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 METTI 8Advanced School Thermal Measurements and Inverse Techniques Ile d'Oléron, France, Sept.24 th -Sept.29 th , 2023 [START_REF] Carmona | Estimation of heat ux by using reduced model and the adjoint method[END_REF] 

Introduction

As computer hardware developing, the requirements in respect of numerical simulation follow the same pattern. They are therefore becoming more demanding. First, one have to use geometries that perfectly match the reality of the simulated object. A recent study [START_REF] Grosjean | Reduction of an electronic card thermal problem by the modal substructuring method[END_REF] has shown that the exact numerical modelling of a simple electronic component needs a mesh of 422k nodes. This order of magnitude has to be compared to industrial demand, that is to obtain the simulation of an entire electronic card. Furthermore, we are also looking for being more and more precise taking into account physical phenomena. In thermal problems, infrared radiations for example, hugely complicate the heat transfer simulations [START_REF] Gaume | Modal reduction for a problem of heat transfer with radiation in an enclosure[END_REF]. Considering the inverse approach, this eect is amplied by the iterative procedure which involve the use of an important number of simulations 1 . For all those reasons, the use of reduced models is a topical issue. The idea consist in searching the temperature eld as a whole by using a small number of unknowns.

Context of the study: the heat equation

The problem is the following: the domain Ω, delimited by boundary Γ, is characterized by its thermal conductivity k(M, t) [W.m -1 .K -1 ] and its volumetric heat capacity c(M, t)[J.m -3 .K -1 ]. This domain receives two types of thermal loadings: the inuence of the environment, which is characterised by a temperature T f (M, t) [K] and a heat exchange coecient h(M, t)[W.m -2 .K -1 ],

the thermal dissipation, which can be a volumetric power on the domain π(M, t)[W.m -3 ] or a surface load on the border ϕ(M, t)[W.m -2 ].

Such a problem corresponds to the following equations:

   ∀M ∈ Ω : c ∂T ∂t = - → ∇.(k - → ∇T ) + π ∀M ∈ Γ : k - → ∇T. - → n = ϕ + h(T f -T ) (1) 
For complex geometries, the solution of this problem is numerical and needs a spatial discretization. The nite element method leads to the weak variational formulation of (1). Let g be the test function, dened on the Hilbert space H 1 (Ω), we can write:

∀g ∈ H 1 (Ω), Ω g c ∂T ∂t dΩ = - Ω k - → ∇g. - → ∇T dΩ - Γ g h T dΓ + Ω g π dΩ + Γ g (ϕ + h T f ) dΓ (2) 
It should be noted that it would be possible to consider:

an anisotropic thermal conductivity characterized by a tensor k, an advection -conduction problem, for which we add to the heat equation a transport term, infrared radiation between boundaries.
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The addition of these terms does not change anything for the reduction method, and we will consider afterwards the problem dened by [START_REF] Carmona | Estimation of heat ux by using reduced model and the adjoint method[END_REF]. The spatial discretization of (2) leads to the following equation (according to the order of terms) :

C dT dt = AT + U (3)
where C et A are respectively named the capacity matrix and the conductivity matrix, with a dimension [N × N ], where N is the degrees of freedom (DOF) for the considered discretized domain. T is the temperature vector, which depends on the time, and U is the load vector.

The dimension of all these vectors are [N × 1]. This equation constitutes the complete heat problem, which the DOF can be very important2 in case of complex geometry. [START_REF] Gaume | Modal reduction for a problem of heat transfer with radiation in an enclosure[END_REF] The modal reduced model principle This method is based on the time-space separation:

T (M, t) = ∞ i=1 V i (M ) x i (t) (4) 
Considering the space function V i (M ) as being known, it means that the calculation of the temperature elds correspond to compute excitation states x i (t) of these functions. It is important to notice that the relation ( 4) is true only if the space functions V i (M ) constitute a basis of the solutions space of the thermal problem (2), and this is not systematic. The idea is then to rewrite this formulation using a limited number n of space functions ∼ V i (M ), which leads to an acceptable reconstitution of the thermal elds

∼ T (M, t) T (M, t): ∼ T (M, t) = n i=1 ∼ V i (M ) ∼ x i (t) (5) 
Whatever the reduction technique used, the reduced model is obtained by projection of the heat equation on the subspace dened by the space functions V i (M ). The equation (2) then becomes :

∀g ∈ H 1 (Ω), Ω g c ∂ ∂t n i=1 ∼ V i ∼ x i dΩ = - Ω k - → ∇g. - → ∇ n i=1 ∼ V i ∼ x i dΩ - Γ g h n i=1 ∼ V i ∼ x i dΓ + Ω g π dΩ + Γ g (ϕ + hT f ) dΓ (6) 
In considering that all the space functions ∼ V i (M ) form a basis for the physical problem, these functions can be used as test functions for the variational formulation: 

g(M ) = ∼ V j (M
∀ ∼ V j ∈ H 1 (Ω), j ∈ N, n i=1 Ω ∼ V j c ∼ V i dΩ d ∼ x i dt = - n i=1 Ω k - → ∇ ∼ V j . - → ∇ ∼ V i dΩ + Γ ∼ V j h ∼ V i dΓ+ ∼ x i + Ω ∼ V j π dΩ + Γ ∼ V j (ϕ + hT f ) dΓ (7) 
After the spatial discretization, the function

∼ V i (M ) becomes a vector ∼ V i [N, 1] resulting in: ∀ j ∈ [1 : n], n i=1 ∼ V t j C ∼ V i d ∼ x i dt = - n i=1 ∼ V t j A ∼ V i ∼ x i + ∼ V t j U (8) 
We name ∼ V[N, n] the matrix which gathers the n discretized functions

∼ V i [N, 1],
and

∼ X(t)[n, 1]
the vector of the n time-dependant excitation states

∼

x i (t) associated with these space functions:

∼ V t C ∼ V d ∼ X dt = ∼ V t A ∼ V ∼ X + ∼ V t U (9) 
Under compact form:

L d ∼ X dt = M ∼ X + N (10) with L = ∼ V t C ∼ V and M = ∼ V t A ∼ V whose dimensions are [n, n], and N = ∼ V t U [n, 1].
This formulation leads to the reduction of the DOF, because the complete model ( 2) is characterized by N unknowns, while the dimension of this modal model [START_REF] Rajabpour | Reduction of the computational time and noise ltration in the IHCP by using the proper orthogonal decomposition POD method[END_REF] corresponds to the n space functions

∼ V i (M ).
From this formulation, dierent methods exist to reduce a model:

The principle of the POD (Proper Orthogonal Decomposition) is the identication of the space functions ∼ V i (M ) from several reference temperature elds (noted T ref (M, t) for a thermal problem). This technique has been used in a lot of studies [START_REF] Fic | Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the nite-element method[END_REF][START_REF] Zhang | A fast meshless method based on proper orthogonal decomposition for the transient heat conduction problems[END_REF][START_REF] Ghosh | Error estimation in pod-based dynamic reduced-order thermal modeling of data centers[END_REF][START_REF] Sempey | Fast simulation of temperature distribution in air conditioned rooms by using proper orthogonal decomposition[END_REF][START_REF] García | Two-dimensional non-linear inverse heat conduction problem based on the singular value decomposition[END_REF][START_REF] Rajabpour | Reduction of the computational time and noise ltration in the IHCP by using the proper orthogonal decomposition POD method[END_REF][START_REF] Park | Sequential solution of a three-dimensional inverse radiation problem[END_REF][START_REF] Adamczyk | Retrieving thermal conductivity of the solid sample using reduced order model inverse approach[END_REF].

The MIM (Modal Identication Method) is based on the direct identication of the state equation providing with the modal formulation [START_REF] Rajabpour | Reduction of the computational time and noise ltration in the IHCP by using the proper orthogonal decomposition POD method[END_REF] from simulations or measures. This technique has been widely used for inverse problems [START_REF] Girault | Identication methods in nonlinear heat conduction. Part I: Model Reduction[END_REF][START_REF] Girault | Identication methods in nonlinear heat conduction. Part II: inverse problem using a reduced model[END_REF][START_REF] Videcoq | On-line thermal regulation of a capillary pumped loop via state feedback control using a low order model[END_REF][START_REF] Girault | Estimation of time-varying heat sources through inversion of a low order model built with the modal identication method from in-situ temperature measurements[END_REF][START_REF] Girault | Identication methods in nonlinear heat conduction. Part I: Model Reduction[END_REF][START_REF] Bouderbala | FEM and experimental investigations of the thermal drift in an ultra-high precision set-up for dimensional metrology at the nanometre accuracy level[END_REF][START_REF] Videcoq | Thermal control via state feedback using a low order model built from experimental data by the modal identication method, Thermal Measurements and Inverse Techniques Ile d[END_REF]. the PGD (Proper Generalized decomposition) is a generalization of the decomposition principle: the temperature is written as a multiple product of a set of functions, where each of these functions depends on one variable (time, space) or one parameter (heat capacity,thermal conductivity,...). These functions are computed in enriching the basis at each iteration [START_REF] Berger | Proper generalised decomposition for heat and moisture multizone modelling[END_REF][START_REF] Berger | 2d whole-building hygrothermal simulation analysis based on a pgd reduced order model[END_REF][START_REF] Berger | An innovative method for the design of high energy performance building envelopes[END_REF][START_REF] González | Proper generalized decomposition based dynamic data driven inverse identication[END_REF]. The AROMM method follows both steps which appear in the modal principle, that is: to compute a complete basis {V i (M )} i∈N , on which it is possible to proceed to a rigorous decomposition of the thermal elds:

T (M, t) = ∞ i=1 V i (M ) x i (t) (11) 
to obtain a reduced basis { Ṽi (M )} i∈ [1,n] , in order to decrease the model order 3 , and which allows to obtain a satisfactory estimation of the thermal eld :

T (M, t) n i=1 ∼ V i (M ) ∼ x i (t) (12) 
The goal of this lecture consists in presenting this method. [START_REF] Grosjean | Reduction of an electronic card thermal problem by the modal substructuring method[END_REF] The complete basis computation

We search a set of spatial functions which form a basis for the considered thermal problem [START_REF] Park | Sequential solution of a three-dimensional inverse radiation problem[END_REF]. This set depends on the solutions space.

Classical basis 4.1.1 The Fourier basis

We consider the following thermal problem, characterized by homogeneous boundary conditions:

   ∀M ∈ Ω : c 0 ∂T ∂t = - → ∇(k 0 - → ∇T ) + π ∀M ∈ Γ : k 0 - → ∇T. - → n = -h 0 T (13) 
The physical parameters (heat capacity c 0 , thermal conductivity k 0 , and global heat exchange coecient h 0 ) are limited to spatial functions. The space functions V F i (M ) correspond to eigenvectors and are obtained by the resolution of the eigenvalues problem associated to the physical problem:

   ∀M ∈ Ω : - → ∇ k 0 - → ∇ V F i = z F i c 0 V F i ∀M ∈ Γ : k 0 - → ∇ Vi . - → n = -h 0 VF (14) 
z F i [s -1
] is the eigenvalue associated to each eigenvector V F i . The inverse of this quantity is a time τ F i [s] named the time constant of the eigenvector. It characterizes the dynamic of the eigenmode:

τ F i = -1 z F i ( 15 
)
These Fourier eigenmodes (Figure 1.a) can be considered as particular temperature elds: the eigenvalues problem corresponds to a stationary physical problem with a volumetric thermal load which is proportional to the eigenmode searched at each point of the The variational form of the eigenvalues problem is :

∀g ∈ H 1 (Ω), - Ω k 0 - → ∇g . - → ∇ V F j ∂Ω - Γ g h 0 V F i = z F i Ω g c 0 V F i ∂Ω (16) 
In cases of complex geometries, such eigenvalues problem is solved numerically, from a spatial discretization characterized by N DOF. The number of eigenmodes becomes then nite and equal to N . The numerical resolution is performed by the Lanczos method [START_REF] Lanczos | An iteration method for the solution of the eigenvalue problem of linear differential and integral operators[END_REF], from the discrete formulation of [START_REF] Girault | Estimation of time-varying heat sources through inversion of a low order model built with the modal identication method from in-situ temperature measurements[END_REF]. In using the same matrix than specied previously (3), we have:

A VF i = z F i C VF i (17) 
This method had been implemented in all principal languages (Matlab since 1996 [START_REF] Radke | A matlab implementation of the implicitly restarted arnoldi method for solving large-scale eigenvalues problems[END_REF], Arpack since 1998 [START_REF] Lehoucq | ARPACK Users' Guide: Solution of Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods[END_REF]). It allows to compute the eigenmodes according to the order of the most important time constants τ F i .

The set of all the eigenmodes V F i form a basis for the subspace

H 1 F (Ω) ⊂ H 1 (Ω)
, which corresponds to this of the physical problem [START_REF] Girault | Identication methods in nonlinear heat conduction. Part I: Model Reduction[END_REF].

The eigenmodes are mutually-orthogonal according to a scalar product < u, v > = Ω u c v ∂Ω:

∀i = j, < V F i , V F i >= Ω V F i c 0 V F j ∂Ω = 0 (18) 
A standardization allows to impose the magnitude of each mode. In choosing:

V F i = V F i Ω V F i c 0 V F i dΩ 1/2 (19) 
we obtain the rst orthogonality property:

∀i, j ∈ N, < V F i , V F j >= Ω V F i c 0 V F j ∂Ω = δ ij (20) 
Because of [START_REF] Girault | Estimation of time-varying heat sources through inversion of a low order model built with the modal identication method from in-situ temperature measurements[END_REF], and in choosing the eigenmodes V F j as test function, we have:

-

Ω k 0 - → ∇V F i . - → ∇V F j dΩ - Γ V F i h 0 V F j dΓ = z F i Ω V F i c 0 V F j dΩ (21) 
The use of the rst orthogonality property (20) enables nally to obtain the second orthogonality property:

-

Ω k 0 - → ∇V F i . - → ∇V F j dΩ - Γ V F i h 0 V F j dΓ = z F i δ ij (22) 
We saw previously that the state equation has been obtained by the projection of the thermal problem on the reduced basis (eq. ( 7)).

In the case where all the complete basis z F i , V F i is used, we obtain: Because of the orthogonality properties (eq. ( 20) et ( 22)), all the state equations are fully decoupled:

∀ j ∈ N, n i=1 Ω V F j c 0 V F i dΩ ∂x i dt = + n i=1 Ω k 0 - → ∇V F j . - → ∇V F i ∂Ω Γ V F j h 0 V F i ∂Γ+ x i + Ω π V F j ∂Ω (23) 
∀ j ∈ N, ∂x j ∂t = z F j x j + Ω V F j π ∂Ω (24) 
As we will see later, the reduced basis

∼ z F i , ∼ V F i from his complete basis z F i , V F i is
built, such as these previous orthogonality properties (eq. ( 20) et ( 22) ) are preserved. The decoupled state-reduced equations [START_REF] Radke | A matlab implementation of the implicitly restarted arnoldi method for solving large-scale eigenvalues problems[END_REF] allow to obtain an immediate resolution. The Fourier basis is valid for a linear thermal problem, with stationary parameters and with homogeneous boundary conditions, whatever the value of the thermal exchange coecient h 0 (M ).

In the particular case where ∀M ∈ Γ, h 0 = 0, we have the Neumann problem :

   ∀M ∈ Ω : c 0 ∂T ∂t = - → ∇(k 0 - → ∇T ) + π ∀M ∈ Γ : - → ∇T. - → n = 0 (25) 
The eigenvalues problem associated is then the Neumann eigenvalues problem :

   ∀M ∈ Ω : - → ∇ k 0 - → ∇ V N i = z N i c 0 V N i ∀M ∈ Γ : - → ∇ V N i . - → n = 0 (26) 
This set of eigenvectors V N i forms a basis for the subspace 

H 1 N (Ω) ⊂ H 1 (Ω).

The Dirichlet basis

We consider a Dirichlet problem characterized by the following equations 4 :

   ∀M ∈ Ω : c 0 ∂T ∂t = - → ∇.(k 0 - → ∇T ) + π ∀M ∈ Γ : T = 0 (27) 
This problem denes a particular space of solutions named Dirichlet space H 1 0 . It is a subspace of the Hilbert space H 1 , which respects the boundary condition.

Eigenvectors V D i (M ) are obtained by the resolution of the following eigenmodes problem :

   ∀M ∈ Ω : - → ∇ k 0 - → ∇ V D i = z D i c 0 V D i ∀M ∈ Γ : V D i = 0 (28) 
The variational form is as follows 5 : 0 (Ω), which has then a zero value on the boundaries. The integral term 

Γ g k -→ ∇ V D i . -→ n
∀g ∈ H 1 0 (Ω), - Ω k 0 - → ∇g . - → ∇ V D j ∂Ω = z i Ω g c 0 V D i ∂Ω (29)
This set of all the eigenvectors V D i forms a basis for the Dirichlet subspace An adapted normalization 6 enables to x the magnitude of the modes, and leads to the following orthogonality relations:

H 1 0 (Ω) ⊂ H 1 (Ω).
∀i, j ∈ N,      Ω V D i c 0 V D j ∂Ω = δ ij Ω k 0 - → ∇V D i . - → ∇V D j dΩ = z D i δ ij (30) 
4.1.3 Non homogeneous problem: applying a gliding temperature

We consider the general problem for which we recall the equations:

   ∀M ∈ Ω : c 0 ∂T ∂t = - → ∇(k 0 - → ∇T ) + π ∀M ∈ Γ : k 0 - → ∇T. - → n = ϕ + h 0 (T f -T ) (31) 
We saw that the Fourier eigenmodes ( 14) form a basis for a thermal problem characterized by homogeneous boundary conditions. In order to use the modal reduction with theses eigenmodes, we have to split the temperature T on two terms :

T = T g + T d (32) 
The term T g is called the gliding temperature, because it corresponds to the temperature obtained without any consideration of the thermal inertia:

   ∀M ∈ Ω : 0 = - → ∇(k 0 - → ∇T g ) + π ∀M ∈ Γ : k 0 - → ∇T g . - → n = ϕ + h 0 (T f -T g ) (33) 
Such a problem is simple: from the variationnal formulation from (33):

-

Ω k 0 - → ∇g . - → ∇T g dΩ - Γ g h 0 T g dΓ + Ω g π dΩ + Γ g (ϕ + h 0 T f ) dΓ = 0 (34) 
the discrete form is then:

AT g + U(t) = 0 (35) 
and we have then:

T g = -A -1 U(t) (36) 
The complementary variable T d is called the dynamic temperature. From ( 31) and ( 33), the equation which allows to obtain T d is :

   ∀M ∈ Ω : c 0 ∂T d ∂t = - → ∇(k 0 - → ∇T d ) -c 0 ∂T g ∂t ∀M ∈ Γ : k 0 - → ∇T d . - → n = -h 0 T d ( 37 
)
Such problem is then homogeneous and it is then allowed to reduce it by using the Fourier basis.

Lastly the researched temperature eld T is:

T = ∞ i=1 x i V F i + T g (38) 
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The state modal problem is always decoupled. The gliding temperature T g appears only in cases of time variation of the solicitations:

∀(i) ∈ N, dx i dt = z i x i - Ω V F i c 0 dT g dt dΩ (39) 
Several studies have used this technique, including buildings problems [START_REF] Sicard | Analyse modale des échanges thermiques dans le bâtiment[END_REF][START_REF] Bacot | Analyse modale des phénomènes thermiques en régime variable dans le bâtiment[END_REF][START_REF] Lefebvre | Simulation du comportement thermique d'un local par des méthodes numériques d'ordre réduit[END_REF][START_REF] Salgon | Application of modal analysis to modelling of thermal bridges in buildings[END_REF].

Hovewer, the limit of this method is that the computed basis is applicable only for problems in which the boundary conditions are xed. From the second equation of ( 14), we can dene the quantity γ i such as:

γ i = - → ∇V i . - → n V i = -h 0 k 0 (40) 
In this way we can see that all the eigenvectors are characterized by the same value of this quantity γ i . Thus, all the dynamic thermal elds that can be rebuilt by this modal formulation have to respect this constraint. 

∀M ∈ Ω , k 0 - → ∇( - → ∇ V B i ) = z B i c 0 V B i ∀M ∈ Γ , k 0 - → ∇ V B i . - → n = -z B i ζ V B i (41) 
The feature of this basis is that the eigenvalues z B i is present in the boundary condition. This is the Steklov condition. The quantity ζ [J.m -2 K -1 ] is called Steklov parameter and it is a simple coecient which allows to respect the physical dimensions in the boundary condition equations. The value of this coecient is obtained from the variational formulation of the eigenvalues problem [START_REF] Oulefki | Réduction des modèles thermiques par amalgame modal[END_REF].

-

Ω k 0 - → ∇g. - → ∇V B i dΩ = z i Ω c 0 g V B i dΩ + Γ ζ g V B i dΓ (42) 
To balance the two terms linked to the eigenvalue, an appropriate choice of the Steklov coecient ζ is given by:

ζ Ω c 0 dΩ Γ dΓ (43) 
In using the associated scalar product:

< u, v >= Ω u c 0 v dΩ + Γ u ζ v dΓ ( 44 
)
the normalisation is done: 

V B i = V B i Ω V B i c 0 V B i dΩ + Γ V B i ζ V B i dΓ 1/2 (45) 
and we obtain the following orthogonality properties:

∀(i, j) ∈ N 2 , Ω V B j c 0 V B i dΩ + Γ V B i ζ V B i dΓ = δ ij Ω k 0 - → ∇V B j . - → ∇ V B i dΩ = z B i δ ij (46) 
It is possible to characterize the spatial evolution of each Branch modes by dening a form coecient C ζ i for each mode V B i :

C ζ i = Γ V B i ζ V B i dΓ (47) 
The evolution of this coecient according to the mode number, for a simple rectangular geometry, is presented on gure 2. It shows that two Branch modes families exist:

Because of the orthogonality relation dened in Eq. ( 14), when C ζ i is close to 1, the considered mode is at on the domain except near the border. Such modes are called Boundary modes. They do not appear in a classical Fourier basis, and allow the reconstitution of any boundary conditions. There exist others modes for which the spatial evolutions are located in all the domain. We call them Domain modes. These modes are characterized by a weak value of c ζ i (less than 0.3 for the example in gure 2). These are less numerous as the Boundaries modes (for the rst computed modes). With these Branch modes, the orthogonality properties don't allow anymore to obtain a decoupled modal problem:

∀j ∈ N, ∞ i=1 Ω V B j c V B i dΩ dx i dt = ∞ i=1 Ω k - → ∇V B j . - → ∇V B i dΩ + Γ V B j h V B i dΓ x i + Ω V B j π dΩ + Γ V B j (hT e + ϕ)dΓ (48) 
This is the price to pay for using this Branch basis.

On the other hand, the Branch modes form a basis for any thermal problem, including those characterized by parameters that are functions of time or temperature. One shows that the generated functionnal space is the Hilbert space H 1 (Ω) and we have directly Initiated by Neveu et al. [START_REF] Neveu | Simulation de la conduction non linéaire en régime variable: décomposition sur les modes de branche[END_REF], this base type has been applied to dierent congurations: Quéméner et al. [START_REF] Quéméner | A specic reduction method for the branch modal formulation: Application to a highly non-linear conguration[END_REF] treats the case of a non-linear problem, with the existence of solidication of a molded part. Various applications are made for inverse problems by Videcoq et al. [START_REF] Videcoq | Real time heat sources identication by a branch eigenmodes reduced model[END_REF][START_REF] Videcoq | Heat source identication and on-line temperature control by a branch eigenmodes reduced model[END_REF][START_REF] Videcoq | Online temperature prediction using a branch eigenmode reduced model applied to cutting process[END_REF]. Branch bases generalized to problems of diusion with transport are proposed by Joly et al. [START_REF] Joly | Modal reduction of an advection-diusion model using a branch basis[END_REF], then used in the case of an inverse problem of identication [START_REF] Quéméner | On-line heat ux identication from a rotating disk at variable speed[END_REF]. Finally Laay et al. [START_REF] Laay | Developing a method for coupling branch modal models[END_REF][START_REF] Laay | The modal substructuring method: An ecient technique for large-size numerical simulations[END_REF] proposes a substructuring technique, which allows the computation of Branch bases for dierent subdomains, which are then coupled each other by a thermal contact resistance.

T (M, t) = ∞ i=1 x i V B i (49)

The Dirichlet-Steklov eigenmodes

Recently another way to reduce non linear problems with or without time dependant parameters has been developped. It consist in using two bases:

the Dirichlet basis seen previously (eq. ( 27)), the Steklov basis 8 , which is dened by the following eigenvalues problem:

∀M ∈ Ω , - → ∇(k 0 - → ∇ V S i ) = 0 ∀M ∈ Γ , k 0 - → ∇ V S i . - → n = -z S i ζ V S i (50) 
Steklov modes correspond to stationary elds obtained for a problem in which one imposes uxes at the boundaries, whose value is proportional to the value of this mode at The regrouping of these two families of modes {V D i } i∈N {V S j } j∈N forms a hilberian basis de H 1 (Ω). We dene the following scalar product:

< u, v >= Ω k 0 - → ∇u . - → ∇v dΩ + z 0 Γ u ζ v dΓ (51) 
where z 0 is a constant parameter [s -1 ] which allows to respect the coherence of the physical dimension of both terms.

Using the following standardization:

V S i = V DS i Ω k 0 - → ∇ V DS i . - → ∇ V DS i dΩ + z 0 Γ V DS i ζ V DS i dΓ 1/2 (52)
we obtain Dirichlet and Steklov modes which are orthogonal with respect to this scalar product (51):

∀X , Y ∈ {D, S}, ∀i, j ∈ N, < V X i , V Y j > = Ω k 0 - → ∇ V X i . - → ∇ V Y j dΩ + z 0 Γ V X i ζ V Y j dΓ = δ X Y δ ij (53) 
A sets of modes of the Dirichlet-Steklov basis is compared to the Branch modes in Figure 3. 5 Reducing the basis Until now, no reduction has been made. Whatever the chosen basis, the problem of state (eq.( 39) or ( 48)) remains characterized by a size related to spatial discretization. The second step of the AROMM method is then to build a reduced base containing n modes Ṽi (M ) from the complete base. We saw previously that the form of the modal problem resulting from this reduction depends on the used base:

For a base associated with a linear thermal problem and with stationary parameters (ie Fourier base

{V F i }, Neumann base {V N i } or Dirichlet base {V D i }): ∀i ∈ {1, n} dx i dt = z i x i - Ω Ṽi c 0 dT g dt dΩ (54) 
For a base adapted to more general problems (ie Branch base

{V B i } or Diriclet-Steklov base {V D i } {V S j }): ∀j ∈ {1, n} n i=1 Ω Ṽj c Ṽi dΩ ẋi = n i=1 Ω k - → ∇ Ṽj . - → ∇ Ṽi dΩ + Γ Ṽj h Ṽi dΓ x i + Ω Ṽj π dΩ + Γ Ṽj (h T e + ϕ) dΓ (55) 
Several reduction methods exist.

Truncation

The simplest idea is to take the most relevant modes from the complete base:

∀i ∈ {1, n} ∀j ∈ {1, N } , Ṽi = V j (56)

Temporal Truncation

A rst criterion leads to the truncation of Marshall [START_REF] Marshall | An approximation method for reducing the order of linear system[END_REF]. In this method the modes with the largest time constants are kept. Independent of any reference problem, this reduction technique has mostly been used for classical basis [START_REF] Quéméner | Résolution d'un problème inverse par utilisation d'un modèle réduit modal. application au frottement d'un pion sur un disque en rotation[END_REF].

An important advantage of this reduction is that it is immediate to use, since the Lanczos technique allows the base to be calculated according to the order of the largest time constants. Thus, temporal truncation can also be used as rst-level reduction: instead of calculating the complete base, only a certain percentage of this base is computed, from which it is possible to make a second reduction more ecient. In the case of thermal problems characterized by a very large number of DOF, this possibility of partial calculations of the base is of great interest, given the important calculation times needed for solving the eigenvalue problem and the diculties of the eigenvectors storage.

Energetic Truncation

This technique is used by Joly et al. [START_REF] Joly | Modal reduction of an advection-diusion model using a branch basis[END_REF]. From a set of known temperature elds T ref (t), it is possible to obtain the excitation states by a simple projection of the complete basis on For example, in the case of Branch basis, orthogonal properties lead to:

∀j ∈ N, Ω T ref c 0 V B j dΩ + Γ T ref ζ V B j dΓ = Ω n i=1 x i V B i c 0 V B j dΩ + Γ n i=1 x i V B i ζ V B j dΓ = n i=1 Ω V B i c 0 V B j dΩ + Γ V B i ζ V B j dΓ x i = n i=1 δ ij x i = x j (57) 
For the Dirichlet Steklov basis, given the denition of the scalar product used, the projection leads to:

∀X , Y ∈ {D, S}, ∀j ∈ N, Ω k 0 - → ∇T ref . - → ∇ V Y j dΩ + Γ T ref ζ V Y j dΓ = Ω k 0 - → ∇ n i=1 x i V X i . - → ∇ V Y j dΩ + Γ n i=1 x i V X i ζ V Y j dΓ = n i=1 Ω k 0 - → ∇ V X i . - → ∇ V Y j dΩ + Γ V X i ζ V Y j dΓ x i = n i=1 δ X Y δ ij x i = x j (58) 
The knowledge of the excitation states for all the modes of the complete basis makes it possible to keep only those characterized by the most important states for all the temperature elds used. This technique generally leads to a more ecient reduction than the simple temporal truncation, but it has a disadvantage: the eectiveness of the reduction depends on the reference elds that must be known. Here we nd the same constraint as that existing for the POD method.

From the same discretized geometry it is generally possible to perform simulations of a thermal problem which is simpler than that studied, but which will however be able to excite the characteristic modes.

Amalgamated base

An even more elaborate technique is that of the amalgam. It brings back the idea of classifying the eigenmodes according to their states of excitation, but this time, the modes which are not kept during the truncation are added by simple linear combinations to the retained modes: In order to maintain the properties of the base, each mode is used only once:

∀i ∈ {1, n} Ṽi = V i,1 + Ñi p=2 α i,p V i,p ; 0 < |α i,p | < 1 ( 
n i=1 Ñi + 1 = N (60)
The distribution of the initial modes and the computation of the amalgam coecient α i,p are carried out in a fast sequential procedure which depends only on the knowledge of the excitation states. Set up by Oulefki [START_REF] Oulefki | Réduction des modèles thermiques par amalgame modal[END_REF] in the case of classical bases for which decoupling made it easy to determine the reference states, this reduction technique has been widely used for Branch modes.

The diculty is in general to determine the excitation states of the complete basis. A rst rather simple solution [START_REF] Benjamin | Réduction d'un problème d'auto-rayonnement par modes de branche : application aux échanges thermiques dans un domaine multi-enceintes[END_REF][START_REF] Brou | Modélisation et commande d'un système de cogénération utilisant des énergies renouvelables pour le bâtiment[END_REF] is, as for energetic truncation, to use a set of temperature elds obtained by complete resolution of a reference problem, which gives access to the excitation states (eq. ( 57) or (58)).

Other techniques have also been tested [START_REF] Quéméner | A specic reduction method for the branch modal formulation: Application to a highly non-linear conguration[END_REF][START_REF] Videcoq | Heat source identication and on-line temperature control by a branch eigenmodes reduced model[END_REF][START_REF] Laay | Developing a method for coupling branch modal models[END_REF] in order to avoid computing the reference thermal elds: since the eigenmodes excitation states are known only to classify this modes in order to set up the amalgam procedure, these authors have built the associated complete modal problem, and sought a simple estimate of the states of excitation: Using a Branch basis and neglecting the terms of coupling between modes, the modal problem has been solved analytically and the excitation states became extremely fast to obtain [START_REF] Quéméner | A specic reduction method for the branch modal formulation: Application to a highly non-linear conguration[END_REF]. An improvement of this technique has been carried out later in the case of a rotating disc, for which only the coupling of a small number of modes is taken into account [START_REF] Quéméner | The generalized amalgam method for modal reduction[END_REF].

Application to the inverse problems: Examples

The examples presented here concern the automobile brake system, which is a major safety component. It undergoes, during its operating phase, many mechanical and thermal stresses, which can lead to important damages: cracks, apparition of hot-judder, vapor locking, brake fade, etc. Because of thermal solicitations are rarely known (especially the part of the heat ux received by the pad and by the disc), the inverse techniques is used. In order to respect the complex geometry of the system, the model used in the inverse process is numerical, and characterized by very ne meshes. Computing time and memory problems appear very quickly, and a solution is to use reduced models.

6.1 Estimation of heat ux received by the brake disc rotating [START_REF] Carmona | Estimation of heat ux by using reduced model and the adjoint method[END_REF] A brake disc in rotation with variable rotation frequency ω(t) is considered (Fig. 4). During the braking phase, the disc receives a time-dependent heat ux on the zone of friction with the brake pads Ω 1 . The ux density ϕ[W.m -2 ] dissipated by friction is not uniform but varies linearly with the velocity thus with the radius. The space discretization using P1 nite elements leads to a DOF N = 9860 for the following matrix formulation:

C dT dt = [K + ω u (t)U + h u (t)H] T + ϕ u U (61)
The goal consists in identifying ϕ u (t) in real time, from a local infrared mesurement on the disc (point A).

Concerning the direct simulation, the computing time is signicant (equal to 2160 s on a simple laptop), because of the transport term which involves small computation time-steps. Figure 5 By integrating such reduced model in an inverse approach, it is then possible to identify the heat ux ϕ in quasi real time. The inverse algorithm is based on the adjoint method applied on sliding time windows (g 8). 6.2 Spatio-temporal identication of heat ux density received by the brake pad [START_REF] Carmona | Spatio-temporal identication of heat ux density using reduced models. application to a brake pad[END_REF] The identication of the spatio-temporal variations of a heat ux density eld is addressed in this section. The application relates to the identication of the heat ux received by a brake pad in a braking situation, for which the mechanical deformation and the phenomena of tear and wear cause the appearance of hot spots that one seeks to locate. We consider a car brake pad for which the complexity of the geometry is respected (Fig. 9.a).

It is composed of two materials: the brake lining and its metallic support. This brake pad undergoes three types of boundary conditions (g 9.b). The equation of the heat discretized (eq. 3) becomes then:

C Ṫ = (K + H)T + n (ϕ) k=1 W Ṽ(ϕ) k x(ϕ) k (63) where Ṽ(ϕ) k [N mesh × 1]
is the extension on the domain Ω, of each eigenvector Ṽ (ϕ) k computed on the boundary Γ 1 , and where the matrix W [N mesh × N mesh ] corresponds to the integration of the interpolations functions dened on the border Γ 1 and extended to the domain Ω. This can be written compactly:

C Ṫ = (K + H)T + W Ṽ(ϕ) X(ϕ) (64) 
where Ṽ(ϕ) is a matrix of dimension [N mesh × n (ϕ) ] which gathers all the ux modes Ṽ(ϕ) k [N mesh × 1] used, and X(ϕ) is the vector of the corresponding states of dimension [n (ϕ) × 1].

Reduced problem

A second Branch base V T is used for the temperature eld (g. 11)

Figure 11: Temperature basis

The reduced modal expression of the thermal problem dened by the equation ( 10) is then:

L Ẋ(T) = M X(T) + D X(ϕ) (65) 
with D = Ṽ(T)t W Ṽ(ϕ)

space time identication

We thus have a temperature model characterized by a few tens of excitation states of temperature x T (instead of 67353 degrees of freedom of the initial mesh), to identify a few tens of excitation states of ux x ϕ , instead of the 5945 degrees of freedom of the surface Γ1. The METTI 8 Advanced School Thermal Measurements and Inverse Techniques Ile d'Oléron, France, Sept.24 th -Sept.29 th , 2023 developed technique uses an iterative method of conjugate gradient descent, for which the gradient is estimated by the adjoint method. The obtained results (Figures 12 and13) are satisfactory. It can be noted that no specic regularization technique is used in this study (Tikhonov for example). Indeed, in addition to the natural regularization obtained by using a whole time-domain approach and an iterative method, an additional regularization appears, which is induced by the use of the two reduced bases (one for the thermal problem and another for the heat ux parametrization). Let a heated object on a furnace (Figure 14) in which two radiant tubes dissipate an infra-red radiative heat ux. The power radiated by each tube is driven by the temperature T gas (t) of their intern gas whose value depends on time. The heat exchange between the gas and the tube walls Ω tube is modeled by a global heat exchange coecient h gas = 10, 000 W.m -2 .K -1 . Given the high temperature level, heat exchange by radiation is preponderant. It is modelled by the radiosity method, which relates the mean ux ϕ i exchanged by patch Ω e i to the set of mean temperatures T j , with j ∈ [1, N p ] :

∀j ∈ [1, N p ] Np i=1 δ ji ε i - 1 ε i -1 F ji ϕ i = - Np i=1 (δ ji -F ji ) σT 4 i , (66) 
where δ ji is the Kronecker delta and F ji are the view factors. This relation (66) can be written in matrix form :

A ϕ = B T 4 . ( 67 
)
The mean ux exchanged by a patch ϕ j expresses as:

ϕ j = Np i=1 r ji T 4 i , (68) 
where r ji are the elements of R rad [N p , N p ] = A -1 B.

This radian ux is included in the heat equation dened on the solid domains of the scene (wall, tubes, stand, etc) , whicb can be written after s(Figure 14) :

C dT dt = [K + H] T + U cpl T int (T) + U 0 + R rad T 4 + T gas (t) U tube . (69) 
In this equation:

Vector T contains the temperature value at the N discretization points.

C, K and H are [N × N ] symmetric sparse matrices: C is the thermal inertia matrix, K the conductivity matrix and H gathers the dierent convection terms on Ω ext , Ω int and Ω tube .

Vector U 0 corresponds to the external known solicitations and U cpl represents the convective exchange with the air inside the furnace, at temperature that depends on the temperature of all internal surfaces T int (T) :

T int (T ) = Ω int h int T dΩ Ω int h int dΩ . ( 70 
)
We obtein after discretization :

T int (T) = D T . (71) 
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  Then they are characterized by a zero heat ux on the boundaries (Figure 1.b).

  Then they are characterized by a zero value on the boundaries, as shown in gure (1.c). (c) Dirichlet eigenmodes (b) Neuman eigenmodes (a) Fourier eigenmodes

Figure 1 :

 1 Figure 1: Classical modes for a simple 2D rectangular geometry
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Figure 3 .

 3 Figure 3.a represents some Branch modes for a simple 2D rectangular geometry. This gure enables to clearly visualize these two families of Branch modes.

Figure 2 :

 2 Figure 2: Evolution of the location coecient according to the branch mode number
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 38 Figure 3: Comparison between the Branch basis {V B i } and the Dirichlet-Steklov basis {V D i } {V S j }
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Figure 4 :Figure 5 :

 45 Figure 4: Physical problem
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 867 Figure 6: Reduced model

Figure 9 :Figure 10 :

 910 Figure 9: Geometry of the pad and its discretization
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Figure 12 :

 12 Figure 12: Identication results along a segment or versus time

Figure 13 :

 13 Figure 13: Space-time identication
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  Such basis are not compatible with a thermal problem in which non linearities or time variations exist on the boundaries. Examples are numerous: time dependant exchange coecient h(t), thermal conductivity depending on the temperature k(T ), infrared radiations... That is why other basis have been developed.

4.2 Basis adapted to non linear problems 4.2.1 Branch modes

In order to avoid this limit, a new basis is dened, whose boundary conditions are not linked with the physical boundary conditions:

  This shows that Steklov's modes correspond very well to Boudaries Branch modes, whereas Domain Branches modes and Dirichlet modes are similar only inside the domain. At the boundaries,the Domain Branch modes are not characterized by null values, unlike Dirichlet modes. Nevertheless the correspondence between these two bases is agrant.
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  illustrates this phenomenon. Such simulation time is an obstacle for inverse applications where the need for real-time response is important. To avoid prohibitive time, a reduced model is built. It is obtained by Thermal Measurements and Inverse Techniques Ile d'Oléron, France, Sept.24 th -Sept.29 th , 2023

	Time (s)

In case of linear inverse problem, even if it is possible to use a direct procedure, this one needs one matrix inversion.

For a nite volume method or for the nite element method for which the interpolation functions are linear, the DOF corresponds to the N number of mesh nodes.

As we'll see later, the reduced function Ṽi(M ) do not correspond necessary with the functions Vi(M ) of the complete basis. This explains the change of notation

In practical terms, it is numerically possible to approach a Dirichlet thermal problem by a general Fourier formulation, in which we x h0 → ∞. It is the same for the associated Dirichlet eigenvalues problem. Even if mathematical proof needs a rigorous writing of the problem (equations (27) and (28)), using such an expression for a numerical approach gives good results.

One use here a test function g ∈ H 1

It is the same as the one used for the Fourier eigenmodes (eq. (19))

It is no longer necessary to use the sliding temperature eld

Steklov modes are rigorously dened only on the boundaries. In order to simply the notation, we call here by abuse of language the steklov mode as their extension in the domain (noted V S i )

Finally, vector U tube of dimension [N ] stands for the heat source generated by the gas combustion inside the radiant tubes.

Identication and reconstruction of the thermal eld

The goal is to recover the whole thermal eld of the heated object from a few measurement points (A, B and C on gure 14). The radiant thermal source is rst identied via a low order reduced model based on AROMM method (Figure 15).

From this identied temperature, the thermal eld is then recovered by direct simulation using a reduced model of higher order which leads to a better precision.

The whole identication procedure lasts less than 5 000 s, which is ten times smaller the duration of the thermal process (50 000 s). The whole thermal eld of the heated object is refreshed every 200 s with an average precision of σ = 2.9 K, which is below the measurement noise.