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A B S T R A C T

Differentiable ARchiTecture Search (DARTS) is one of the most trending Neural Architecture Search
(NAS) methods. It drastically reduces search cost by resorting to weight-sharing. However, this ap-
proach also dramatically reduces the search space, thus excluding potential promising architectures. In
this article, we propose D-DARTS, a solution that addresses this problem by nesting neural networks at
the cell level instead of using weight-sharing to produce more diversified and specialized architectures.
Moreover, we introduce a novel algorithm that can derive deeper architectures from a few trained
cells, increasing performance and saving computation time. In addition, we introduce DARTOpti, an
alternative search space in which we optimize existing handcrafted architectures instead of searching
from scratch. Our solution reaches competitive performance on image classification tasks.

1. Introduction
With the field of Deep Learning (DL) getting more and

more attention over the past few years, a significant focus
has been set on neural network architectural conception. A
large number of architectures have been manually crafted
to address different computer vision problems [1, 2, 3].
However, the design of these human-made architectures is
mainly driven by intuition and lacks the certainty of an
optimal solution. This is due to the many combinations
needed to build a relevant neural architecture, making the
search space difficult to browse manually. Neural Architec-
ture Search (NAS) works [4, 5, 6, 7, 8] tried to tackle this
issue by automatizing the architecture design process. In
NAS, a search algorithm attempts to build a neural network
architecture from a defined search space by asserting the
performance of “candidate” architectures. The most trend-
ing NAS approach is currently Differentiable ARchitecTure
Search (DARTS) [5], whose main advantage is a greatly
reduced search cost compared to earlier approaches [7, 9]
thanks to its 2-cell search space. However, searching for only
two types of cells significantly restricts the search space and
limits the diversity of candidate architectures. To alleviate
this problem, we propose to directly search for a complete
network with individualized cells. This network delegates
the search process to the cell level in a distributed fashion.
Moreover, we introduce a loss function based on Shapley
values [10] to guide cell optimization. Consequently, this
distributed structure makes it possible to encode existing
architectures (e.g., ResNet50 [1]) in the search space and use
them as starting points for the search process.

As presented in Section 4, the contributions of this arti-
cle are: (i) a new way of structuring DARTS’ search process
by nesting small neural networks in cells to individualize
them, (ii) a novel Shapley value-based loss function specially
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designed to take advantage of the new distributed structure,
(iii) a search space augmented with additional operations to
allow the encoding of handcrafted architectures. The rest
of the article is structured as follows: In Section 3, we
review the original concept of DARTS and discuss its issues.
In Section 4, we detail the proposed method. Section 5
presents the results of a set of experiments conducted on
popular computer vision datasets. Section 6 discusses the
results of the experimental study. Finally, Section 7 brings
a conclusion to this article while giving some insights on
promising directions for future work.

2. Related Work
Here, we focus on a few recent works which attempted

to improve DARTS by addressing its limitations (see Sec-
tion 3). For a more comprehensive survey on differentiable
NAS, we defer the reader to [11]. PC-DARTS [12] mini-
mized the memory footprint by optimizing the search pro-
cess to avoid redundancy. P-DARTS [13] greatly reduced
the search time by progressively deepening the architecture
when searching, leading to a better search space approxi-
mation and regularization. FairDARTS [6] used the sigmoid
function to discretize architectures and introduced a novel
loss function (see Section 3). DARTS- [14] introduced an
auxiliary skip connection with a 𝛽-decay factor to mitigate
the importance of this operation. 𝛽-DARTS [15] improved
DARTS- with a new regularization method that can prevent
the architectural parameters from saturating. This led to
increased robustness and better generalization ability. C-
DARTS [16] leveraged a cyclic feedback mechanism be-
tween the search (supernet) and evaluation networks in
order to bridge the optimization gap by jointly optimizing
these two networks. U-DARTS [17] redefined the relations
between cells in order to browse a uniform search space.
Finally, DOTS [18] proposed to decouple the operation
and topology search, so that the cell topology is no longer
constrained by the operation weights. Therefore, pairwise
edge combinations are attributed weights that are updated
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separately from the operation weights. Despite these im-
provements, these follow-up methods did not address one of
DARTS’ most critical limitations: its restricted search space.
This is the issue we are focusing on in this article.

3. Preliminaries: DARTS
Differentiable ARchitecTure Search (DARTS) [5] is a

gradient-based NAS method that searches for novel archi-
tectures through a cell-modulated search space while using
a weight-sharing mechanism to speed up this process. More
specifically, it searches for two different types of cells:
normal and reduction. These two cells are the building
blocks from which architectures of any size can be derived.
Thus, most of the final network components share the same
architectural weights. Each cell can be described as a direct
acyclic graph of 𝑁 nodes where each edge connecting
two nodes is a mix of operations chosen among |𝑂𝑖,𝑗| =
𝐾 candidates, where 𝑂𝑖,𝑗 = {𝑜1𝑖,𝑗 , ..., 𝑜

𝐾
𝑖,𝑗} represents the

set of all possible operations for the edge 𝑒𝑖,𝑗 connecting
node 𝑖 to node 𝑗. DARTS browses a search space 𝑆 com-
prising 𝐾 = 7 operations (skip_connect, max_pool_3x3,
avg_pool_3x3, sep_conv_3x3, sep_conv_5x5, dil_conv_3x3
and dil_conv_5x5). The goal of the DARTS process is to
determine which incoming operations (with a maximum of
2) must be selected for each node to maximize the validation
loss 𝐿𝐶𝐸 (Cross-Entropy loss). In that objective, DARTS’
search process involves learning a set of parameters, denoted
by 𝛼𝑖,𝑗 = {𝛼1𝑖,𝑗 , ..., 𝛼

𝐾
𝑖,𝑗}, representing the weight of each

operation from 𝑂𝑖,𝑗 in the mixed output of each edge. To
build the mixed output, the categorical choice of operations
is done through a softmax:

𝑜𝑖,𝑗(𝑥) =
𝐾
∑

𝑘=1

𝑒𝑥𝑝(𝛼𝑘𝑖,𝑗)
∑𝐾

𝑘′=1 𝑒𝑥𝑝(𝛼
𝑘′
𝑖,𝑗)

𝑜𝑘𝑖,𝑗(𝑥) (1)

where 𝑜𝑖,𝑗(𝑥) is the mixed output of edge 𝑒𝑖,𝑗 for input
feature 𝑥 and 𝛼𝑘𝑖,𝑗 ∈ 𝛼𝑖,𝑗 is the weight associated with
operation 𝑜𝑘𝑖,𝑗 ∈ 𝑂𝑖,𝑗 . These architectural parameters are
optimized simultaneously as the global supernet weights.
Thus, DARTS is practically solving a bi-level optimization
problem.

However, DARTS suffers from two major issues. The
first is the over-representation of skip connections. The sec-
ond is the discretization discrepancy problem of the softmax
operation in Eq. (1), namely a very small standard deviation
of the resulting probability distribution. To mitigate these
issues, the authors of FairDARTS [6] replaced the softmax
function with the sigmoid function (denoted by 𝜎) :

𝑜𝑖,𝑗(𝑥) =
𝐾
∑

𝑘=1
𝜎(𝛼𝑘𝑖,𝑗)𝑜

𝑘
𝑖,𝑗(𝑥) =

𝐾
∑

𝑘=1

1
1 + 𝑒𝑥𝑝(−𝛼𝑘𝑖,𝑗)

𝑜𝑘𝑖,𝑗(𝑥). (2)

They also proposed a novel loss function (zero-one loss
denoted by 𝐿01) which aims to push the architectural weight

values towards 0 or 1, and is defined as follows:

𝐿01 = − 1
|𝛼|

|𝛼|
∑

𝑖=1
(𝜎(𝛼𝑖) − 0.5)2, (3)

where |𝛼| is the cell’s total number of architectural weights.
In fact, 𝐿01 corresponds to the mean square error between
𝜎(𝛼𝑖) and 0.5. 𝐿01 is then added to 𝐿𝐶𝐸 to form FairDARTS
total loss 𝐿𝐹 :

𝐿𝐹 = 𝐿𝐶𝐸 +𝑤0−1𝐿0−1 (4)

where 𝑤0−1 is a coefficient weighting 𝐿0−1. Despite these
solutions, DARTS and all of its evolutions [13, 6, 5, 12, 15,
18] are still limited in their capacity to create original ar-
chitectures since most of their structure is rigid and human-
made. The search space is also very restricted as pointed out
by prior works [19, 20], with only 2 types of cells. This is the
issue we are trying to address in this article. To the best of our
knowledge, our method is the first to explore and implement
distributed differential neural architectural search.

4. Proposed Approach
In this section, we present the main contributions of

our article: a novel distributed differentiable NAS approach
with a Shapley value based loss, and a method to optimize
existing handcrafted architectures using differentiable NAS.

4.1. Delegating Search to Cell-Level Subnets
Our method’s key idea is to increase architecture diver-

sity by delegating the search process to subnets nested in
each cell. It is itself a full neural network with its own opti-
mizer, criterion, scheduler, input, hidden, and output layers,
as shown in Fig. 1. This way, each cell that composes the
global supernet is individual. Thus, instead of searching for
building blocks as DARTS [5] do, we increase the number
of searched cells to an arbitrary 𝑛 and directly seek for a
full 𝑛-layer convolutional neural network where each cell
is highly specialized (contrary to generic building blocks).
Thus, we trade the weight-sharing process introduced in
DARTS for greater flexibility and creativity. Nonetheless,
cells still belong either to the normal or reduction class,
depending on their position in the network.

As explained in section 3, DARTS only searches for
two types of cells and stacks them multiple times to form
a network as deep as needed. This weight-sharing process
has the advantage of reducing search space to a limited set
of parameters (i.e., 𝛼𝑛𝑜𝑟𝑚𝑎𝑙 and 𝛼𝑟𝑒𝑑𝑢𝑐𝑒), thus saving time and
hardware resources. However, this approach limits both the
search space size and the originality of the derived archi-
tectures as all the underlying structure is human-designed.
In particular, the search space size 𝑠(𝐾,𝑁) of a single
cell with 𝐾 primitive operations to select from (within a
maximum of 2 from different incoming edges) and 𝑁 steps
(i.e., intermediary nodes) can be computed as follows:

𝑠(𝐾,𝑁) =
𝑁
∏

𝑖=1

(𝑖 + 1)𝑖
2

𝐾2 (5)
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Figure 1: Layout of the search process used in D-DARTS. Each
cell 𝑖 is independent with its own optimizer, scheduler and
criterion (our proposed ablation loss 𝐿𝑇 ). Each cell searches for
its architectural parameters 𝛼𝑖, which makes the entire search
process distributed. The searched cells are directly connected
to each other to build a supernet trained to validate their
performance.

Following Eq. (5), using DARTS default parameters (𝐾 = 7
and 𝑁 = 4), the search space of a single cell comprises
around 109 possible configurations. Thus, as both normal
and reduction cells share the same 𝐾 and 𝑁 , the total search
space size of DARTS is around 1018 possibilities. This
number is comparable to other differentiable NAS works
[21, 20], but far lower than those of Reinforcement Learn-
ing based NAS methods [22, 7] that describe architecture
topologies using sequential layer-wise operations, which are
also far less efficient. Our approach, dubbed D-DARTS,
effectively expands the search space by a factor of 10(𝑐−2)∗9
(according to Eq. (5)) where 𝑐 is the total number of searched
cells. Thus, the total size of D-DARTS search reaches around
1072 when considering 𝑐 = 8. In Section 5, we show that
smaller (e.g., 4 or 8 layers) D-DARTS architectures can
achieve similar or higher performance than larger (e.g., 14
or 20 layers) architectures on popular datasets.

4.2. Adding a New Cell-Specific Loss
In addition to the new network structure introduced in

Section 4.1, we designed a novel cell-specific loss function
that we dubbed ablation loss (denoted 𝐿𝐴𝐵). Indeed, as
we increased the number of searched cells, the learning
challenge became greater with a large amount of additional
parameters to consider. Thus, the global loss functions used
in DARTS [5] and FairDARTS [6] cannot accurately assess
the performance of each cell and instead only take into
account the global performance of the supernet. In contrast,
our new loss function is specific to each cell. It is an addi-
tive loss, based on the global loss function 𝐿𝐹 introduced
in [6] that proved to be a significant improvement over the
original one [5]. The main idea behind this ablation loss
function is to perform a limited ablation study on the cell
level. This is done by measuring the performance of the
network with/without each cell. Ablation studies have long
proven to hold a key role in asserting the effectiveness of
neural network architectures [23]. This way, by computing
the difference in the supernet loss 𝐿𝐶𝐸 with and without
each individual cell activated, we can obtain a measure of

their respective contributions that we call their marginal
contributions, labeled 𝑀𝐶 = {𝑀1

𝐶 , ...,𝑀
𝑛
𝐶} for an 𝑛-cell

network. This method is based on Shapley values [10], a
game theory technique widely used in Explainable Artificial
Intelligence to assess the contributions of model features to
the final output [24, 25]. Thus, cell 𝐶𝑖 marginal contribution
𝑀 𝑖

𝐶 is computed as follows:

𝑀 𝑖
𝐶 = 𝐿(𝐶)

𝐶𝐸 − 𝐿(𝐶⧵{𝐶𝑖})
𝐶𝐸 , (6)

where 𝐶 is the set containing all cells such as 𝐶 =
{𝐶1, ..., 𝐶𝑛}. Once we obtained all the marginal contribu-
tions 𝑀𝐶 , we apply the following formula to compute the
ablation loss 𝐿𝑖

𝐴𝐵 of cell 𝐶𝑖:

𝐿𝑖
𝐴𝐵 =

⎧

⎪

⎨

⎪

⎩

𝑀 𝑖
𝐶−𝑚𝑒𝑎𝑛(𝑀𝐶 )
𝑚𝑒𝑎𝑛(𝑀𝐶 )

if 𝑚𝑒𝑎𝑛(𝑀𝐶 ) ≠ 0

0 else
(7)

𝐿𝑖
𝐴𝐵 expresses how important the marginal contribution

of cell 𝑖 is w.r.t. the mean of all the marginal contributions.
Finally, 𝐿𝑖

𝐴𝐵 is then added to FairDARTS global loss 𝐿𝐹
(see Eq.( 4)) to form the total loss 𝐿𝑖

𝑇 , weighted by the
hyperparameter 𝑤𝐴𝐵:

𝐿𝑖
𝑇 = 𝐿𝐹 +𝑤𝐴𝐵𝐿

𝑖
𝐴𝐵 (8)

In Section 5, we show that 𝐿𝑖
𝑇 can warm start the search

process and substantially increase performance.

4.3. Building Larger Networks from a Few Highly
Specialized Cells

As presented in Section 4.1, we directly search for a
“full” network of multiple individual cells instead of search-
ing for building block cells as in DARTS [5]. But, the
downside of this method is that searching for many cells is
memory-hungry, as each cell must possess its own optimizer,
criterion, and parameters. Thus, using a larger number of
cells without spending additional search time may be useful,
especially when dealing with highly complex datasets such
as ImageNet [26]. To this end, we developed a new algo-
rithm to derive larger architectures from an already searched
smaller one, inspired by what is done in DARTS [5]. The
key idea behind this concept is to keep the global layout of
the smaller architecture with the reduction cells positioned
at the 1∕3 and 2∕3 of the network, similarly as in DARTS
and FairDARTS [6], and repeat the searched structure of
“normal” cells in the intervals between the reduction cells
until we obtain the desired number of cells. This way, we can
obtain a larger architecture without launching a new search
(i.e., without any overhead). This process is summarized in
Algorithm 1.

4.4. Encoding Handcrafted Architectures in
DARTS (DARTOpti)

Unlike the original DARTS [5] or one of its derivatives
[13, 15, 18], D-DARTS individualizes each cell and makes
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Algorithm 1 Algorithm describing the larger architecture
derivation process for D-DARTS
Require: List: 𝐶 , list of searched cells
Require: Integer: 𝑛, desired number of cells
Ensure: List: 𝐶𝑓 , list of cells that compose the derived architecture
1: 𝐶𝑓 ← empty_list()
2: 𝑚 ← euclidean_division(|𝐶|, 3)
3: 𝑚2 ← euclidean_division(2 × |𝐶|, 3)
4: for 𝑖 in [0, 𝑛] do
5: if 𝑛 > |𝐶| then
6: if 𝑖 < euclidean_division(𝑛, 3) then
7: 𝑐 ← modulo(𝑖, 𝑚)
8: else if 𝑖 = euclidean_division(𝑛, 3) then
9: 𝑐 ← 𝑚

10: else if 𝑖 > euclidean_division(𝑛, 3) and 𝑖 <
euclidean_division(2 × 𝑛, 3) then

11: 𝑐 ← modulo(𝑖, 𝑚2 − 1 − 𝑚) + 𝑚 + 1
12: else if 𝑖 = euclidean_division(2 × 𝑛, 3) then
13: 𝑐 ← 𝑚2
14: else
15: 𝑐 ← modulo(𝑖, |𝐶| − 1 − 𝑚2) + 𝑚2 + 1
16: end if
17: else
18: 𝑐 ← 𝑖
19: end if
20: append(𝑐, 𝐶𝑓 )
21: end for

it possible to encode large handcrafted architectures [27, 1],
which typically possess multiple types of layers (e.g., 13 for
Xception [27]). The primary motivation behind this is to use
existing architectures as initial points for the optimization
process. Since these handcrafted architectures have been
optimized carefully, they might be considered local minima
of the search space. This process involves a few key pro-
cedures. These procedures are (i) encoding the handcrafted
architecture in D-DARTS’ cell system, (ii) a new weight-
sharing mechanism, (iii) warm-starting the model, and (iv)
designing a new search space 𝑆𝑜.

(i) The architecture is manually encoded as a D-DARTS-
compatible genotype (i.e., a data structure that describes
each cell design, the location of reduction cells in the ar-
chitecture, and the maximum number of steps in a cell).
Then, when searching from this architecture or training
it, the corresponding genotype is automatically loaded and
deserialized into 𝛼 weights (see Section 3), which can be
optimized by D-DARTS’ search process.

(ii) A weight-sharing mechanism is introduced to reduce
the search cost and redundancy in cells (especially when
starting from architectures with many layers). Every iden-
tical cell in the baseline architecture will share the same
weights. For instance, Xception [27] is composed of 13 cells
but only 5 of those are different. Thus, in this case, the
number of optimizers will be reduced from 13 to 5.

(iii) The supernet is warm-started for 5 epochs. This hap-
pens before the actual search starts to let the performance of
the baseline architecture be assessed and taken into account
by the search algorithm.

(iv) 5 new operations are added to DARTS’ original
search space 𝑆: (1) conv_3x1_1x3, (2) conv_7x1_1x7, (3)
simple_conv_1x1, (4) simple_conv_3x3, and (5) bottleneck_1x3x1.
This brings the total number of operations to 12, and unlocks

new possibilities but at the cost of further increasing D-
DARTS’ already large search space. This new search space
is denoted 𝑆𝑜.

We show in Section 5 that this process, denoted DAR-
TOpti, can successfully optimize handcrafted architectures.

5. Experiments
We conducted image classification experiments on var-

ious datasets including CIFAR-10 and CIFAR-100 [28],
ImageNet [26], MS-COCO [29], and Cityscapes [30]. These
datasets are well-known and widely used in the computer
vision and pattern recognition community.

5.1. Experimental Settings
Image classification tasks were evaluated on CIFAR-10,

CIFAR-100 [28] and ImageNet [26] datasets. All experi-
ments were conducted using Nvidia GeForce RTX 3090
and Tesla V100 GPUs. We mostly used the same data
processing, hyperparameters, and training tricks as in Fair-
DARTS [6] and DARTS [5]. We searched for 8-cell networks
and used Algorithm 1 to derive 14-cell networks. We set
the batch size to 128 when searching on CIFAR-10/100
and to 96 when searching on ImageNet. When starting
from an existing architecture, the number of initial channels
is increased to 64 when training to match the designs of
the baseline architectures. However, this makes the average
number of parameters of DARTOpti architectures signif-
icantly more important than D-DARTS’ ones (see Tables
1, 2 and 3). Hence, we reduce the number of channels to
32 while searching to save memory. Naturally, we searched
for networks whose number of cells matches the number
of different layers in the original architecture (e.g., 4 in
ResNet50 [1]). Finally, we select the architectural operations
using FairDARTS edge (i.e., 2 operations maximum per
edge) or sparse (i.e., 1 operation maximum per edge) method
with a threshold of 0.85. We chose 𝑤01 = 8 and 𝑤𝑎𝑏𝑙 = 0.5
for the hyperparameters of total loss 𝐿𝑇 (see Eq. (8)) as
discussed in Section 5.2. DARTS’ parsing method is referred
to as darts in Table 1 and Table 3. Our implementation is
based on PyTorch 1.10.2 and is derived from [5, 6]. Code
and pretrained models can be accessed at https://github.

com/aheuillet/D-DARTS.

5.2. Analysis of the Ablation Loss 𝐿𝐴𝐵
5.2.1. Hyperparameter Choice

We made the hyperparameter weights𝑤𝑎𝑏𝑙 and𝑤01 from
Eq. (8) vary to choose their optimal value w.r.t. the global
loss. Thus, in Fig. 5.2.1 we made 𝑤𝑎𝑏𝑙 vary from 0 to 2 while
keeping 𝐿01 deactivated (i.e., 𝑤01 = 0) in order to analyze
its impact. We can observe that an optimal value seems to
be attained around 𝑤𝑎𝑏𝑙 = 0.5, with the global loss mainly
increasing when 𝑤𝑎𝑏𝑙 reaches higher or lower values.

Moreover, we made the value of 𝑤01 vary during search
on CIFAR-100, with 𝑤𝑎𝑏𝑙 = 0.5 fixed, and reported the
number of dominant operations (i.e., operations with 𝜎(𝛼) >
0.9). This experiment was conducted to select a relevant
value for 𝑤01 since the one used in FairDARTS [6] (𝑤01 =
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Figure 2: Line plot of the minimal global loss obtained by
searching for a model on CIFAR-100 [28] for 50 epochs w.r.t.
the sensitivity weight 𝑤𝑎𝑏𝑙 used for the ablation loss 𝐿𝐴𝐵. We
deactivated 𝐿01 (i.e., 𝑤01 = 0) to prevent interference from
occurring.

10) is no longer valid as we altered the search process.
Fig. 5.2.1 shows that the proportion of dominant operations
steadily increases from 𝑤01 = 0 to 𝑤01 = 5 where it reaches
a plateau and stabilizes. It is worth noting that for 𝑤01 = 5
and higher, nearly all sigmoid values 𝜎(𝛼) are either greater
than 0.9 or inferior to 0.1. Finally, we chose 𝑤01 = 7 as
it offers both a high number of dominant operations and an
equilibrium between operations with 𝜎(𝛼) > 0.9 and those
with 𝜎(𝛼) < 0.1.
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Figure 3: Line plot showing the percentage of dominant
operations obtained in the final architecture 𝛼 while searching
on CIFAR-100 w.r.t. the sensitivity weight 𝑤01 used for 𝐿01.
We can see that the proportion of both types of operations
stabilizes after 𝑤01 = 5 and reaches an equilibrium at 𝑤01 = 7.
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Figure 4: Line plot showing the best validation top-1 accuracy
while searching on CIFAR-10[28] w.r.t. the current epoch. D-
DARTS clearly outperforms both DARTS and FairDARTS by
a large margin.

5.2.2. Ablation Study
We conducted an ablation study on our proposed ablation

loss 𝐿𝑇 of Eq. (8). In particular, we compared the perfor-
mance of architectures with similar characteristics searched
either with 𝐿𝑇 or 𝐿𝐹 (see Eq. (4)). Tables 1 and 2 show
that 𝐿𝑇 -searched architectures (DD-1, DD-3, DD-4, DD-5)
outperform their 𝐿𝐹 -searched counterparts by an average of
0.6 % across all datasets, confirming the advantage procured
by this new loss function. Concretely, when considering the
14-cell edge parsed models evaluated on CIFAR-10, DD-3
reached a top-1 accuracy of 97.58 %, thus outperforming
𝐿𝐹 -searched DD-2 by 0.48 %. Moreover, it is worth noting
that 𝐿𝑇 -searched DD-1 (8-cell model) reached a similar
score as DD-2 (around 97.1 %), despite featuring signifi-
cantly fewer parameters (1.7M vs. 3.3M). One additional
point is that 𝐿𝑇 seems to provide a larger increase in perfor-
mance for CIFAR-100. For example, the gain in performance
is around 1 % between the 8-cell versions of DD-6 and
DD-4. However, when considering models that leveraged
Algorithm 1 to increase their number of cells (e.g., DD-4
and DD-6), the performance gain is limited (e.g., around 0.1
% on CIFAR-100). This could be due to Algorithm 1 that
may have a leveling effect by disturbing the cell sequence
and increasing the number of model parameters.

5.2.3. Convergence Speed
We conducted an experiment on the search process con-

vergence speed of our method D-DARTS compared to pre-
vious baselines [5, 6]. Fig. 4 shows a plot of the best
validation top-1 accuracy w.r.t. the number of epochs. One
can notice that D-DARTS converges very quickly and faster
than the others. D-DARTS outperforms both DARTS and
FairDARTS respectively by 9% and 14%.
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Table 1
Comparison of models on CIFAR-10 [28]. Each reported Top-
1 accuracy is the best of 4 independent runs. For previous
baselines, results are the official numbers from their respective
articles. The search cost is expressed in GPU days. All models
have been searched on CIFAR-10 except for ⋄ which have been
searched on CIFAR-100.

DARTS[5] 3.3 𝐿𝐶𝐸 97.00 20 1.5
PC-DARTS[12] 3.6 𝐿𝐶𝐸 97.43 20 3.8
P-DARTS[13] 3.4 𝐿𝐶𝐸 97.50 20 0.3
FairDARTS-a[6] 2.8 𝐿𝐹 97.46 20 0.4
C-DARTS[16] 3.9 𝐿𝐶𝐸 97.52 20 0.3
U-DARTS[17] 3.3 𝐿𝐶𝐸 97.41 20 N.D.
DOTS[18] 3.5 𝐿𝐶𝐸 97.51 20 0.3
DARTS-[14] 3.5 𝐿𝐶𝐸 97.41 20 0.4
𝛽-DARTS[15] 3.75 𝐿𝐶𝐸 97.47 20 0.4

Ours

DD-1 1.7 𝐿𝑇 97.02 8 0.5
DD-2 3.3 𝐿𝐹 97.10 8 0.5
DD-3 6.55 𝐿𝑇 97.58 14 0.5
DD-4⋄ 3.9 𝐿𝑇 97.48 8 0.5
DD-4⋄ 7.6 𝐿𝑇 97.75 14 0.5

Models Params
(M) Loss Top-1

(%) Layers Cost

5.3. Searching Architectures on CIFAR
On CIFAR-10/100 [28], we searched for several 8-layer

models arbitrarily dubbed DD-1, DD-2, DD-3, DD-4, DD-
5 and DD-6. These models were searched using varying
hyperparameters such as using loss 𝐿𝑇 or 𝐿𝐹 , or using the
sparse or threshold parsing method (presented in Section
5.1). We used Algorithm 1 to increase the depth to 14 layers
to test how smaller architectures compete with larger ones.
All results are presented in Tables 1 and 2. Overall, D-
DARTS models reach competitive results in both datasets.
The smaller ones, such as DD-1 or DD-5, can match the
performance of previous baselines despite possessing fewer
parameters (e.g., 1.7M against 2.8M for the smallest model
of [6]), although the largest achieve better results (e.g.,
84.15% top-1 accuracy for DD-4 on CIFAR-100). Moreover,
Algorithm 1 effectively provides a performance gain in both
datasets (e.g., around 0.3% for DD-4 when using 14 cells in-
stead of 8), thus asserting its usefulness. This impact is more
important on CIFAR-100 (around 2%). Hence, deeper archi-
tectures might be less relevant on simpler datasets such as
CIFAR-10, where sparse models already achieve very high
top-1 scores (greater or equal to 97%), than with more chal-
lenging datasets like CIFAR-100 or ImageNet [26]. We also
compared the performance of models using FairDARTS [6]
loss function 𝐿𝐹 with ones using our new ablation-based
loss function 𝐿𝑇 to assert its effectiveness (see Section 5.2
for details).

5.4. Searching and Transferring to ImageNet
To test our approaches on a more challenging dataset, we

transferred our best models searched on CIFAR-100 [28] to
ImageNet [26]. We also searched directly on ImageNet using
the same training tricks and hyperparameters as the authors
of DARTS [5]. Table 3 shows that model DD-7 (searched
directly on ImageNet) reached a top-1 accuracy of 75.5 %,
outperforming PC-DARTS [12] and P-DARTS [13] by 0.6
%. It is important to note that all of these approaches (and

Table 2
Comparison of models on CIFAR-100 [28]. Each reported Top-
1 accuracy is the best of 4 independent runs. For previous
baselines, results are the official numbers from their respective
articles. The search cost is expressed in GPU days. All models
have been searched on CIFAR-100 except for ⋄ which have
been searched on CIFAR-10.

DARTS[5] 3.3 𝐿𝐶𝐸 82.34 20 1.5
P-DARTS[13] 3.6 𝐿𝐶𝐸 84.08 20 0.3
FairDARTS[6] 3.5 𝐿𝐹 83.80 20 0.4
DOTS[18] 4.1 𝐿𝐶𝐸 83.52 20 0.3
DARTS-[14]⋄ 3.4 𝐿𝐶𝐸 82.49 20 0.4
𝛽-DARTS[15]⋄ 3.83 𝐿𝐶𝐸 83.48 20 0.4

Ours

DD-1⋄ 1.7 𝐿𝑇 81.10 8 0.5
DD-4 3.9 𝐿𝑇 83.86 8 0.5
DD-4 7.6 𝐿𝑇 84.15 14 0.5
DD-5 1.7 𝐿𝑇 81.92 8 0.5
DD-6 3.3 𝐿𝐹 82.90 8 0.5
DD-6 6.1 𝐿𝐹 84.06 14 0.5

Models Params
(M) Loss Top-1

(%) Layers Cost

ours) use DARTS search space 𝑆 while FairDARTS [6] uses
its own custom search space (mainly composed of inverted
bottlenecks) as they argue that 𝑆 is too limited for ImageNet.
Nevertheless, DD-7 still reached a near-identical score as
FairDARTS-D despite using this simpler search space. In
addition, the DARTOpti versions of ResNet18 and ResNet50
reached a competitive top-1 accuracy of respectively 77.0
% and 76.3 %. They critically improve on the original
architectures, increasing top-1 accuracy by an average of
5.1 %. Notably, DO-2-ResNet50 achieves the same score
as FBNetV2 [20] while requiring nearly a hundred times
less search cost (i.e., 0.3 GPU days versus 25 GPU days)
and not even having been searched directly on ImageNet
but instead transferred from CIFAR-100. Finally, a notable
gap (around 0.5 %) between DD-4 (transferred from CIFAR-
100) and DD-7 shows that searching directly on ImageNet
significantly impacts performance.

5.5. Detecting objects on MS-COCO and Instance
Segmentation on Cityscapes

We transferred our best model trained on ImageNet
(DO-2-ResNet18) to MS-COCO [29] in order to test our
approach on tasks other than image classification. We used
our model as the backbone of RetinaNet [31] and fine-
tuned for 12 epochs, similarly to FairDARTS [6]. Table 4
shows that our approach reached a box AP score of 34.2 %
hence outperforming DARTS- [14], FairDARTS [6] and the
original ResNet18 [1]. We also performed instance segmen-
tation on Cityscapes [30], a dataset that focuses on semantic
understanding of street scenes. We used DO-2-ResNet18 as
the backbone of Mask R-CNN [32] and compared it against
other baselines (DARTS, FairDARTS, ResNet18). Table 5
features results similar to MS-COCO, with D-DARTS out-
performing previous approaches. This way, the performance
advantage of D-DARTS is confirmed when transferring to
computer vision tasks other than image classification.
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Table 3
Comparison of models on ImageNet [26]. For previous baselines, the results are the official numbers from their respective articles.
The search cost is expressed in GPU days. †: Our implementation in search space 𝑆𝑜, results might vary from the official one.

FBNetV2-L1[20] 8.49 326 N.A. N.A. 77.0 N.A. 25 custom ImageNet
DARTS[5] 4.7 574 darts 𝐿𝐶𝐸 73.3 14 4 𝑆 CIFAR-100
PC-DARTS[12] 5.3 586 darts 𝐿𝐶𝐸 75.8 14 3.8 𝑆 ImageNet
P-DARTS[13] 5.1 577 darts 𝐿𝐶𝐸 75.9 14 0.3 𝑆 ImageNet
FairDARTS-D[6] 4.3 440 sparse 𝐿𝐹 75.6 20 3 custom ImageNet
DOTS[18] 5.3 596 sparse 𝐿𝐶𝐸 76.0 20 1.3 𝑆 ImageNet
DARTS-[14] 4.9 467 sparse 𝐿𝐶𝐸 76.2 20 4.5 𝑆 ImageNet
C-DARTS[16] 6.1 701 darts 𝐿𝐶𝐸 76.3 14 1.7 𝑆 ImageNet
U-DARTS[17] 4.9 N.D. darts 𝐿𝐶𝐸 73.78 14 N.D. 𝑆 ImageNet
𝛽-DARTS[15] 5.4 597 sparse 𝐿𝐶𝐸 75.8 20 0.4 𝑆 CIFAR-100
ResNet18[1]† 14.17 2720 N.A. N.A. 69.2 4 N.A. N.A. N.A.
ResNet50[1]† 24.36 4715 N.A. N.A. 73.9 4 N.A. N.A. N.A.
Xception[27]† 14.7 31865 N.A. N.A. 74.1 13 N.A. N.A. N.A.

Ours

DD-4 7.6 617 sparse 𝐿𝑇 75.0 14 0.5 𝑆 CIFAR-100
DD-7 6.4 828 edge 𝐿𝑇 75.5 8 3 𝑆 ImageNet
DO-2-ResNet18 53.4 8619 sparse 𝐿𝑇 77.0 4 0.3 𝑆𝑜 CIFAR-100
DO-2-ResNet50 73.23 10029 sparse 𝐿𝑇 76.3 4 0.3 𝑆𝑜 CIFAR-100

Models Params
(M)

+×
(M)

Parsing
Method Loss Top-1

(%) Layers Cost Search
Space

Searched
On

Table 4
Comparison of backbone models for RetinaNet [31] on MS-COCO [29].

FairDARTS[6] 31.9 51.9 33.0 17.4 35.3 43.0
DARTS-[14] 32.5 52.8 34.1 18.0 36.1 43.4
ResNet18[1] 31.7 49.6 33.4 16.2 34.2 43.0
DO-2-ResNet18 (Ours) 34.2 52.1 36.6 19.1 38.3 45.3

Models 𝐴𝑃 (%) 𝐴𝑃50 (%) 𝐴𝑃75(%) 𝐴𝑃𝑠(%) 𝐴𝑃𝑚(%) 𝐴𝑃𝑙(%)

6. Discussion
In Section 5, we showed that our proposed concepts

perform well but are not exempt from limitations. Increasing
the search space size to such an extent (e.g., 1072 with
8 cells) makes the optimization process significantly more
challenging. However, if we consider Fig. 4, we can observe
that D-DARTS outperforms both DARTS and FairDARTS
during the search phase. Hence, expanding the search space
provides benefits that far outweigh the increase in optimiza-
tion difficulty. In addition, our novel ablation-based loss𝐿𝐴𝐵
(see Eq. 8) aims to enhance the optimization process by ob-
taining finer information (i.e., cell-specific) than the global
loss 𝐿𝐶𝐸 . Algorithm 1 also helps to reduce this optimization
issue by allowing us to search on a small proxy network
before expanding it to a larger one in the training phase.
Nevertheless, this optimization issue could potentially be
further relieved by, for instance, enhancing cell optimizers.
This could be the subject of future work. Moreover, we

show that despite using a data-dependent search process,
following the practice of all DARTS-based previous works
[5, 6, 14, 15], that should decrease robustness w.r.t. other
datasets our D-DARTS models are still generalizable to
other tasks. In fact, transfer learning experiments show that
models searched on the small CIFAR-100 still achieve com-
petitive performance on the large-scale ImageNet dataset
(see Table 3). Furthermore, we proved that DARTOpti could
successfully optimize top-performing handcrafted architec-
tures such as ResNet50 [1] with a significant gain in perfor-
mance (i.e., a 3.9 % average increase in top-1 accuracy across
all datasets). However, this approach also has its limitations
as the optimization process becomes more challenging when
the architecture has many cells (e.g., Xception [27] with 13
cells). This translates to an increased search cost and limited
performance gains, as the standard 50 search epochs may not
be enough for architectures of that size. Nonetheless, com-
bining the sparse parsing method with our distributed design

Table 5
Comparison of backbone models for Mask R-CNN [32] on Cityscapes [30].

FairDARTS[6] 41.1 69.3 N.A. 18.9 42.4 61.8
DARTS-[14] 41.7 70.4 N.A. 19.5 43.4 62.3
ResNet18[1] 40.9 66.2 N.A. 17.6 41.1 61.8
DO-2-ResNet18 (Ours) 44.0 69.6 N.A. 20.2 46.0 65.1

Models 𝐴𝑃 (%) 𝐴𝑃50(%) 𝐴𝑃75(%) 𝐴𝑃𝑠(%) 𝐴𝑃𝑚(%) 𝐴𝑃𝑙(%)
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allowed us to discover unprecedentedly small architectures
(around 1.7 M for the tiniest) that can still yield competitive
results. In addition, while using the edge parsing method,
it is possible to search for larger-size models that reach
state-of-the-art results. This demonstrates the flexibility and
usefulness of our novel approach.

7. Conclusion and Future Work
In this article, we proposed a novel paradigm for DARTS

[5] with individualized cells. We showed that it effectively
achieves competitive results on popular image classification
datasets. We also demonstrated that this approach could
successfully improve the design of existing top-performing
handcrafted deep neural network architectures [1, 27]. In
addition, our novel architecture derivation algorithm allows
us to build larger architectures from only a small number
of cells without further training. Finally, many ideas around
this approach have not been explored yet, such as the auto-
matic selection of search hyperparameters or enhancing cell
optimizers. These could be the subject of future work.
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