (v) ≤ 1

1 + (2 cos π
n+1)−1

.

This centrality measure cannot ever reach 1 for any network with 2 or more

connected nodes. The upper bound is only reached for the nodes of a network

which only contains one edge [Papendieck and Recht, 2000]. In the case of

networks with more than 2 connected nodes, it is not known what is the actual

maximal value C(1)E can achieve, nor in which kind of network topologies this

value can be achieved. For example, the central node of a star-topology network

does not reach the maximal value.

One last way of normalizing the eigenvector centrality which we consider

in this section is by using the 2-norm, also known as the Euclidean norm.

Definition 11.14(2-norm eigenvector centrality): Let G = (V,E) be a

(either directed, or undirected) network and c be the principal eigenvector of

G. The 2-norm eigenvector centrality is the function C(2)E : V → R defined as

follows:

C(2)E (v) =
cv
‖c‖2

=
cv√∑
u∈V c2u

.

The bounds on the 2-norm eigenvector centrality are 0 ≤ C(2)E (v) ≤ 1√
2
.

The maximal value 1√
2

is only reached by the center of the star topology
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network [Ruhnau, 2000]. One may define a derived measure ranging from 0

to 1 by multiplying C(2)E by
√

2.

Finding eigenvectors and eigenvalues of a given square matrix is closely

related to finding the roots of polynomials. It follows from the Abel-Ruffini

theorem that there exists no algorithm computing exactly the eigenvectors

and eigenvalues for square matrices of size greater than 4 (e.g., [Golub and van

der Vorst, 2000]). Therefore, iterative algorithms are usually used, one of the

most popular being the power iteration method (used e.g., in NetworkX [Hag-

berg et al., 2008]). The complexity of such iterative methods is generally be-

tween O(|V |2) and O(|V |3), while the convergence rate ranges from linear to

cubic [Demmel, 1997].

Eigenvalue centrality measures are a fine instrument for measuring the im-

portance of nodes in a network, because they acknowledge the difference in

impact between a connection to a high-centrality neighbor and a connection to

a low-centrality one. With eigenvalue centrality, a node with a smaller number

of “high-quality” connections may outrank a node with a larger number of

“low-quality” connections [Newman, 2008]. The work [Estrada, 2006] applies

closeness, betweenness, and eigenvector centralities to identifying essential pro-

teins in PPI networks, and concludes that spectral centralities show the best

performance. The paper [Negre et al., 2018] uses eigenvector centrality to pin-

point key amino acids in terms of their relevance in the allosteric regulation.

The study [Melak and Gakkhar, 2015] uses different centrality measures to

identify potential drug targets of Mycobacterium tuberculosis, the etiological

agent of tuberculosis (TB), and show that eigenvalue centrality fares best.

Another centrality measure based on the algebraic properties of the adja-

cency matrix is Katz centrality (also referred to as Katz prestige or Katz status
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index ). This method was proposed in [Katz, 1953] and it gives a centrality

score by taking into consideration all the nodes of a given network. According

to a reasoning similar to the one made for closeness centrality and its vari-

ants (Subsection 11.2.1.3), a node is of high importance if it is connected to

many other nodes, but nodes situated farther away count less toward the total

centrality score.

Definition 11.15(Katz centrality): Let G = (V,E) be a (either directed,

or undirected) loop-free network. Let A be its adjacency matrix and λ be its

largest positive eigenvalue. The Katz centrality is the function CK : V → R

defined as follows:

CK(v) =
∞∑
i=1

∑
u∈V

αi(Ai)uv,

where α is a constant, 0 ≤ α ≤ 1/λ, and (Ai)uv is the element in row u and

column v of the i-th power of A.

Since (Ai)uv is non-zero if and only if there exists a path of length exactly

i between u and v, Katz centrality can be interpreted as a generalization of

degree centrality [Koschützki, 2007]. Indeed, the role of the factor αi is to

scale down the contributions of longer paths, and without it CK(v) essentially

becomes the reachability index : the number of nodes from which v can be

reached. If α is close to 0, the contributions of longer paths are essentially

discarded, and CK approaches a form of degree centrality. On the other hand,

as α approaches 1/λ, CK approaches eigenvector centrality [Newman, 2010].

Let cK be the vector collecting Katz centralities of a node in a given net-

work: (cK)v = CK(v). Then cK can be expressed in a more compact matrix
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multiplication form in the following way [Koschützki, 2007]:

cK = ((I− αAT )−1 − I)1,

where I is the identity matrix of the same size as A, AT is the transpose of

A, (·)−1 denotes matrix inversion, and 1 is a |V |-vector whose components are

all 1.

Due to similarities with eigenvector centrality, exact Katz centrality can

be computed by similar algorithms with similar running time complexities. In

particular, the power iteration method can be applied (e.g., [Hagberg et al.,

2021b]). Faster approximate algorithms exist, in particular [Foster et al., 2001]

presents an iterative algorithm with time complexity O(|V | + |E|), given a

constant desired precision.

Typical applications of Katz centrality concern directed networks, in par-

ticular directed acyclic networks, in which eigenvector centrality appears less

useful [Newman, 2010]. Katz centrality has found promising applications in

neuroscience. The work [Fletcher and Wennekers, 2018] shows that Katz cen-

trality is the best predictor of firing rate given the network structure, with

almost perfect correlation in all cases studied. The paper [Mantzaris et al.,

2013] uses Katz centrality to analyse fMRI data of human brain activity dur-

ing learning, and shows how key brain regions contributing to the process can

be discovered.

A third eigenvalue and eigenvector-related centrality measure we briefly

discuss in this section is PageRank, one of the algorithms used by Google

to measure the importance of web pages [Google, 2011]. Multiple variants of

PageRank have been proposed. We start with the definition from [Langville

and Meyer, 2005].
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Definition 11.16(PageRank): Let G = (V,E) be a directed network and

A its adjacency matrix. The PageRank centrality is the function CP : V → R

satisfying the following equation:

CP (v) =
∑
u∈V

Auv
CP (u)

deg+(u)
,

where deg+(u) is the out-degree of the node u.

According to this definition, the centrality CP (v) depends on the central-

ities of the nodes u from which there is an edge going to v (Auv 6= 0). The

contribution of each of these nodes u to CP (v) is inversely proportional to the

number of edges going out of u. Thus, nodes connected to many other nodes

contribute less to each of their neighbors than nodes which are connected to

fewer nodes.

The complete definition of PageRank centrality (which was used in the first

versions of the Google search engine) includes two additional parameters:

C(0)P (v) = α
∑
u∈V

Auv
CP (u)

deg+(u)
+ β,

where α can be seen as a decay factor, and β as a vector of initial central-

ities (source ranks), scaled by α. We take this definition from [Franceschet,

2021], which gives a slightly simplified and generalized version of the original

definition from [Page et al., 1999].

The PageRank centrality is related to eigenvector centrality in the way

the adjacency matrix of the network is exploited to define relative centrality

scores. Since the formulae for computing PageRank are more complex, using

iterative algorithms is often preferred, especially for large networks [Langville
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and Meyer, 2005, Page et al., 1999]. Several specific and faster algorithms have

been proposed for computing PageRank. In particular, the paper [Corso et al.,

2005] proposes an algorithm consisting in reducing PageRank computation to

computing solutions of linear systems, while the article [Bahmani et al., 2010]

proposes Monte Carlo methods for incremental computation of PageRank.

PageRank is a relatively recent centrality measure, but it has already

shown some promising performance in analysis of biological networks. In the

work [Iván and Grolmusz, 2010], the authors computed PageRank centralities

for the metabolic network of the Mycobacterium tuberculosis and the PPI net-

works of melanoma patients, and in both cases important proteins received a

high centrality score.

Example 11.6: The following table gives eigenvector (CXE ), Katz (CXK ), and

PageRank (CXP ) centralities for the nodes of the example network in Figure 11.1,

as computed with NetworkX [Hagberg et al., 2021c] and rounded to two digits

after the decimal point.

v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

CXE 0.50 0.50 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CXK 0.26 0.35 0.36 0.23 0.25 0.23 0.29 0.23 0.23 0.23 0.23 0.23 0.23 0.25 0.23

CXP 0.19 0.25 0.20 0.02 0.03 0.02 0.14 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02

11.2.2. System controllability methods

One of the important aspects when dealing with a biomedical network is to

be able to influence part of, or even the totality of its nodes. This objective

is not restricted to biomedical networks, but is one of the earliest and most

studied network theory problems, generally known as the (target) network

controllability problem. This is intrinsically an optimization problem, as any
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network can be controlled from a sufficiently large controlling set, e.g., the

entire set of nodes. However, one is interested in finding the minimal set of

nodes needed in order to achieve such control. Early works in the field come

from the 60’s, however it was in early 2010’s that one of the key results from the

field has been provided in [Liu et al., 2011], namely the possibility of efficiently

determining the minimum set of nodes needed to control an entire network.

This result sparked a new interest in the field, with a strong emphasis on

possible applications in the biomedical field.

The prospect of enforcing control over a biomedical network has been in-

vestigated within two main methodological approaches: that of (structural)

network controllability, see, e.g., [Liu et al., 2011, Czeizler et al., 2018, Guo

et al., 2018, Kanhaiya et al., 2017] and that of dominating sets [Wuchty, 2014,

Nacher and Akutsu, 2016, Zhang et al., 2015]. In the current section we re-

view both approaches, detailing the theoretical, algorithmic and biomedical

applicability aspects of these methods.

11.2.2.1. Network Controlability

In general terms, we say that a directed network, or generally any dynamical

system, is controllable from a set of input nodes if, with a suitable selection of

input values for these nodes, the entire network can be driven from any initial

state to any desired final state within a finite time. The state of a node is

given by its numerical value; in the context of biomedical networks this could

be for example the expression level of a gene/protein. From one time point to

another this value/state evolves depending (linearly) on the values/states of

its neighbors; this is why such systems are also known as linear time invariant

dynamical systems (LTIS), as their evolution can be described by the system
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of linear differential equations:

dx(t)

dt
= Ax(t), (11.2)

where x(t) = (x1(t), ..., xn(t))T is the n-dimensional vector describing the sys-

tem’s state at time t, and A ∈ Rn×n is the time-invariant state transition

matrix, describing how each of these states are influencing the dynamics of the

system. Namely, for any nodes i, j, 1 ≤ i, j ≤ n within the network, the entry

ai,j of matrix A either documents the weight of the influence of node j over

the node i, if there exists a (directed) edge (i, j), or is equal to 0 otherwise.

By convention, from now on during this section, all vectors are considered to

be column vectors so that the matrix-vector multiplications are well defined.

Assume we allow the system to be influenced through an m-dimensional

input controller, i.e. an input vector u of real functions, u : R → Rm acting

upon some m nodes of the network. Consider the subset of input nodes I ⊆

{1, 2, . . . , n}, I = {i1, . . . , im}, 1 ≤ m ≤ n, as the nodes of the network on which

the external input is applied to; such nodes are also known as driver/driven

nodes. The system (11.2) becomes:

dx(t)

dt
= Ax(t) +BIu(t), (11.3)

where BI ∈ Rn×m is the characteristic matrix associated to the subset I,

BI(r, s) = 1 if r = is and BI(r, s) = 0 otherwise, for all 1 ≤ r ≤ n and

1 ≤ s ≤ m.

It is often the case, particularly in the bio-medical field, that it is enough

to enforce control only over a subset of the network nodes to get the desired

change in the network dynamics. The associated optimization problem is known
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as the target controllability problem, or more generally as the output contro-

lability problem. Thus, consider a subset of target nodes T ⊆ {1, 2, . . . , n},

T = {t1, . . . , tl}, m ≤ l ≤ n, thought of as a subset of the nodes of the lin-

ear dynamical system, whose dynamics we aim to control (as defined below)

through a suitable choice of input nodes and of an input vector. The subset of

target nodes can also be defined through its characteristic matrix CT ∈ Rl×n,

defined as CT (r, s) = 1 if tr = s and CT (r, s) = 0 otherwise, for all 1 ≤ r ≤ l

and 1 ≤ s ≤ n. We will denote by the triplet (A, I, T ) the targeted linear

(time-invariant) dynamical system defined by matrix A, with input set I, and

target set T . In case T is the entire network, we can omit it from the notation.

Definition 11.17(Target controllability of linear networks): Given a

target linear dynamical system (A, I, T ) (or similarly a linear network), we say

that this system is target controllable (or simply controllable if the target is

the entire network) if for any x(0) ∈ Rn and any α ∈ Rl, there is an input

vector u : R→ Rm such that the solution x̃ of (11.3) eventually coincides with

α on its T -components, i.e., CT x̃(τ) = α, for some τ ≥ 0.

Note that, the general case of output controlability is defined similarly, with

the only difference that instead of a 0–1 characteristic matrix CT we have an

arbitrary matrix C ∈ Rn×m, with m ≤ n, defining the output y ∈ Rm of the

LTIS as a linear combination of the solution x(t) of equation (11.3).

Intuitively, the system being target controllable means that for any input

state x0 and any desired final state α of the target nodes, there is a suitable

input vector u driving the target nodes to α. Obviously, the input vector u

depends on x0 and α.

It is known from Kalman [1963] that the system (A, I) is controllable from
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some input controller u(t) if and only if the rank of the matrix (BI | ABI |

A2BI | . . . | An−1BI), known as the controlability matrix, is equal to n, the

number of nodes in the network. The operator | denotes here the simple matrix

concatenation operation. This criterion is known as the Kalman’s criterion for

full controllability [Kalman, 1963], and it is easily extendable to the case of

target (or generally, output) controllability:

Theorem 11.1: A targeted linear dynamical system with inputs (A, I, T ) is

controllable if and only if the rank of its controllability matrix (CTBI | CTABI |

CTA
2BI | . . . | CTAn−1B′I) is equal with |T | [Kalman, 1963].

Intuitively, the controllability matrix describes all weighted paths from the

input nodes to the target nodes in the directed graph associated to the linear

dynamical system. This leads to the notion of control path from an input node

to a target node and an input node controlling a target node. This line of

thought can be further developed into a structural formulation of the targeted

controllability. Thus, although the Kalman controlability criterion seems to

suggest that the (target) controllability problem is strictly related to a partic-

ular valuation of the state transition matrix A, it turns out that this is actually

a network property. To explain this, we define two matrices C, D of the same

size to be equivalent if they have the same set of non-zero entries. The key

concept here is that of structural controlability :

Definition 11.18(Structural target controllability of linear networks):

We say that a given targeted linear dynamical system (A, I, T ) (or similarly

a linear network) is structural target controllable if there exists a matrix A′

equivalent with A such that the system (A′, I, T ) is target controllable. That

is, (A, I, T ) becomes controllable by replacing A with any suitable equivalent
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matrix A′, or similarly, by replacing the weights of the network’s edges with

any other non-zero values.

They key result, proved in [Lin, 1974, Shields and Pearson, 1976], is that

if a system (A, I) is structurally controllable, then it is controllable for all,

except a thin set, of equivalent matrices A′. We recall that a thin subset of

the n-dimensional complex space is nowhere dense and has Lebesgue measure

0. This indicates that the controlability problem can indeed be reduced to

its structural version, known as the structural (target) controllability problem,

which is ultimately a property of the network’s connectivity rather than of

the effective edge weights. This problem can be defined both as a decision

problem (is the linear time-invariant dynamical system (A, I, T ) structurally

target controllable?) as well as an optimization problem (given matrix A of

size n × n and a subset of target nodes T ⊆ {1, 2, . . . , n}, find the minimal

m, m ≤ n, and a suitable choice for the size-m set of input nodes I such

that (A, I, T ) is structurally target controllable). We are most interested in

the latter formulation of the problem.

From an algorithmic standpoint, the Kalman criterion for controllability

from Theorem 11.1 can lead to an efficient/polynomial time algorithm for

verifying whether a given network can be (target) controlled from a given input

controller, acting upon some of the network nodes. However, it does not lead

to an efficient way of computing the composition of such a minimal controller,

or even its (minimal) size. As it turns out, the (target) control optimization

problem has been open for more than 20 years, before it was shown in [Liu

et al., 2011] that there exists a low polynomial time algorithm (i.e., cubic in

the size of the network) that can provide both the size and the composition of

the minimum input controller needed to control an entire network. It was thus
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surprising that the corresponding result for the target control optimization

problem was proved by [Czeizler et al., 2018] to be NP-hard, meaning that any

exact optimization algorithm would have to run in exponential time. Several

approximation algorithms have been developed for this latter problem, with

good results when applied to both real-word networks, e.g. bio-medical, social,

electrical etc., as well as artificial networks [Kanhaiya et al., 2017, Czeizler

et al., 2018, Gao et al., 2014].

Another generalization coming from the practical application of network

controllability in pharmacology and biomedicine considers the case when the

input controller should, or it is desired to, be selected mostly from a subset

P ⊆ {1, 2, . . . , n} of the network nodes. For example, in network pharmacology

studies, it is more advantageous to consider controllers consisting of those

genes/proteins for which there already exist approved drugs known to target

that particular element. This leads to the so-called input-constrained targeted

structural controllability problem:

Definition 11.19(Input-constrained, structural target controllability):

Given a linear dynamical system defined by a matrix A ∈ Rn×n, a set of

target nodes T and a set of preferred nodes P , the input-constrained structural

targeted controllability problem asks to find a smallest-sized input set I whose

intersection with P is maximal, such that the targeted linear dynamical system

with inputs (A, I, T ) is controllable, i.e., such that the rank of the matrix

(CTBI | CTABI | CTA2BI | . . . | CTAn−1BI) is equal with |T |.

While this optimization problem is also NP-hard (as a generalization of the

previous case), several efficient approximation algorithms have been introduced

in [Kanhaiya et al., 2017] and [Popescu et al., 2020] and analyzed particularly
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with respect to bio-medical networks.

11.2.2.2. Minimum dominating sets

The second frequently used controllability technique, applied especially in the

case of undirected networks, relies on the notion of domination.

Definition 11.20(Dominating set): Given a size n network, we say that

a subset D ⊆ {1, 2, . . . , n} of its nodes is dominating the network if any node

within the network is either in D or it is adjacent to a node in D.

Definition 11.21(The Minimum Dominating Set Problem): Given a

(undirected) network, the Minimum Dominating Set Problem (MDSP) asks to

find a dominating set of minimum cardinality. Such MDS can thus be consid-

ered as an efficient first-hand controlling set for the respective network.

From an algorithmic point of view MDSP is a classical NP-hard prob-

lem [Garey and Johnson, 1990]. However, as before, there are many efficient

approximation algorithms providing efficient solutions even in the case of large

networks [Hedar and Ismail, 2012, Alon, 1990, Nacher and Akutsu, 2014].

The MDS approach has been applied in connection to various fields such as

the controllability of biological networks [Wuchty, 2014, Nacher and Akutsu,

2016, Zhang et al., 2015], design and analysis of wireless computer networks [Yu

et al., 2013, Wu et al., 2006], the study of social networks [Daliri Khomami

et al., 2018, Wang et al., 2011], etc. Several generalizations of MDSP have also

been considered:

Definition 11.22(The Minimum k-Dominating Set Problem): Given

a (undirected) network, a set D of its nodes is k-path dominating if any node
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from the network is either in D or it is connected to a node in D through a

path of length at most k. The minimum k-dominating set problem (MkDP),

also known as the d-hop dominating problem, asks to find a k-path dominating

set of minimal cardinality.

Definition 11.23(The Red–Blue (k-)Dominating Problem): Given a

network and two subsets of its nodes, Red and Blue, the Red–Blue (k-)do-

mination problem, asks to find a minimum subset of the Blue nodes (k-path)

dominating all the Red nodes.

Such generalizations were considered in [Penso and Barbosa, 2004, Nguyen

et al., 2020, Santos Coelho et al., 2017] and in [Abu-Khzam et al., 2011], respec-

tively. All these generalizations, while preserving the algorithmic complexity

of the original MDSP, provide sometimes a closer connection to practical ap-

plications.

Compared to the structural network controllability formalism, the domi-

nating set methodology enforces a reachability type of control. Indeed, in the

latter case, the dominating nodes are controlling the network either by direct

interactions, in case of MDSP, or by paths of length at most k, for MkDSP.

This is different than within the structural network controllability formalism,

where each controller node is asked to enforce an independent control over its

dominating nodes. This requirement imposes that each controlled node, i.e.

target node, is positioned at the end of a different lengthed path starting from

the controller, i.e., the driver node.
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11.2.3. Software

In this section we briefly present several applications and libraries which can

be used for generating, visualizing or analyzing graphs and networks. All of

the mentioned software is open-source, free to use and still supported as of the

time of writing (namely, it was updated in the past two years and it runs on

the latest versions of the most common operating systems or using the most

recent versions of the corresponding programming languages).

11.2.3.1. NetworkX

NetworkX ([Hagberg et al., 2008]) is a Python package for the creation, ma-

nipulation, and study of the structure, dynamics, and functions of complex

networks ([Hagberg et al., 2021c]). As all of the networks described in this

chapter (except the simple demonstrative network from Figure 11.1) repre-

sent personalized protein-protein interaction networks and have been generated

externally, we have focused the usage of the NetworkX package solely on ana-

lyzing them. The package provides out-of-the-box implemented algorithms and

functions for identifying all of the centrality measures presented in this chapter.

It is worth noting that NetworkX also provides several algorithms for different

layout routines, and basic interconnections with dedicated graph visualization

packages, such as Matplotlib ([Matplotlib, 2021]) and Graphviz ([Ellson et al.,

2021]). However, graph visualization does not represent the main goal of Net-

workX, and its creators recommend using a dedicated and fully-featured tool

instead.

An alternative to NetworkX is the igraph collection ([igraph core team,

2021]), which provides network analysis libraries and packages for R, Mathe-

matica and C/C++ in addition to Python.
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Table 11.1: The NetworkX functions used for computing the centrality
methods.

Method Function Parameters

Degree centrality in degree centrality -

Closeness centrality closeness centrality default

Harmonic centrality harmonic centrality default

Eccentricity centrality eccentricity default

Betweenness centrality betweenness centrality default

Eigenvector-based prestige eigenvector centrality default

We used the NetworkX package to compute the centrality measures corre-

sponding to the nodes in all of the networks presented in this chapter. Specifi-

cally, the functions used for ranking the nodes according to the corresponding

centrality method described in Section 11.2.1 are presented in Table 11.1.

Additionally, we used the dominating set function with the default param-

eters to run the MDS analysis described in Section 11.2.2 for each network.

While the package does not provide a direct equivalent for the MkDS algo-

rithm, it allows for the initial network manipulation (i.e. parsing the network

and adding specific edges) required to transform the default MDS analysis

into an MkDS one. The methodology and results are presented in detail in

Section 11.3.3.

11.2.3.2. Cytoscape

Cytoscape ([Shannon et al., 2003]) is a standalone software platform imple-

mented in Java for visualizing complex networks, together with attribute data

integration ([Shannon et al., 2021]). Cytoscape was initially developed for bio-

logical research and biological networks visualization and analysis. In addition

to the basic functionality, Cytoscape provides extended functionality through
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Figure 11.2: Example of network visualization with Cytoscape. The color of a node

is proportional to its indegree (darker nodes have higher indegree), while the size of

a node is proportional to its outdegree (larger nodes have higher outdegree).

the use of so-called apps, which can be community-developed and add sup-

port for additional analysis methods, layouts, or database connections, among

others.

Another well-established desktop network visualization software is Gephi

([Bastian et al., 2021]), a Java application with the same capabilities, including

the usage of plugins for extended functionality.

We have used the Cytoscape application to render all of the network vi-

sualizations presented throughout this chapter. The layout of the nodes was

automatically calculated and applied using the default preferred layout algo-

rithm, while the general design of the networks (e.g. labels, colors, or sizes) is

based on the default style. A screenshot with the visualization of a network,

can be seen in Figure 11.2.
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Figure 11.3: Screenshot with the home page of NetControl4BioMed.

11.2.3.3. NetControl4BioMed

NetControl4BioMed ([Kanhaiya et al., 2018], updated version in [Popescu

et al., 2021]) is a C# (.NET Core) web application for the generation and struc-

tural target controllability analysis of protein-protein interaction networks,

freely available at https://netcontrol.combio.org/. To this end, the applica-

tion integrates and combines multiple protein and protein-protein interaction

databases which, based on the user input, are used in the process.

We have used the NetControl4BioMed platform to generate the personal-

ized protein-protein interaction networks presented in this chapter. The details

of the network generation method (e.g. used interaction databases, or algorithm

parameters) are presented in Section 11.3.1. A screenshot with the home page

of the application can be seen in Figure 11.3.

Additionally, we used the network analysis section of the application, with

the default parameters, to run the structural target controllability analysis

described in Section 11.2.2 for each network. The methodology and results are

presented in detail in Section 11.3.3.
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11.3. Applications of network modeling

in personalized medicine

We demonstrate our approach to personalized medicine on three multiple

myeloma patients, through the analysis of customized networks built around

the mutated genes of each patient, the disease-specific survivability-essential

genes, and the genes targeted by drugs in the standard therapy for multiple

myeloma.

11.3.1. Constructing personalized disease net-

works

We used the patient data documented in [Lohr et al., 2014], which includes

information about the evolution of the mutation, the mutated genes, and the

stage of treatment, as well as details about the patient characteristics, such as

age, race, and gender, among others. In this study we focus on the mutated

genetic information for tumor samples 28, 38 and 191.

We used a list of 70 multiple myeloma-specific essential genes presented in

[Matthews et al., 2017, Tiedemann et al., 2012, Krönke et al., 2014] and shown

in Table 11.2.

We used the multiple myeloma standard treatment drugs described in

[Foundation, 2019, Engelhardt et al., 2019, Mateos et al., 2018] and their cor-

responding drug-targets from DrugBank [Wishart et al., 2017]. The list thus

obtained is presented in Table 11.3 while the associated drugs and the standard

drug therapies are documented in Tables 11.4 and 11.5, respectively.
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Table 11.2: The disease-specific survivability-essential genes for multiple
myeloma ([Matthews et al., 2017, Tiedemann et al., 2012, Krönke et al., 2014]).

AGTRAP EIF3C KIFC2 PLK1 RGAG1 TRIM68

AURKB EIF4A3 LEPROT PRPF8 RPL27 TUBGCP6

CARS GNRH2 MAF PSMA1 RPL38 UBB

CCND2 GPR77 MCL1 PSMA3 RRM1 UBQLNL

CDK11 HIP1 MED14 PSMA4 RSF1 ULK3

CDK11A IK MED15 PSMA6 SF3A1 USP36

CDK11B IKBKB NDC80 PSMC3 SLC25A23 USP8

CKAP5 IKZF1 NFKB1 PSMC4 SNRPA1 WBSCR22

COPB2 IKZF3 NFKB2 PSMC5 SNW1 WEE1

CSNK1A1 IRF4 NUF2 RAB11A TNK2 XPO1

CUL9 KIF11 PCDH18 RELA TPMT

EFNA2 KIF18A PIM2 RELB TRIM21

Table 11.3: The targets of the drugs used in standard therapy lines
for multiple myeloma.

ANXA1 GSR NR0B1 PSMB2 SLAMF7 TUBB

CD38 HSD11B1 NR1I2 PSMB5 TNF XPO1

CDH5 NFKB1 NR3C1 PSMB8 TNFSF11

CRBN NOLC1 PSMB1 PSMB9 TOP2A

FGFR2 NOS2 PSMB10 PTGS2 TUBA4A

We used the NetControl4BioMed application, briefly presented in Sec-

tion 11.2.3.3, to build a personalized protein-protein interaction network for

each multiple myeloma patient around the seed genes defined by the patient-

specific mutated genes, the disease-specific survivability-essential genes, and

the drug-target genes corresponding to the standard treatment drugs. We

used the interaction data from the KEGG, OmniPath, InnateDB and SIGNOR

databases. The networks include all paths of length at most three between the

seed proteins that could be formed with these interactions. We added to the

network all intermediary nodes that were not part of the set of seed nodes. An
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Table 11.4: The main drugs for treating multiple myeloma.

Bortezomib PSMB1;PSMB5

Carfilzomib PSMB1;PSMB10;PSMB2;PSMB5;PSMB8;PSMB9

Carmustine GSR

Cisplatin A2M;ATOX1;MPG;TF

Cyclophosphamide NR1I2

Dacetuzumab CD40

Daratumumab CD38

Dexamethasone ANXA1;NOS2;NR0B1;NR1I2;NR3C1

Doxorubicin NOLC1;TOP2A

Elotuzumab SLAMF7

Etoposide TOP2A;TOP2B

Ixazomib PSMB5

Lenalidomide CDH5;CRBN;PTGS2;TNFSF11

Liposomal doxorubicin TOP2A;TOP2B

Oprozomib LMP7;PSMB5

Panobinostat HDAC1;HDAC2;HDAC3;HDAC6;HDAC7;HIF1A;VEGF

Plerixafor CXCR4

Pomalidomide CRBN;PTGS2;TNF

Prednisone HSD11B1;NR3C1

Selinexor XPO1

Thalidomide CRBN;FGFR2;NFKB1;PTGS2;TNF

Vincristine TUBA4A;TUBB

overview of the generated networks is presented in Table 11.6.

We used the NetworkX package, briefly presented in Section 11.2.3.1, to

rank the genes in each of the generated networks based on the centrality mea-

sures described in Section 11.2.1. Tables 11.7, 11.8, 11.9, 11.10, 11.11, and

11.12 present, for each network, the essential genes that have the correspond-

ing centrality measure higher than the median among all other genes in the

network.
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Table 11.5: Lines of therapy for treating multiple myeloma.

First line of therapy

Lenalidomide;Bortezomib;Dexamethasone (RVD)

Bortezomib;Cyclophosphamide;Dexamethasone (VKD)

Bortezomib;Thalidomide;Dexamethasone (VTD)

Bortezomib;Melphalan;Prednisone

Vincristine;Doxorucibin;Dexamethasone (VAD)

Melphalan;Dexamethasone

Daratumumab;Bortezomib;Thalidomide;Dexamethasone

Carfilzomib;Thalidomide;Dexamethasone (KTD)

Second line of therapy

Carfilzomib;Lenalidomide;Dexamethasone (KRD)

Ixazomib;Lenalidomide;Dexamethasone

Elotumuzab;Lenalidomide;Dexamethasone

Bendamustine;Lenalidomide;Dexamethasone

Third line of therapy

Pomalidomide;Dexamethasone

Panobinostat;Bortezomib;Dexamethasone

Daratumumab

11.3.2. Analysis methods

In this section, we describe the methodology applied for the analysis of the

data presented in Section 11.3.1, and using the centrality measures presented

in Section 11.2.1 and the controllability methods presented in Section 11.2.2.

All analyses follow a similar flow, aiming to identify, through the differ-

ent controllability methods, a subset of “important” drug-target genes in the

network, ranked according to the number of essential genes that they con-

trol. Once a set has been identified, the corresponding drugs are ranked based

on a very similar criterion, taking into account the number of essential genes

that their drug-targets control. The three top ranked drugs are then reported
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Table 11.6: The summary of the generated personalized
protein-protein interaction networks.

Network G N E CC D AD

Tumor sample 28 36 360 1486 4 12 6.02

Tumor sample 38 117 446 1732 5 12 5.77

Tumor sample 191 218 515 1955 3 12 5.74

G: number of mutated genes in the sample; N: number of nodes

in the network; E: number of edges; CC: number of connected

components; D: the network diameter; AD: the network average

degree.

as a personalized drug combination therapy customized to the patient, and

compared with the standard lines of therapy.

Firstly, we ran each type of analysis on the complete networks and data

sets, considering as targets the essential genes presented in Table 11.2 and as

preferred inputs the drug-target genes in Table 11.3. Then, to reduce the noise

in the data, for each network and each centrality measure we focused on the

subgraphs formed by the top ranked essential genes and the drug-targets that

can reach them through a path of length of 3 or less, and all the interactions

between them. For each such subgraph, all analyses consider as targets the

corresponding essential genes, and as preferred inputs the corresponding drug-

target genes.

We used the NetControl4BioMed application, briefly presented in Section

11.2.3.3, to run the structural target controllability analyses with the previ-

ously described setup. We used the default parameters, with a set maximum

path length of 3. The analysis outputs a set of genes that can control the en-

tire target set, from which only the controlling drug-targets are selected and

further considered.

Similarly, we used the NetworkX package, presented in Section 11.2.3.1,
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Table 11.7: The top ranked genes based on their in-degree centrality,
for each network.

Tumor sample 28 Tumor sample 38 Tumor sample 191

IKBKB AURKB IKBKB CCND2 RELA CCND2

RELA XPO1 RELA XPO1 IKBKB XPO1

NFKB1 EIF3C NFKB1 EIF3C NFKB1 EIF3C

PSMC4 TNK2 PSMC4 TNK2 PSMC4 TNK2

PSMC5 CSNK1A1 PSMC5 CSNK1A1 PSMC5 RPL38

PSMA4 KIF11 PSMA4 KIF11 UBB CSNK1A1

UBB EFNA2 UBB CDK11B PSMA4 SNW1

PSMC3 CDK11B PSMC3 SNW1 PSMC3 CDK11B

NFKB2 SNW1 NFKB2 EFNA2 NFKB2 KIF11

PLK1 USP8 PLK1 IKZF3 PLK1 IKZF3

PSMA6 IKZF3 MCL1 MED14 MCL1 IKZF1

PSMA3 RSF1 PSMA6 USP8 PSMA6 EFNA2

MCL1 IKZF1 WEE1 RSF1 WEE1 RRM1

WEE1 RPL38 PSMA3 IKZF1 PSMA3 USP8

PSMA1 TRIM21 RELB RPL38 RELB TRIM21

CCND2 MAF PSMA1 TRIM21 PSMA1 RSF1

RELB AURKB AURKB RPL27

Table 11.8: The top ranked genes based on their closeness centrality,
for each network.

Tumor sample 28 Tumor sample 38 Tumor sample 191

UBB CSNK1A1 IKBKB PSMA4 RELA PSMA4

IKBKB PSMA4 UBB XPO1 UBB CSNK1A1

RELA XPO1 RELA CSNK1A1 IKBKB PSMC3

NFKB1 PLK1 NFKB1 PSMC3 NFKB1 XPO1

NFKB2 SNW1 NFKB2 SNW1 NFKB2 SNW1

RELB PSMC3 RELB TRIM21 RELB PSMC4

WEE1 PSMC4 PSMA3 PIM2 WEE1 AURKB

PSMA3 PSMC5 MCL1 PSMC4 PSMA3 PSMC5

MCL1 TRIM21 WEE1 PSMC5 MCL1 PIM2

RSF1 KIF11 RSF1 PSMA1 RSF1 PSMA1

CCND2 PSMA1 CCND2 KIF11 CCND2 TRIM21

PSMA6 PIM2 PLK1 TNK2 PSMA6 KIF11

PSMA6 AURKB PLK1 TNK2
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Table 11.9: The top ranked genes based on their harmonic
centrality, for each network.

Tumor sample 28 Tumor sample 38 Tumor sample 191

IKBKB PSMC3 IKBKB PSMC5 RELA PSMC3

RELA PSMA6 RELA PLK1 IKBKB PLK1

NFKB1 MCL1 NFKB1 CCND2 NFKB1 PSMA6

UBB CCND2 UBB RSF1 UBB RSF1

NFKB2 RSF1 NFKB2 XPO1 NFKB2 CCND2

PSMA4 PLK1 RELB PSMA1 RELB PSMA1

RELB XPO1 PSMA4 CSNK1A1 PSMA4 AURKB

PSMA3 PSMA1 PSMA3 SNW1 WEE1 CSNK1A1

WEE1 CSNK1A1 WEE1 TRIM21 PSMA3 XPO1

PSMC4 SNW1 MCL1 PIM2 PSMC4 SNW1

PSMC5 PSMC3 AURKB MCL1 PIM2

PSMA6 TNK2 PSMC5 TRIM21

PSMC4 KIF11

Table 11.10: The top ranked genes based on their eccentricity, for each
network.

Tumor sample 28 Tumor sample 38 Tumor sample 191

IKBKB RELB IKBKB EFNA2 IKBKB EFNA2

RELA MCL1 RELA RELB RELA MCL1

NFKB1 EFNA2 NFKB1 MCL1 NFKB1 TNK2

PSMA4 TNK2 PLK1 TNK2 PLK1 CCND2

PLK1 CCND2 PSMA4 CCND2 PSMA4 EIF3C

PSMC3 EIF3C PSMC3 EIF3C PSMC5 CDK11B

PSMC5 CDK11B PSMC5 CDK11B PSMC4 XPO1

PSMC4 XPO1 PSMC4 XPO1 PSMC3 SNW1

PSMA6 IRF4 PSMA6 IRF4 PSMA6 RPL38

PSMA1 SNW1 PSMA1 SNW1 PSMA1 IRF4

PSMA3 USP8 PSMA3 PIM2 PSMA3 PIM2

UBB PIM2 UBB MED14 UBB USP8

NFKB2 HIP1 NFKB2 USP8 NFKB2 IKZF1

WEE1 KIF11 WEE1 RSF1 CSNK1A1 HIP1

CSNK1A1 RSF1 AURKB HIP1 WEE1 KIF11

AURKB CSNK1A1 KIF11 AURKB IKZF3

RELB RAB11A
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Table 11.11: The top ranked genes based on their betweenness
centrality, for each network.

Tumor sample 28 Tumor sample 38 Tumor sample 191

IKBKB PSMA6 IKBKB RELB IKBKB RELB

NFKB1 EIF3C RELA CCND2 RELA UBB

RELA RELB NFKB1 EIF3C NFKB1 PSMA6

PLK1 PSMA1 PLK1 PSMA1 PLK1 PSMA1

CSNK1A1 PSMA4 PSMC3 PSMA4 NFKB2 PSMC5

NFKB2 PSMC5 NFKB2 PSMC5 WEE1 PSMA4

PSMA3 EFNA2 WEE1 EFNA2 CSNK1A1 EFNA2

WEE1 USP8 PSMA3 MED14 CDK11B PSMC4

PSMC3 PIM2 CDK11B USP8 PSMA3 RAB11A

CDK11B PSMC4 CSNK1A1 PIM2 MCL1 USP8

MCL1 MED14 TNK2 PSMC4 AURKB MED14

TNK2 RPL38 AURKB RSF1 EIF3C MAF

AURKB MAF MCL1 SNW1 PSMC3 PIM2

XPO1 RSF1 XPO1 RPL38 TNK2 SNW1

CCND2 SNW1 PSMA6 MAF XPO1 RPL38

UBB UBB CCND2 RSF1

Table 11.12: The top ranked genes based on their
eigenvector-based prestige, for each network.

Tumor sample 28 Tumor sample 38 Tumor sample 191

PSMC4 NFKB1 PSMC4 NFKB2 PSMC4 CCND2

PSMC5 CCND2 PSMC5 CCND2 PSMC5 WEE1

PSMA4 NFKB2 PSMA4 WEE1 PSMA4 MCL1

PSMC3 WEE1 PSMC3 MCL1 PSMC3 RELB

PSMA6 MCL1 PSMA6 RELB PSMA6 RSF1

PSMA3 RELB PSMA3 PLK1 PSMA3 AURKB

PSMA1 RSF1 PSMA1 RSF1 PSMA1 PLK1

UBB SNW1 UBB SNW1 UBB SNW1

IKBKB XPO1 IKBKB XPO1 IKBKB XPO1

RELA PLK1 RELA AURKB RELA KIF11

NFKB1 NFKB1 RPL27

NFKB2 PIM2
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Table 11.13: The drug-target genes in the controlling set obtained
by the structural target controllability analysis.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 NOLC1 ANXA1 PSMB1 ANXA1 PSMB2

NFKB1 NOLC1 TNF

to run the minimum dominating set analyses with the previously described

setup. An additional step was required in order to enable the default function

to perform the required minimum k-dominating set analysis. To this end, we

transformed the analyzed networks by adding a direct edge between each pair

of nodes indirectly connected by a path of length of k or less. We set k = 3,

and used the default parameters. The analysis outputs a set of genes that can

dominate the entire target set, from which only the dominating drug-targets

are selected and further considered.

11.3.3. Results

In this section, we present and discuss the results of the analyses described in

Section 11.3.2, with the aim of suggesting personalized treatments.

11.3.3.1. Structural controllability analysis

We applied the input-constrained structural target controllability method on

the complete networks and sets of essential and drug-target genes. The drug-

target genes in the obtained controlling sets are presented in Table 11.13.

Next, we applied the method once more on the subgraphs described in

Section 11.3.2 and corresponding to each centrality measure. The drug-target

genes in the controlling sets obtained for each measure are presented in Ta-
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Table 11.14: The drug-target genes in the controlling set obtained
by the structural target controllability analysis corresponding to the
top ranked essential genes based on their in-degree centrality.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 NOLC1 ANXA1 TNF ANXA1 NOLC1

NFKB1 TNF NFKB1 NFKB1 TNF

Table 11.15: The drug-target genes in the controlling set obtained
by the structural target controllability analysis corresponding to the
top ranked essential genes based on their closeness centrality.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 PSMB8 FGFR2 PSMB5 ANXA1 PSMB1

NFKB1 TNF NFKB1 TNF NFKB1 TNF

NR3C1 NR3C1 XPO1

bles 11.14, 11.15, 11.16, 11.17, 11.18 and 11.19.

Next, we studied the results in the context of drug therapy. For each net-

work and centrality measure, the drug-target genes were matched with all the

multiple myeloma standard treatment drug targeting them, while the latter

was sorted according to the number of top ranked essential genes controlled

through one or more of their drug-target genes. Then, we selected the three

top drugs as our proposed drug combination for that patient’s treatment. In-

formally, this approach aims for a reinforced influential effect over as many

essential genes as possible through a minimal combination of at most 3 drugs.

The chosen drugs are documented in Tables 11.20, 11.22, 11.24, 11.26, 11.28

Table 11.16: The drug-target genes in the controlling set obtained
by the structural target controllability analysis corresponding to the
top ranked essential genes based on their harmonic centrality.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 PTGS2 ANXA1 TNF ANXA1 PSMB1

NFKB1 TNF NFKB1 XPO1 NFKB1 TNF

PSMB1 XPO1 PSMB10
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Table 11.17: The drug-target genes in the controlling set obtained
by the structural target controllability analysis corresponding to the
top ranked essential genes based on their eccentricity.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 PSMB1 ANXA1 NR3C1 ANXA1 NFKB1

NFKB1 TNF NFKB1

Table 11.18: The drug-target genes in the controlling set obtained
by the structural target controllability analysis corresponding to the
top ranked essential genes based on their betweenness centrality.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 TNF ANXA1 PTGS2 ANXA1 PTGS2

NFKB1 NFKB1 TNF NFKB1 TNF

PSMB10

Table 11.19: The drug-target genes in the controlling set obtained
by the structural target controllability analysis corresponding to the
top ranked essential genes based on their eigenvector-based prestige.

Tumor sample 28 Tumor sample 38 Tumor sample 191

NFKB1 XPO1 ANXA1 PSMB5 ANXA1 TNF

PSMB1 NFKB1 TNF NFKB1

PSMB2
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Table 11.20: The proposed drug therapy and the number of essential genes it
controls, for the structural target controllability analysis corresponding to the top
ranked essential genes based on their in-degree.

Tumor Sample Proposed therapy Controlled EG

MM-0028-Tumor Dexamethasone;Thalidomide;Doxorubicin 29

MM-0038-Tumor Dexamethasone;Thalidomide;Pomalidomide 24

MM-0191-Tumor Dexamethasone;Thalidomide;Pomalidomide 28

Table 11.21: The most effective standard drug therapy and the number of
essential genes it controls, for the structural target controllability analysis
corresponding to the top ranked essential genes based on their in-degree.

Tumor Sample Standard therapy Controlled EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 27

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 24

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 28

and 11.30. Following an identical procedure, we also suggest a personalized

drug combination in Table 11.32 based on the conclusions reached by the con-

trollability analysis on the whole tumor network. The associated most effective

standard drug therapy for each tumor sample and centrality measure are given

in Tables 11.21, 11.23, 11.25, 11.27, 11.29, 11.31 and 11.33.

It is immediate to see that Thalidomide and Dexamethasone are predicted

to be extremely suitable for treating the unique disease circumstances afflicting

all the patients. These two drugs are commonly preferred as a first choice

Table 11.22: The proposed drug therapy and the number of essential genes it
controls, for structural target controllability analysis corresponding to the top ranked
essential genes based on their closeness.

Tumor Sample Proposed therapy Controlled EG

MM-0028-Tumor Thalidomide;Dexamethasone;Pomalidomide 21

MM-0038-Tumor Thalidomide;Pomalidomide;Dexamethasone 23

MM-0191-Tumor Thalidomide;Dexamethasone;Selinexor 24
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Table 11.23: The most effective standard drug therapy and the number of
essential genes it controls, for the structural target controllability analysis
corresponding to the top ranked essential genes based on their closeness.

Tumor Sample Standard therapy Controlled EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 21

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 24

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 24

Table 11.24: The proposed drug therapy and the number of essential genes it
controls, for the structural target controllability analysis corresponding to the top
ranked essential genes based on their harmonic centrality.

Tumor Sample Proposed therapy Controlled EG

MM-0028-Tumor Thalidomide;Dexamethasone;Selinexor 21

MM-0038-Tumor Dexamethasone;Thalidomide;Pomalidomide 22

MM-0191-Tumor Dexamethasone;Thalidomide;Bortezomib 22

Table 11.25: The most effective standard drug therapy and the number of
essential genes it controls, for the structural target controllability analysis
corresponding to the top ranked essential genes based on their harmonic centrality.

Tumor Sample Standard therapy Controlled EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 20

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 22

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 22

Table 11.26: The proposed drug therapy and the number of essential genes it
controls, for the structural target controllability analysis corresponding to the top
ranked essential genes based on their eccentricity.

Tumor Sample Proposed therapy Controlled EG

MM-0028-Tumor Thalidomide;Pomalidomide;Bortezomib 25

MM-0038-Tumor Dexamethasone;Prednisone;Thalidomide 3

MM-0191-Tumor Thalidomide;Dexamethasone 26

Table 11.27: The most effective standard drug therapy and the number of
essential genes it controls, for the structural target controllability analysis
corresponding to the top ranked essential genes based on their eccentricity.

Tumor Sample Standard therapy Controlled EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 26

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 3

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 26
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Table 11.28: The proposed drug therapy and the number of essential genes it
controls, for the structural target controllability analysis corresponding to the top
ranked essential genes based on their betweenness.

Tumor Sample Proposed therapy Controlled EG

MM-0028-Tumor Thalidomide;Pomalidomide;Dexamethasone 26

MM-0038-Tumor Thalidomide;Pomalidomide;Dexamethasone 26

MM-0191-Tumor Dexamethasone;Thalidomide;Pomalidomide 27

Table 11.29: The most effective standard drug therapy and the number of
essential genes it controls, for the structural target controllability analysis
corresponding to the top ranked essential genes based on their betweenness.

Tumor Sample Standard therapy Controlled EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 26

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 26

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 27

Table 11.30: The proposed drug therapy and the number of essential genes it
controls, for the structural target controllability analysis corresponding to the top
ranked essential genes based on their eigenvector centrality.

Tumor Sample Proposed therapy Controlled EG

MM-0028-Tumor Thalidomide;Selinexor;Bortezomib 3

MM-0038-Tumor Dexamethasone;Thalidomide;Pomalidomide 19

MM-0191-Tumor Thalidomide;Dexamethasone;Pomalidomide 21

Table 11.31: The most effective standard drug therapy and the number of
essential genes it controls, for the structural target controllability analysis
corresponding to the top ranked essential genes based on their eigenvector
centrality.

Tumor Sample Standard therapy Controlled EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 2

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 19

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 21

Table 11.32: The proposed drug therapy and the number of essential genes it
controls, for the structural target controllability analysis corresponding to the
essential genes in the patient network.

Tumor Sample Proposed therapy Controlled EG

MM-0028-Tumor Thalidomide;Doxorubicin;Dexamethasone 31

MM-0038-Tumor Thalidomide;Pomalidomide;Doxorubicin 28

MM-0191-Tumor Dexamethasone;Carfilzomib 25
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Table 11.33: The most effective standard drug therapy and the number of
essential genes it controls, for the structural target controllability analysis
corresponding to the essential genes in the patient network.

Tumor Sample Standard therapy Controlled EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 29

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 29

MM-0191-Tumor Lenalidomide;Bortezomib;Dexamethasone 24

when approaching multiple myeloma cases and are part of two therapies in

combination with either Bortezomib or Carfilzomib frequently use in latest

medical practice, namely VTD and KTD respectively. These two combinations

are supported by successful outcomes in different studies, such as [Roussel

et al., 2020, Wester R, 2019].

The third drug combination spot is usually taken by Pomalidomide. While

this drug is mostly considered in later stages of the treatment in the context

of traditional care, the analysis predicts this drug to have a strong reinforce-

ment impact on the activity of Thalidomide for these specific cases, as it shares

the same controlled essential genes with the latter. Our approach also identi-

fies several outliers to the predominant 3-drug combination, namely Selinexor,

Doxorubicin, Prednisone, Bortezomib, and Carfilzomib. The first two drugs are

not considered until the last stages of the treatment in standard therapy lines.

Although the conclusions collected by this study for these three patients align

with this traditional approach, they still provide grounds to consider them

over other late stage drugs if the treatment progresses to an evolved phase. On

the other hand, the remaining three are relevant in starting medical diagnosis,

with Bortezomib being specially remarkable. Following a more traditional ap-

proach, these three drugs may be given preference over Pomalidomide for the

first prescriptions.
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Table 11.34: The drug-target genes in the dominating set obtained
by the minimum dominating set analysis.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 PSMB5 ANXA1 PSMB5 ANXA1 PSMB5

NFKB1 PSMB9 NFKB1 PSMB8 NFKB1 PTGS2

NOLC1 PTGS2 NOLC1 PSMB9 NOLC1 TNF

NR3C1 TNF NR3C1 PTGS2 NR3C1 TNFSF11

PSMB1 TNFSF11 PSMB1 TNF

PSMB2 TOP2A PSMB10 TNFSF11

PSMB2 TOP2A

The suggested drug therapies are predicted to control most of the consid-

ered essential genes in the whole network and each of the centrality subnet-

works. Consequently, it is expected for them to have a significant favorable

impact on the condition of our targeted patients. Furthermore, the prescribed

sequence of drugs are very close to the known therapies frequently used in

the current state of the art treatment. All of these events provide a strong

foundation for the feasibility of this method in personalized medicine.

11.3.3.2. Minimum dominating set analysis

We applied the input-constrained minimum 3-dominating set method on the

complete networks and sets of essential and drug-target genes. The drug-target

genes in the obtained dominating sets are shown in Table 11.34.

Next, we applied the method once more on the subgraphs described in

Section 11.3.2 and corresponding to each centrality measure. The drug-target

genes in the dominating set obtained for each measure are presented in Ta-

bles 11.35, 11.36, 11.37, 11.38, 11.39 and 11.40.

The examination of these results follows an analogous procedure to the one

introduced for target controllability. For each network and centrality measure,
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Table 11.35: The drug-target genes in the dominating set obtained
by the minimum dominating set analysis corresponding to the top
ranked essential genes based on their in-degree centrality.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 PSMB5 ANXA1 NR3C1 ANXA1 NR3C1

NFKB1 PSMB9 NFKB1 TNF NFKB1 TNF

NOLC1 PTGS2 NOLC1 TNFSF11 NOLC1 TNFSF11

NR3C1 TNF

PSMB1 TNFSF11

PSMB2 TOP2A

Table 11.36: The drug-target genes in the dominating set obtained
by the minimum dominating set analysis corresponding to the top
ranked essential genes based on their closeness centrality.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 TNF ANXA1 TNF ANXA1 TNF

NFKB1 TNFSF11 NFKB1 TNFSF11 NFKB1 TNFSF11

NR3C1 NR3C1 NR3C1

Table 11.37: The drug-target genes in the dominating set obtained
by the minimum dominating set analysis corresponding to the top
ranked essential genes based on their harmonic centrality.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 TNF ANXA1 TNF ANXA1 TNF

NFKB1 NFKB1 TNFSF11 NFKB1 TNFSF11

NR3C1 NR3C1

Table 11.38: The drug-target genes in the dominating set obtained
by the minimum dominating set analysis corresponding to the top
ranked essential genes based on their eccentricity.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 TNF ANXA1 TNF ANXA1 NR3C1

NFKB1 TNFSF11 NFKB1 TNFSF11 NFKB1 TNF

NR3C1 NR3C1 NOLC1 TNFSF11
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Table 11.39: The drug-target genes in the dominating set obtained
by the minimum dominating set analysis corresponding to the top
ranked essential genes based on their betweenness centrality.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 PSMB5 ANXA1 PTGS2 ANXA1 PTGS2

NFKB1 PSMB9 NFKB1 TNF NFKB1 TNF

NOLC1 PTGS2 NR3C1 TNFSF11 NR3C1 TNFSF11

NR3C1 TNF

PSMB1 TNFSF11

PSMB2 TOP2A

Table 11.40: The drug-target genes in the dominating set obtained
by the minimum dominating set analysis corresponding to the top
ranked essential genes based on their eigenvector-based prestige.

Tumor sample 28 Tumor sample 38 Tumor sample 191

ANXA1 TNF ANXA1 TNF ANXA1 TNF

NFKB1 NFKB1 NFKB1

as well as the network associated to the whole minimum dominating set, we

ascertain a drug therapy including the top ranked drugs on terms of reached

essential genes. The chosen drugs are documented in Tables 11.41, 11.43, 11.45,

11.47, 11.49 and 11.51. Furthermore, the drugs corresponding to the dominat-

ing set associated to all the essential genes in the original patient network are

shown in Table 11.53. The associated most effective standard drug therapy for

each tumor sample and centrality measure are given in Tables 11.42, 11.44,

11.46, 11.48, 11.50, 11.52 and 11.54.

From the point of view of centrality analysis, the results are consistent over

all the networks and centrality measures with the prescription of the 3-drug

combination of Thalidomide, Pomalidomide and Dexamethasone. The parallel

outcomes yielded by this approach and the one focused on target controllability

support our hypothesis of an interrelationship between the network topological

properties and the genes influencing the disease. On these grounds, we propose
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Table 11.41: The proposed drug therapy and the number of essential genes it
dominates, for the minimum dominating set corresponding to the top ranked essential
genes based on their in-degree.

Tumor Sample Proposed therapy Dominated EG

MM-0028-Tumor Thalidomide;Pomalidomide;Dexamethasone 28

MM-0038-Tumor Thalidomide;Pomalidomide;Dexamethasone 27

MM-0191-Tumor Thalidomide;Pomalidomide;Dexamethasone 29

Table 11.42: The most effective standard drug therapy and the number of
essential genes it dominates, for the minimum dominating set corresponding to the
top ranked essential genes based on their in-degree.

Tumor Sample Standard therapy Dominated EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 28

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 27

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 29

Table 11.43: The proposed drug therapy and the number of essential genes it
dominates, for the minimum dominating set corresponding to the top ranked essential
genes based on their closeness.

Tumor Sample Proposed therapy Dominated EG

MM-0028-Tumor Thalidomide;Pomalidomide;Dexamethasone 24

MM-0038-Tumor Thalidomide;Pomalidomide;Dexamethasone 26

MM-0191-Tumor Thalidomide;Pomalidomide;Dexamethasone 26

Table 11.44: The most effective standard drug therapy and the number of
essential genes it dominates, for the minimum dominating set corresponding to the
top ranked essential genes based on their closeness.

Tumor Sample Standard therapy Dominated EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 24

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 26

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 26

Table 11.45: The proposed drug therapy and the number of essential genes it
dominates, for the minimum dominating set corresponding to the top ranked essential
genes based on their harmonic centrality.

Tumor Sample Proposed therapy Dominated EG

MM-0028-Tumor Thalidomide;Pomalidomide;Dexamethasone 21

MM-0038-Tumor Thalidomide;Pomalidomide;Dexamethasone 26

MM-0191-Tumor Thalidomide;Pomalidomide;Dexamethasone 24
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Table 11.46: The most effective standard drug therapy and the number of
essential genes it dominates, for the minimum dominating set corresponding to the
top ranked essential genes based on their harmonic centrality.

Tumor Sample Standard therapy Dominated EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 21

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 26

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 24

Table 11.47: The proposed drug therapy and the number of essential genes it
dominates, for the minimum dominating set corresponding to the top ranked essential
genes based on their eccentricity.

Tumor Sample Proposed therapy Dominated EG

MM-0028-Tumor Thalidomide;Pomalidomide;Dexamethasone 26

MM-0038-Tumor Thalidomide;Pomalidomide;Dexamethasone 26

MM-0191-Tumor Thalidomide;Pomalidomide;Dexamethasone 26

Table 11.48: The most effective standard drug therapy and the number of
essential genes it dominates, for the minimum dominating set corresponding to the
top ranked essential genes based on their eccentricity.

Tumor Sample Standard therapy Dominated EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 26

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 26

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 26

Table 11.49: The proposed drug therapy and the number of essential genes it
dominates, for the minimum dominating set corresponding to the top ranked essential
genes based on their betweenness.

Tumor Sample Proposed therapy Dominated EG

MM-0028-Tumor Thalidomide;Pomalidomide;Dexamethasone 27

MM-0038-Tumor Thalidomide;Pomalidomide;Dexamethasone 27

MM-0191-Tumor Thalidomide;Pomalidomide;Dexamethasone 27

Table 11.50: The most effective standard drug therapy and the number of
essential genes it dominates, for the minimum dominating set corresponding to the
top ranked essential genes based on their betweenness.

Tumor Sample Standard therapy Dominated EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 27

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 27

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 27
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Table 11.51: The proposed drug therapy and the number of essential genes it
dominates, for the minimum dominating set corresponding to the top ranked essential
genes based on their eigenvector centrality.

Tumor Sample Proposed therapy Dominated EG

MM-0028-Tumor Thalidomide;Pomalidomide;Dexamethasone 20

MM-0038-Tumor Thalidomide;Pomalidomide;Dexamethasone 21

MM-0191-Tumor Thalidomide;Pomalidomide;Dexamethasone 24

Table 11.52: The most effective standard drug therapy and the number of
essential genes it dominates, for the minimum dominating set corresponding to the
top ranked essential genes based on their eigenvector centrality.

Tumor Sample Standard therapy Dominated EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 20

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 21

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 24

Table 11.53: The proposed drug therapy and the number of essential genes it
dominates, for the minimum dominating set corresponding to the essential genes in the
patient network.

Tumor Sample Proposed therapy Dominated EG

MM-0028-Tumor Thalidomide;Pomalidomide;Dexamethasone 31

MM-0038-Tumor Thalidomide;Pomalidomide;Dexamethasone 31

MM-0191-Tumor Thalidomide;Pomalidomide;Dexamethasone 31

Table 11.54: The most effective standard drug therapy and the number of
essential genes it dominates, for the minimum dominating set corresponding to the
essential genes in the patient network.

Tumor Sample Standard therapy Dominated EG

MM-0028-Tumor Bortezomib;Thalidomide;Dexamethasone 31

MM-0038-Tumor Bortezomib;Thalidomide;Dexamethasone 31

MM-0191-Tumor Bortezomib;Thalidomide;Dexamethasone 31
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hub genes ascertained by the centrality analysis of a disease network to be

considered as basis for the discovery of new essential genes and drug targets.

11.4. Conclusion

Network medicine is an exciting and promising field of research, with a high

potential for personalized approaches. It brings together approaches in graph

theory, network science, systems biology, bioinformatics and medicine, open-

ing the door to detailed patient- and disease-specific insights. We discussed

in this chapter several basic methods of network modeling and their potential

applicability in personalized medicine. We also demonstrated their potential

on three multiple myeloma patient datasets. We showed how various methods

(topological analysis, systems controllability) can be combined to predict op-

timal and personalized drug combinations therapies. In some cases, they differ

from the initial standard therapy lines routinely offered to multiple myeloma

patients, and resemble in part the options becoming available later in the dis-

ease progression. More studies (especially longitudinal studies) are needed to

explore the full potential of these methods and convincingly demonstrate their

applicability in the clinical practice.

The results we obtained on the three datasets differ slightly from method

to method. This is not surprising, as each method identifies different nodes and

paths in the graphs that are of interest from various computational points of

view. Which ones work best in practice should be explored with other research

instruments, and it is likely the results may differ from case to case.

The results in network medicine are critically dependent on the quality of

the patient networks being applied to. The patient data that can be included in
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such networks can be quite diverse, including genetic mutations, copy number

variations, differential gene expression, co-morbidities, and concurrent treat-

ments. All these data sources contribute to the set of nodes in the network. The

interactions included in the network typically come from various interaction

databases (some of which we discussed in this chapter). The data going into

these databases is very diverse: some of it is experimental (but not always on

human samples), some is inferred from other experiments, while others are de-

duced through various machine learning methods. The importance of curating

these datasets or at least choosing carefully which to include in the analyses

cannot be underestimated.
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Gábor Iván and Vince Grolmusz. When the Web meets the cell: using person-

alized PageRank for analyzing protein interaction networks. Bioinformat-

ics, 27(3):405–407, 12 2010. ISSN 1367-4803. doi: 10.1093/bioinformatics/

btq680. URL https://doi.org/10.1093/bioinformatics/btq680.

Maliackal Poulo Joy, Amy Brock, Donald E Ingber, and Sui Huang. High-

betweenness proteins in the yeast protein interaction network. Journal

of biomedicine & biotechnology, 2005(2):96—103, June 2005. ISSN 1110-

7243. doi: 10.1155/jbb.2005.96. URL https://europepmc.org/articles/

PMC1184047.

R. E. Kalman. Mathematical description of linear dynamical systems. Journal

of the Society for Industrial and Applied Mathematics Series A Control, 1

(2):152–192, 1963. doi: 10.1137/0301010. URL https://doi.org/10.1137/

0301010.

U Kang, Spiros Papadimitriou, Jimeng Sun, and Hanghang Tong. Centrali-

ties in large networks: Algorithms and observations. In Proceedings of the

2011 SIAM International Conference on Data Mining, pages 119–130, 2011.

doi: 10.1137/1.9781611972818.11. URL https://epubs.siam.org/doi/abs/10.

1137/1.9781611972818.11.

Krishna Kanhaiya, Eugen Czeizler, Cristian Gratie, and Ion Petre. Controlling

72

https://doi.org/10.1007/s13042-011-0043-y
https://doi.org/10.1007/s13042-011-0043-y
https://igraph.org/
https://doi.org/10.1093/bioinformatics/btq680
https://europepmc.org/articles/PMC1184047
https://europepmc.org/articles/PMC1184047
https://doi.org/10.1137/0301010
https://doi.org/10.1137/0301010
https://epubs.siam.org/doi/abs/10.1137/1.9781611972818.11
https://epubs.siam.org/doi/abs/10.1137/1.9781611972818.11


directed protein interaction networks in cancer. Scientific Reports, 7(1):

10327, Sep 2017. ISSN 2045-2322. doi: 10.1038/s41598-017-10491-y. URL

https://doi.org/10.1038/s41598-017-10491-y.

Krishna Kanhaiya, Vladimir Rogojin, Keivan Kazemi, Eugen Czeizler, and

Ion Petre. Netcontrol4biomed: a pipeline for biomedical data acquisition

and analysis of network controllability. BMC Bioinformatics, 19, 2018. doi:

\url{https://doi.org/10.1186/s12859-018-2177-3}.

Leo Katz. A new status index derived from sociometric analysis. Psychome-

trika, 18(1):39–43, 1953.
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