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Abstract—The recent development of deep learning methods
applied to vision has enabled their increasing integration into
real-world applications to perform complex Computer Vision
(CV) tasks. However, image acquisition conditions have a major
impact on the performance of high-level image processing. A
possible solution to overcome these limitations is to artificially
augment the training databases or to design deep learning
models that are robust to signal distortions. We opt here for
the first solution by enriching the database with complex and
realistic distortions which were ignored until now in the existing
databases. To this end, we built a new versatile database derived
from the well-known MS-COCO database to which we applied
local and global photo-realistic distortions. These new local
distortions are generated by considering the scene context of the
images that guarantees a high level of photo-realism. Distortions
are generated by exploiting the depth information of the objects
in the scene as well as their semantics. This guarantees a high
level of photo-realism and allows to explore real scenarios ignored
in conventional databases dedicated to various CV applications.
Our versatile database offers an efficient solution to improve the
robustness of various CV tasks such as Object Detection (OD),
scene segmentation, and distortion-type classification methods.
The image database, scene classification index, and distortion
generation codes are publicly available

Index Terms—Dataset, Deep learning, Depth, Distortion, Ob-
ject detection, Scene analysis, Segmentation

I. INTRODUCTION

The interest in making databases available to the scientific
community is becoming more and more important with the
development of data-driven approaches, and in particular those
based on deep neural network architectures. Few studies have
been conducted to analyse the relevance and reliability of
databases in the field of CV. However, we can point out some
interesting studies where some attributes and descriptors have
been introduced to measure the representativeness and the rich-
ness of the databases dedicated to the evaluation of image and
video quality metrics [1], [2]. To the best of our knowledge,
there have been no similar efforts to design realistic databases
dedicated to improve methods developed for solving problems
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in the field of CV. Here, we are interested in the detection
or segmentation of objects in an uncontrolled environment
and under various constraints related to the image acquisition
conditions. OD is still a hot topic and many methods have been
proposed during these last two decades [3], [4]. However, the
impact of the distortions on the performance of the proposed
OD solutions was often neglected apart a few studies limited
to object recognition and image classification under specific
distortions (noise and blur) [5] and OD under photometric
and geometric distortions [6]. A previous study [7] highlighted
the distortion impact on the OD performance through global
and local distortions without any scene context consideration
have been achieved, which proved the usefulness of data
augmentation by using a distorted database to improve OD
models robustness. Consequently, we propose a novel distorted
image database with complex and photorealistic distortions.
This database offers the diversity and quality of distortions
necessary for designing robust deep-learning models, in par-
ticular OD models. For this, we introduced the local and realist
atmospheric distortions in our database. Unlike the classic
so-called global distortions applied to the entire image, local
distortions apply to defined areas. Local distortions correspond
to the local representation of distortions resulting from scene
conditions due to object motion or position in the scene,
such as motion blur from moving objects, defocus blur and
backlight phenomena. The proposed atmospheric distortions
attempt to better replicate the natural rain and fog phenomena
by applying these distortions in a non-homogeneous manner.
These new distortions consider scene context through scene
depth and object annotation from MS-COCQO’s ground truth
for better photorealism. Furthermore, a manual annotation of
the original COCO database was done to guide the choice
of the distortion to be applied automatically to each image. In
addition, a scene classification (indoor/outdoor) was performed
to automatically manage the distortion intensity according to
the type of scene. The main contributions of our study are
summarized as follows:
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(a) Gaussian noise

(b) Contrast changing

(c) Global defocus blur (d) Global motion blur

Fig. 1: Some examples of global distortions.

o New distortions with improved realism are introduced,
describing common phenomena in computer vision
through complex local and atmospheric distortions.

« This paper proposes efficient algorithms to generate local
and global photorealistic distortions that are not included
in any existing database.

e A novel dataset is built from the MS-COCO dataset,
dedicated to the improvement of the robustness of the
OD and object segmentation models against a broad type
of distortion.

o The image database, the proposed database scene classifi-
cation index, and distortion generation codes are publicly
available.

The remainder of the paper is organized as follows. Section [[I]
summarizes previous related literature. Section [[II] is devoted
to detail the methods of generating complex distorted images.
Then, section [IV]is dedicated to show dataset details. Finally,
conclusions and perspectives are provided in section

II. RELATED WORK

Object detection in video sequences or still images is a
research topic of great interest given the numerous applications
in the computer vision field [8]], [9] and especially in video
surveillance [10]. With the development of deep learning
methods and the availability of many databases dedicated to
this problem, this field of research has seen a real progress. A
comprehensive survey on deep learning based OD approaches
is provided in [11]. However, most of the available databases
do not consider real-world scenarios, especially images and
videos captured in uncontrolled environments, which are af-
fected by various types of distortions. In fact, many studies
have shown that OD performance is strongly influenced by
the quality of the images [5l], [6], [12ll, [13]], [7]. It is worth
noticing that the number and types of distortions considered
in these studies and the existing dedicated dataset are limited.
Furthermore, the case of multiple distortions appearing simul-
taneously has not been taken into account in OD performance
evaluation studies. Multiple distortion scenarios have been
considered in a few studies on video quality assessment but
in limited contexts [14]], [13], [16]. Some interesting studies
investigated the impact of various distortions on the perfor-
mance of CNN-based OD architectures [17], [18]]. However,
all these studies are limited to a few distortions and do

not consider local distortions that really correspond to real
scenarios. Indeed, if we take, for example, the blur caused
by movement, it is usually simulated in a global way in
the existing databases. While we know that in an observed
scene there can be objects moving at different speeds and in
different directions and therefore affected by blurs of different
amplitudes and directions. The same applies to the defocusing
blur, which depends on the depth of the objects in the filmed
scene. In our database we have taken into account these aspects
and others such as lighting effects that vary with the depth
and geometry of objects. We have adopted the same approach
concerning the distortions due to atmospheric phenomena such
as rain and fog. Taking into account these aspects is not simple
and it is one of the main originalities of our contribution.

III. COMPLEX DISTORTION GENERATION ALGORITHMS

Well-known global distortions have been applied to our
database through classical distortions methods. In our case,
global distortion refers to the classic distortions that apply
more or less homogeneously to the entire image, regardless of
the context of the scene. Thus, we applied global distortions
for some images resulting from image acquisition (noise, com-
pression, contrast changing) or camera (motion and defocus
blur) conditions without considering the scene context (see
fig[l). However, some images have specific scene contexts
that require the application of local or atmospheric distortions
using more sophisticated approaches. Our generated complex
distortions use scene depth information, ground truth informa-
tion from COCO annotations (object masks), and object and
scene type to produce complex and photorealistic distortions.
Scene depth information is obtained using the MiDaS depth
estimation model [19].

A. Local motion blur

Local motion blur is a local application of motion blur
phenomena to the annotated objects. It represents the cases
of image acquisition where objects move rapidly in front of
the camera. This local distortion requires the ground truth
masks to define the pixel area where the blur motion is to be
applied. Furthermore, the object mask is also used to determine
the distortion orientation through a strategy specific to the
nature of the object (object classes). Another dual strategy
allows us to compute the motion magnitude applied to each
object in the images. First, an interval of motion magnitude



(e) Original image (f) Local motion blur

(d) Depth image

(g) Mask annotation (h) Depth image

Fig. 2: Illustration of the local motion blur.

is derived from the nature of the object and prior knowledge
about the speed of the object type. Then, a magnitude value
is computed by considering the object’s depth and the others.
this value into the global scene context. Thus, each magnitude
value is obtained by correlating the nature and depth of
objects, ensuring the global consistency of each local blur
motion distortions relative to each other. Object orientation
is obtained by computing the angle between the X-axis and
the ellipse’s major axis containing the object. Then, a checking
strategy of the orientation is adapted to apply a motion blur
according to the object’s nature. Furthermore, a checking of
object interaction is achieved to prioritize the magnitude and
orientation of higher-level objects on lower ones as shown
in fig[3] This is done by correlating their depth proximity and

Vehicle/Horse/Elephant

High-level

Middle-level

Fig. 3: Interaction hierarchy related to the object type

their bounding box overlap to ensure distortion consistency for
linked objects. Thus, the magnitude and orientation of higher-
level objects are applied to lower-level objects with which they
are interacting. The complete algorithm follows the following
steps:

1) Find the scene context: ski, riding, sport, skate or surf
depending on present objects in the image.

2) Object classification: create object superclasses by
grouping objects together to think globally (vehicle,
person, animal, food, etc...).

3) Compute the average depth of each annotated objects.

4) Calculate amplitude and orientation using depth and
object type to distort each object individually.

5) Find interactions between objects by correlating their
depth proximity and their overlapping bounding boxes
to apply the same distortion to interacted objects.

6) Sort the objects according to their depth to adjust their
motion amplitude for a global consistency of the scene
and distortions.

B. Local Defocus blur

Local defocusing blur results from focusing only on only
the background orforeground. To create a realistic defocus
blur, we used successive smooth thresholding to create three
distinct areas related to scene depth. This thresholding process
is performed using a nonlinear smooth function {2 expressed
as: 1

~ 1+4exp—15(z —0.5)

Where x represents the keypoint depth normalized by the
average depth of the closest object as follows:

threshold — p;

~ threshold @

Figure [5B| illustrates the image splitting through the smooth
thresholding of the scene depth to get the three different
grounds. Foreground corresponds to depths with threshold
coefficients higher than the high threshold, middle-ground
to coefficients between the high and low thresholds, and
the background for coefficients lower (see fig[5a). Then, the
average depths 4, d,,, and J; of the three grounds are computed
to perform a proportional defocus blur related to the depth. We
applied a cumulative defocus blur magnitudes A, \,,, and )\

Qz) = 1 (1




(e) Original image (f) Local defocus blur

(d) Depth image

(g) Mask annotation (h) Depth image

Fig. 4: Tllustration of the local defocus blur.

going from foreground to background on each zone, expressed
as follows:

05 — threshold

A=05+ threshold 15 )
Om — threshold

Am = A+ threshold @
Op — threshold

A = Am + threshold 12 ®)

0.1 AN

o —
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(a) Sigmoid curve for smooth
thresholding

(b) Threshold related to the depth

Fig. 5: Smooth thresholding related to the depth.

The aread bounded by the masks are distorted according to
their corresponding defocus blur magnitude (A, A, and Ap),
then fused to get the complete distorted image ;. as shown in
Fig. @] The proposed local defocus blur algorithm is described
in the algorithm [T}

C. Atmospheric distortion: the rain

Synthesizing the rain homogeneously, without any scene
depth consideration, lacks realism. Indeed, the size and density
of the rain depends on the distance from which it falls.
Thereby, our rain generation algorithm used the method from
algorithm [I] for performing a scene depth classification into
foreground, middle-ground, and background. Each ground is
assigned a rain intensity level that replicates the rain density.
Note that the rain masks are obtained from images of flow-
ing water like rain produced under experimental conditions.

Algorithm 1 Locale defocus blur algorithm
Input: Image I, Keypoints depth p;
Output: Distorted Image 14

Find the closest object depth: threshold

High threshold th; = 0.8176

Low threshold thy, = 0.182

for each p; € I do
_ threshold—p;
~ _ threshold

Api) =1— 1+exp(7115(0'70.5))
if threshold > p; then

Foreground < p;

else if thy <= A(p;) then
Foreground < p;

else if th, <= A(p;) then
Middleground < p;

else if thy >= A(p;) and thy > A(p;) then
Background < p;

end if

07 < Foreground average depth

0 < Middleground average depth

dp +—Background average depth

end for

We extract three rain densities from these rain masks by
performing some erosion and dilation processes. These three
rain sub-masks are applied for each ground according to a
random constant « of blending, achieving image blending as
shown in fig[] It is worth noticing that the rain sub-masks are
applied cumulatively from the foreground to the background
as follows:

Ij=1-((1—1)-(1— (a-Ry)) ©)
Lu=1—-((1—1I;)-(1-(a-Ry)) ™
Li=1—((1=In)- (1= (a- Ry))) ®)



Where I, Iy, I,,, and I; are the original, foreground, middle-
ground and final distorted images respectively. Likewise, Ry,
R,,, and Ry are the three rain sub-masks. Thus, this approach

Fig. 6: Rain distortion example

applies only the fine rain corresponding to the distant rain
stream to the distant parts of the scene for better realism,
as shown in Fig[6] Our complex atmospheric rain improves
the global consistency of distortion by considering the spatial
relationship between scene depth and rain phenomena.

D. Atmospheric distortion: the fog

Generating synthetic fog is a complex task. Indeed, no
mathematical fog model could have been used for generating
synthetic fog. Thus, we opted to use fog masks extracted
from images of experimental creations of fog with black
background.

(b) Original image

(c) Fog distortion

(d) Fog distortion
Fig. 7: Examples of atmospheric distortion: the fog.

Many masks have been extracted to provide a large fog
sample with diverse densities and forms. These masks are
applied to the original images, seamlessly blending through a
mask adjustment. However, applying a mask homogeneously
produce a non-realistic fog. Considering the scene depth for
applying the mask to match the thick fog effect in real cases
seems crucial. Thereby, we carry out this mask H with a

variable factor k(i,j) proportional to the normalized depth
Depth,,(i,j) of each image pixel (4, j) and a constant value
« as summarized in algorithm [2]

Algorithm 2 Fog generation algorithm

Input: Image I, fog mask H
Output: Distorted Image 14
a =0.95
for each pixel 7,5 € I do
PR I(i,5
Depthn(i, j) = Prl )
5(7’7‘7) =a- Depthn(l,])
end for

To give the images generated more photo-realism, the thick-
ness of the fog is adapted to the depth of the observed scene,
reproducing the effect of fog accumulation, as shown in figure

E. Local Backlight

Local backlight distortion is generated by applying a local
contrast enhancement process to the luminance component by
using the object segmentation mask. This pixel-wise intensity
transformation takes into account the position of the light
source and that of the illuminated object on which the effect
is to be brought out. This operation, which is nothing more
than tone mapping, is applied to three preselected intensity
intervals, semi-automatically and randomly. Figure [§]illustrates
this type of photometric distortion.

(b) Distorted image

(a) Original image
Fig. 8: Local backlight distortion

IV. DATASET

The generated dataset consists of more than 123K images
with 80 object classes organized in three sets: 95K, 5K and
23K images for train, validation and test sets respectively. The
ground truth annotation provides the objects’ classes, bounding
boxes, and masks for each image, which can be used for
training object detection, and segmentation models.



A. Distortions

Our distorted dataset is composed of ten distortion types,

5 global distortions, 2 global atmospheric distortions and 3
local distortions. In order to generate the different distortions
in a coherent and relevant way, a first scan of all the images
is performed to prepare the distortion assignment protocol
according to the semantic content of the scene and the context.
The different distortions are automatically applied to the

TABLE I: Distribution of distortions.

Distortion type | Number of images [ Ratio
Compression artefact 17989 15.3%
Contrast changing 18038 15.4%
Gaussian noise 18055 15.4%
Global motion blur 18018 15.3%
Global defocus blur 17792 15.1%
Fog 787 0.7%
Rain 845 0.7%
Local Backlight 296 0.3%
Local defocus blur 7061 6.0%
Local motion blur 18625 15.9%

images previously annotated during the first process. Images
annotated as global distortions are then distorted by one of the
global distortion types chosen randomly (see table [).

B. Scene classification

The observed scenes are classified into indoor and outdoor
scenes based on the context of the images. Indoor scenes were
attributed to scenes where most information is included in in-
door environments (room, building, hall, vehicle interior, etc.).
Conversely, outdoor scenes correspond to open environments.
The table [[ll summarises the scene classification of our dataset.

TABLE 1II: Scene classification.

Scene type [ Number of images
Indoor scene 45884

Outdoor scene 72404

Skiing scene 4434

Surfing scene 3635

Skating scene 3603

Sport scene 11965

V. CONCLUSION

In this study, we presented novel local and global complex
distortions generated by reliable algorithms considering the
scene context to achieve a high level of photo-realism. The
proposed database will improve not only OD algorithms but
also many scene analysis, classification and image segmen-
tation methods, providing a more complete and beneficial
framework for deep learning-based methods. As a perspective,
it would be interesting to enrich this database with other
distortions and in particular those related to atmospheric
perturbations such as the heat diffusion effect and pollution.
Another aspect that could be considered in the future is to
incorporate pose object estimation when applying distortion.
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