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Abstract

Geometric frameworks for analyzing curves are com-
mon in applications as they focus on invariant features and
provide visually satisfying solutions to standard problems
such as computing invariant distances, averaging curves,
or registering curves. We show that for any smooth curve
in Rd, d > 1, the generalized curvatures associated with
the Frenet-Serret equation can be used to define a Rieman-
nian geometry that takes into account all the geometric fea-
tures of the shape. This geometry is based on a Square Root
Curvature Transform that extends the square root-velocity
transform for Euclidean curves (in any dimensions) and
provides likely geodesics that avoid artefacts encountered
by representations using only first-order geometric infor-
mation. Our analysis is supported by simulated data and is
especially relevant for analyzing human motions. We con-
sider trajectories acquired from sign language, and show
the interest of considering curvature and also torsion in
their analysis, both being physically meaningful.

1. Introduction
Identifying and comparing different types of visual ob-

jects is a fundamental task in machine learning and com-
puter vision problems [13, 5, 8]. The shape is one of the
essential features of objects that allow us to understand and
characterize them. Nowadays, it is much easier to obtain
data in the form of shapes, typically as dense point clouds
or landmarks. The main task in shape analysis is to define a
proper framework to compare and quantify the variation of
the shapes. However, the shape space is generally nonlinear,
and extracting meaningful information or features is com-
plex. One of the successful approaches to shape analysis
utilizes a Riemannian framework of differential geometry,
where a metric can be defined between the shapes, which is
invariant with respect to shape-preserving transformations
such as translation and rotation. For instance, this gives rise
to geodesic distances that are naturally invariant to smooth
and optimal deformations through geodesic paths between
the shapes [11]. This approach is very versatile as it can

be adapted to various kinds of manifold-value data and can
be designed to emphasize important geometric information
to be preserved. As a consequence, several choices of met-
rics are possible, such as the class of invariant Sobolev met-
rics, often called elastic, for the analysis of curves [1]. In
this work, we are concerned with curves that often arise in
the application as trajectories (function of time) or motions
(animation, activity recognition) and with the definition of
a framework to compare their shapes. The differential ge-
ometry of Euclidean curves is among the simplest (with re-
spect to higher dimensional manifolds), and relatively sim-
ple Riemannian metrics are available with different math-
ematical representations of curves [28]. Quite remarkably,
the introduction of the Square Root Velocity (SRV) trans-
form [24] that consists of a particular representation of the
shape of a curve enables to define a so-called elastic Rie-
mannian distance, which has proven to be useful for the sta-
tistical shape analysis of 2D and 3D curves in applications.
The SRV possesses interesting properties such as a princi-
pled theoretical framework, efficient computation, and gen-
eralization to higher dimensions [2]. Nevertheless, a limi-
tation of the SRV transform and the corresponding elastic
distance is the restrictive use of the first-order derivative,
while the geometry of 3-D (or d-D) curves depends on the
derivatives until order d. Indeed, it is well-known that a 3D
curve is characterized by its curvature and its torsion: this
is particularly critical when we consider trajectories or hu-
man movements, where the curvature and torsion can have
a physical meaning.

2. Related works and contributions

As we will recall in section 3, the full geometry of a
curve can be given either by the Frenet curvatures (stan-
dard curvature and torsion in 3D) or by the path of Frenet
frames. There have been few attempts to directly deal with
the Frenet curvatures: most of the works have been pro-
duced in 2D curves as an alternative representation [23].
Nevertheless, the potential for applications has not been in-
vestigated. In [17], the elastic shape analysis framework has
been considered for 3D curves based on the Frenet frames,
but the link to the physical parameters has been overlooked.
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We can also mention the shape analysis of curves on Lie
groups [4] with application in computer animation. Outside
the Riemannian framework, an attempt has been made to
use a direct curvature-based interpolation of curves [20, 25].

In this work, we introduce two representations of Eu-
clidean curves for their shape analysis that use their com-
plete geometry through Frenet curvatures. We provide the
full development of the Riemannian frameworks associ-
ated with these two representations. As a consequence and
in comparison with existing methods, our approaches also
give explicit formulas for geodesics and geodesic distances.
The first representation considered is based directly on un-
parametrized Frenet curvatures. We show through experi-
ments that it defines a shape analysis framework that lacks
elasticity. As the main contribution, we propose the def-
inition of a second representation, called the Square-Root
Curvature (SRC) Transform, which takes into account repa-
rameterization and defines a metric on the space of shapes
through the quotient space with the group of diffeomor-
phisms. One can imagine that the classical method asso-
ciated with the SRVF, defining a Sobolev elastic metric [2],
already implicitly uses all the geometric information neces-
sary for a relevant curve analysis. We show here with sim-
ple examples that this is not the case. Through experiments
on synthetic data, we compare the methods, and illustrate
the limitations of the SRVF one, due to its lack of use of
geometric information. To be able to judge and compare
the quality of these metrics, we compare consistent sets of
curves characterized by specific features. The SRC method
shows a special strength in defining a framework that re-
mains consistent with these sets. The straightforward ex-
ample of geodesics between helices with different numbers
of spins (Figure 1 in 2D and Figure 2 in 3D) shows that, in
contrast, this is not the case for the SRVF method. In ad-
dition, we highlight the interest of these Frenet curvatures-
based representations in the real application case of human
motion trajectory analysis.

3. Riemannian Geometry on Shape Space
We introduce useful notations and we review the main

approach for constructing tractable representations of the
shape of a curve and deriving a Riemannian geometry.

3.1. Shape Analysis of Euclidean Curves

We consider absolutely continuous curves that are
smooth, open, and with values in some Euclidean space Rd,
we denote this set as AC

(
[0, 1],Rd

)
. These curves are typ-

ically parametrized by a variable t that can usually be in-
terpreted as time. Nevertheless, from a (statistical) shape
analysis point of view, we focus on the geometric shape
of curves that do not depend on a specific parametriza-
tion or standard transformations such as translations, ro-
tations, scaling, or reparametrizations. To distinguish be-

tween parametrized curves that differ only by translation,
we consider the set of absolutely continuous curves where
x(0) = 0, denoted by AC0

(
[0, 1],Rd

)
. The natural and in-

trinsic parametrization that uniquely defines the shape of a
curve x is the arc-length parametrization, defined with the
arc length function s(t) =

∫ t

0
∥ẋ(u)∥du, for t ∈ [0, 1]. In

order to remove the scaling variability, the total length of
the curve s(1) is set to 1. Under this parametrization, the
shape X : [0, 1] 7→ Rd of the curve is the image of the
function x such that x(t) = X(s(t)). As we want to study
shapes independently of their parameterizations, we intro-
duce the reparametrization group Diff+([0, 1]), of smooth
orientation preserving diffeomorphisms of the interval [0, 1]
onto itself. This group acts on the space of absolutely con-
tinuous curves by right composition, and this action only al-
ters the parametrization of the curve, not the inherent shape
X . The space of such shapes (or unparametrized curves) is
often mathematically defined as the quotient space

S([0, 1],Rd) = AC0

(
[0, 1],Rd

)
/Diff+([0, 1]). (1)

The purpose of shape analysis of curves is to define a dis-
tance function dS on S and a framework to perform a com-
plete statistical analysis on a set of curves in S (e.g. mean,
classification, or Principal Component Analysis etc.). One
of the main challenges in defining this distance is to choose
an appropriate mathematical representation of the curves
that can be made invariant to all shape-preserving transfor-
mations - translation, rotation, scaling, and reparametriza-
tion. Moreover, one of the stakes of such representation
is to offer an (infinite-dimensional) Riemannian manifold
structure that brings powerful and flexible tools for study-
ing the geometry of shapes or statistical properties notably
thanks to the tangent space of the manifold [11, 22]. In
[23], a list of the few possible representations is given - co-
ordinate functions, curvatures, angle function, and square-
root velocity function (SRVF) - and a framework for curve
analysis is derived for the last two ones. While the angle
representation is unparameterized, the SRVF representation
depends on the parametrization, which is shown to be very
useful as a tool for the registration of points across curves.
As a consequence, the parameterization group Diff+([0, 1])
must be eliminated by using a quotient space. The clas-
sical approach is to define the Riemannian metric on the
shape space through a metric on the space of parametrized
representations that is invariant to reparametrization: ∀h ∈
Diff+([0, 1])

dAC0
(x0, x1) = dAC0

(x0 ◦ h, x1 ◦ h). (2)

In that case, the distance on S is defined as the infimum over
all possible reparametrization. For X0, X1 ∈ S,

dS(X0, X1) := inf
h∈Diff([0,1])

dAC0(x0, x1 ◦ h). (3)
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Figure 1: Geodesic paths between two 2D scaled spirals with different number of spins: SRVF (1st row) and SRC (2nd row).

In the following, we will denote with a dot the derivation
with respect to the time variable, and with a prime the one
with respect to the arc-length parameter.

3.2. Square Root Velocity Framework

The square-root velocity function framework is the most
commonly used representation for curve shape analysis in
Rd [24, 23]. The square-root velocity function (SRVF) of
x ∈ AC0

(
[0, 1],Rd

)
, denoted by RSRVF(x) = q, is defined

as

q(t) =
ẋ(t)√
∥ẋ(t)∥

=
√

ṡ(t)T (s(t)) (4)

where T (s(t)) = ẋ(t)
∥ẋ(t)∥ = X ′(s(t)) is the unit tan-

gent vector of the curve. This transformation is a bi-
jection with AC0

(
[0, 1],Rd

)
and its explicit inverse is

x(t) =
∫ t

0
q(u)|q(u)|du. As we consider length-normalized

curves, the SRVFs have a unit L2 norm, and their set is
the convenient unit Hilbert sphere, a Riemannian subman-
ifold of L2([0, 1],Rd) (with the L2 inner product). Then,
the L2 metric on SRVF induces a Riemannian metric on
AC0

(
[0, 1],Rd

)
where geodesics are given by the shorter

arcs on great circles between SRV functions. The action
of Diff+([0, 1]) on AC0

(
[0, 1],Rd

)
is reflected on q by the

group action denoted by ∗ and defined as

(q ∗ h)(t) =
√
ḣ(t)q(h(t)) (5)

and if the curve is rotated by a matrix O ∈ SO(d), its SRVF
gets rotated by the same matrix. The key property of this
representation is the invariance of its associated distance un-
der the action of Diff+([0, 1]) and SO(d):

∥O(q0 ∗ h)−O(q1 ∗ h)∥L2 = ∥q0 − q1∥L2 . (6)

The metric can then be used to define a proper distance on
the shape space S([0, 1],Rd)

d
(SRVF)
S (X0, X1) := inf

O∈SO(d)
h∈Diff([0,1])

cos−1⟨q0, O(q1 ∗ h)⟩ (7)

and the geodesic path on the shape space is taken between
q0 and q1 ∗ h.

The definition of this distance on the shape space under
the SRVF representation can be interpreted as the following
registration problem

h∗, O∗ = argmin
O∈SO(d)

h∈Diff([0,1])

∫ 1

0

∥q0(t)−Oq1(h(t))

√
ḣ(t)∥22dt .

(8)
In [3], this registration problem has been reformulated with
the unit tangent vector and the arc length functions. By
defining γ = s1 ◦ h ◦ s−1

0 ∈ Diff+([0, 1]) the optimization
problem 8 amounts to finding the optimal diffeomorphism
of Diff+([0, 1]) that acts on the arc-length parameter s and
solves the minimization problem:

γ∗, O∗ = argmin
O∈SO(d)

γ∈Diff([0,1])

∫ 1

0

∥T0(s)−OT1(γ(s))
√

γ′(s)∥22ds .

(9)
It should be noted, in this reformulation, that the ob-
ject OT1(γ(s))

√
γ′(s) does not represent the same shape

as X1(s) in the shape space. Here the element γ of
Diff+([0, 1]) is not used as a reparametrization of the curve
but to deform the element of S([0, 1],Rd). Under this point
of view, the set of unit tangent vectors that can be reached
by deforming the vector T (s), with the group action T ∗ γ
defines an equivalence class of shapes associated with that
one, as in the setting of deformable templates of Grenan-
der’s theory [29, 30].

Finally, the choice of a parametrized curve representa-
tion for shape analysis, discussed in [23], can be seen as
the problem of choosing a good geometric representative
of the shape as a template and defining an associated reg-
istration problem. Hence, an appropriate choice may be
seen as a matter of modeling and should be done in interac-
tion with the type of data analyzed and the dimension of the
space. In the next sections, we use h to refer to functions of
Diff+([0, 1]) that act on the time variable t and γ for ones
that act on the arc-length variable s.
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Figure 2: Geodesic paths between two scaled 3D circular helices with different number of spins: SRVF (1st row) and SRC
(2nd row).

4. Exhaustive geometric information with
Frenet representation

Based on these previous observations and with the inten-
tion of developing a more suitable framework for the anal-
ysis of three-dimensional curves, Brunel and Park [3] pro-
posed a direct extension of the SRVF method, which consid-
ers not only the tangent vector as the geometric representa-
tion of the curve but the whole Frenet-Serret frame in three
dimensions. Their idea is to use an exhaustive description
of the geometry of curves by incorporating higher-order in-
formation about the geometry in the representation. To ex-
ploit this idea, we propose to study suitable representations
based on this Frenet-Serret framework. Proofs of theoreti-
cal results are given in the supplementary material.

4.1. The Frenet-Serret framework

We introduce the Frenet-Serret framework for curves
of any dimension d. Let F ([0, 1],Rd) be the set of
curves x ∈ AC0

(
[0, 1],Rd

)
d-times continuously differen-

tiable, and with the first d derivatives linearly independent.
F ([0, 1],Rd) is called the set of Frenet curves. In the fol-
lowing, we will restrict the shape space to be the set

S([0, 1],Rd) = F ([0, 1],Rd)/Diff+([0, 1]) . (10)

The Frenet frame e1, e2, . . . , ed associated with X ∈
S([0, 1],Rd) is uniquely defined by applying the Gram-
Schmidt process to the first d derivatives of X . In dimension
3, the three vectors of the Frenet frame are known as the tan-
gent, normal and bi-normal vector. We define the function
Q that maps to s ∈ [0, 1] along the curve the corresponding
Frenet frame

Q(s) = [e1(s) | e2(s) | ... | ed(s)] . (11)

The function Q is a measurable curve from [0, 1] to the Lie
group of rotation matrices SO(d) called the Frenet path.

Theorem 1 (Frenet-Serret equation [9]). Let X ∈
S([0, 1],Rd) and Q(s) its associated Frenet path. Then
there are functions θ1, . . . , θd−1 defined on that curve with
θ1, . . . , θd−2 > 0, so that every θi is (d− 1− i)-times con-
tinuously differentiable and

Q′(s) = Q(s)Aθ(s) (12)

where θ(s) = (θ1(s), . . . , θd−1(s))
T and

Aθ(s) =



0 −θ1(s) 0 . . . 0

θ1(s) 0 −θ2(s)
. . .

...

0 θ2(s)
. . .

. . . 0
...

. . .
. . . 0 −θd−1(s)

0 . . . 0 θd−1(s) 0


and θi is called the i-th Frenet curvature, and the equation
is called the Frenet-Serret equation.

In dimension 3, the two Frenet curvatures are known as
s 7→ κ(s) the curvature function and s 7→ τ(s) the torsion
function. They have an interpretable physical meaning. The
curvature function measures how sharply the curve changes
direction at a given point, and the torsion function measures
the degree to which the curve twists and turns as it moves
along its path. The Frenet-Serret equation with an initial
condition Q(0) = Q0 defines an ordinary differential equa-
tion on the Lie group SO(d) where the function s 7→ Aθ(s)
has values in the Lie algebra of skew-symmetric matrices.
This equation can also be expressed in function of the time
variable t as

dQ(s(t))

dt
= ṡ(t)Q(s(t))Aθ(s(t)) . (13)

Lemma 1. The Frenet curvatures and the Frenet path are
invariant under all Euclidean motions.
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This means that for x ∈ F ([0, 1],Rd), O ∈ SO(d), a ∈
Rd and h ∈ Diff+([0, 1]), the curve defined by x̃(t) = a +
Ox(h(t)) has the same Frenet curvatures as x and Q̃(s) =
OQ(s).

Theorem 2 (Fundamental theorem of the local theory of
curves [9]). Let θ1, ..., θd−1 ∈ C∞([0, 1],R) such that
θ1, . . . , θd−2 > 0. For a given X0 ∈ Rd and Q0 ∈ SO(d)
there is a unique X ∈ S([0, 1],Rd) parametrized by arc
length and satisfying the following three conditions:

• X(0) = X0,

• Q0 is the Frenet frame of X at point s = 0,

• θ1, ..., θd−1 are the Frenet curvatures of X .

Theorems 1 and 2 state that there is a bijection, up
to a translation and a rotation, between the shape space
S([0, 1],Rd), the set of admissible Frenet curvatures H and
the set of corresponding Frenet paths F0, where

H =
{
θ ∈ C∞([0, 1],Rd−1)|θ1, . . . , θd−2 > 0

}
, (14)

F0 =

{
Q ∈ L2([0, 1], SO(d)) such that

Q′(s) = Q(s)Aθ(s), Q(0) = Id,θ ∈ H

}
.

(15)

From the detailed Frenet-Serret framework, one can
think of the direct extension of the square-root velocity
function 4 that simply consists in replacing the tangent vec-
tor with the entire Frenet frame. The representation of a
parametrized curve x ∈ F ([0, 1],Rd) will be then

RQ(x)(t) =
√
ṡ(t)Q(s(t)). (16)

This representation is used in [3] to define a new alignment
method on S. They extend the SRVF registration prob-
lem 9 by using the Frobenius distance between the Frenet
frames instead of only the L2 distance of the unit tangent
vectors. They show to obtain more precise results with
their method than the SRVF one. From the previous the-
orems, it is clear that this representation uniquely defines a
parametrized curve x ∈ F ([0, 1],Rd). However, as a re-
sult of the Frobenius theorem [12], the set of such repre-
sentations RQ appears not to be a manifold. We leave the
demonstration in the supplementary material.

4.2. Unparametrized Frenet curvatures

A possible representation of a parametrized curve, al-
ready suggested in [23, 25, 20], which keeps the idea of en-
coding more geometric information, is the unparametrized
Frenet curvatures and the arc-length function pair

Rθ(x)(t) =
(√

ṡ(t), θ(s(t))
)
. (17)

We denote Ψ([0, 1]), the set of square root velocity func-
tions of length-normalized arc-length functions. This set is
well-studied in the literature [15, 27]. It is the unit sphere of
the Hilbert space L2([0, 1],R) and therefore a Riemannian
manifold equipped with the L2 metric. Then, the geodesic
distance between two elements in Ψ([0, 1]) is

dΨ

(√
ṡ0,

√
ṡ1

)
= cos−1

(〈√
ṡ0,

√
ṡ1

〉)
(18)

and the geodesic path connecting them is given by

αΨ(τ) =
sin((1− τ)ϑ)

sin(ϑ)

√
ṡ0 +

sin(τϑ)

sin(ϑ)

√
ṡ1 (19)

where ϑ = dΨ(
√
ṡ0,

√
ṡ1). Moreover, any element of

Diff+([0, 1]) is uniquely represented by an element of
Ψ([0, 1]).

Proposition 1. The set of Frenet curvatures H is a Rieman-
nian submanifold of L2([0, 1],Rd−1).

Proof. The set M = {x ∈ Rd−1|x1, . . . , xd−2 > 0} is a
open subset of the Riemannian manifold Rd−1. Then it is it-
self a differentiable Riemannian manifold with the standard
inner product of Rd−1, and for any point p ∈ M the tangent
space Tp(M) is Rd−1. The set of Frenet curvatures H is
the set of measurable curves from [0, 1] to the Riemannian
manifold M and thus also a manifold ([26]). Its tangent
space is L2([0, 1],Rd−1) and it can be equipped with the
L2 Riemannian metric.

Consequently, the geodesic distance on H is simply the
L2 norm

dH(θ0,θ1) = ∥θ0 − θ1∥L2 (20)

and the geodesic path is the straight line connecting them

αH(τ) = (1− τ)θ0 + τθ1. (21)

Proposition 2. The map Rθ : F ([0, 1],Rd) → Ψ([0, 1])×
H, defined above, is a bijection.

Proof. The element of Ψ([0, 1]) uniquely defines the arc-
length function by s(t) =

∫ t

0
(
√
ṡ(u))2du. As mentioned

before, we have a bijection between the unparametrized
Frenet curvatures in H and the unparametrized curve in
the shape space S (1, 2). Then, from X ∈ S, the initial
parametrized curve is simply x(t) = X(s(t)).

The set of such Rθ is the Cartesian product of Ψ([0, 1])
and H and, therefore, is also a Riemannian manifold
equipped with the product metric dΨ ⊕ dH [16]. The in-
duced metric on F ([0, 1],Rd) under the representation Rθ

is

dθ(x0, x1) = dΨ

(√
ṡ0,

√
ṡ1

)
+ dH(θ0,θ1) . (22)
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In order to define a distance on the shape space S from that
one, we must quotient out the space Diff+([0, 1]). The ac-
tion of Diff+([0, 1]) on Ψ([0, 1]) is the same as 5, and the
Frenet curvatures are invariant under reparametrization of
the corresponding parametrized curve (Lemma 1). More-
over, by simply taking h∗ = s−1

1 ◦ s0 ∈ Diff+([0, 1]),
we have

√
ṡ1 ∗ h∗ =

√
ṡ0, and thus the distance on

Ψ([0, 1])/Diff+([0, 1]) between s0 and s1 is zero. Hence,
the induced distance on the shape space, between X0, X1 ∈
S, under the representation Rθ is defined as

d
(θ)
S (X0, X1) := dH(θ0,θ1) = ∥θ0 − θ1∥L2 (23)

and the geodesic path connecting them is

α
(θ)
S (τ) =

(√
ṡ0, αH(τ)

)
. (24)

This immediate representation by the Frenet curvatures ap-
pears in the experiments not to be sufficiently elastic (Fig-
ure 5). It has somewhat the same weakness as the angle
representation proposed in [23], the Frenet curvatures being
already independent of the parametrization.

4.3. Square Root Curvatures Transform

To overcome the “non-elasticity” issue of the represen-
tation defined above, we propose a second framework for
shape analysis based on Frenet curvatures which uses, like
the square root velocity function, the parametrization as
a tool to register the curves and define a more “elastic”
method. The latter is inspired by the square-root velocity
transform of SO(d)-valued curves.

Definition 1 (SRV Transform for curves on SO(d)). Let
P ∈ C∞([0, 1], SO(d)). The Square Root Velocity trans-
form of P is the map

q(P )(t) =
LP (t)−1 Ṗ (t)√

∥Ṗ (t)∥F
=

P (t)T Ṗ (t)√
∥Ṗ (t)∥F

, (25)

where ∥.∥F is the Frobenius norm associated with the
scalar product on the Lie Algebra of skew-symmetric ma-
trices ⟨A,B⟩ = 1

2 tr(A
TB) = − 1

2 tr(AB).

Let x ∈ F ([0, 1],Rd) and Q(t) ∈ C∞([0, 1], SO(d))
be its associated Frenet path. Using the Frenet-Serret dif-
ferential equation, the SRV Transform of the Frenet path is

q(Q)(t) =
√
ṡ(t)

Aθ(s(t))√
∥Aθ(s(t))∥F

. (26)

Proposition 3. Let θ ∈ H, we have

∥Aθ(s(t))∥F = ∥θ(s(t))∥2 .

Based on the SRV Transform of a Frenet path and Propo-
sition 3, we propose a new transformation of a parametrized
curve, which we have called the Square-Root Curvatures
(SRC) transform.

Definition 2 (Square-Root Curvatures Transform). Let x ∈
F ([0, 1],Rd). We consider its associated arc-length func-
tion s(t) and Frenet curvatures θ(s(t)) defined as in Theo-
rem 1. Then we define its square-root curvatures transform
to be the map

c(t) =
√
ṡ(t)

θ(s(t))√
∥θ(s(t))∥

. (27)

The set of such square-root curvatures transforms is

C =
{
c ∈ L([0, 1],Rd−1) | c1, . . . , cd−2 > 0

}
, (28)

which is the same as the set of admissible Frenet curvatures
H. We have already shown in the previous section that this
set is a Riemannian manifold equipped with the L2 met-
ric. Therefore, the geodesic distance between c0, c1 ∈ C
is the L2 distance between them, and the geodesic path is
a straight line. We define the following representation of a
parametrized curve x ∈ F ([0, 1],Rd), from its Square-Root
Curvatures transform, by

RSRC(x)(t) =
(√

ṡ(t), c(t)
)
. (29)

Proposition 4. The map RSRC : F ([0, 1],Rd) →
Ψ([0, 1])× C, defined above, is a bijection.

Proof. This is again a result of theorems 1 and 2. To get x
from RSRC(x), it should be noted firstly that c(t)∥c(t)∥ =
ṡ(t)θ(s(t)). From that, the skew-symmetric matrix func-
tion of the Frenet-Serret ODE can be reconstructed. By
solving the corresponding Frenet-Serret ODE one gets the
associated time parametrized Frenet path Q(t). Then, using
the first component of RSRC(x), we get x(t) = X(s(t)) =∫ t

0
ṡ(u)T (s(u))du.

The set of such square root curvature representations
RSRC is the Cartesian product Ψ([0, 1])× C and therefore a
Riemannian manifold with the product metric dΨ⊕dC . This
representation is, by definition, invariant under the action of
SO(d). Then, the corresponding shape space is the quotient
space Ψ([0, 1])×C/Diff([0, 1]). Let’s x ∈ F ([0, 1],Rd) and
h ∈ Diff([0, 1]). The SRC representation of x̃ = x ◦ h is

RSRC(x̃) =
(√

ṡ ∗ h, c ∗ h
)
= RSRC(x) ∗ h (30)

where ∗ is the group action defined in 5.

Proposition 5. The metric on F ([0, 1],Rd) induced by the
Riemannian metric on Ψ([0, 1])×C defined by dSRC := dΨ⊕
dC is invariant under the action of Diff+([0, 1]).
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The distance on the shape space S under the representa-
tion RSRC, between two elements X0, X1 ∈ S, is defined
as

d
(SRC)
S (X0, X1) := inf

h∈Diff+([0,1])
dSRC(x0, x1 ◦ h). (31)

From the optimal wrapping function h∗ the geodesic path
on S between them is

α
(SRC)
S (τ) =

(
sin((1−τ)ϑ)

sin(ϑ)

√
ṡ0 +

sin(τϑ)
sin(ϑ) (

√
ṡ1 ∗ h∗),

(1− τ)c0 + τ(c1 ∗ h∗))
(32)

where ϑ = dΨ(
√
ṡ0,

√
ṡ1 ∗ h∗).The registration problem

consider here is to find the minimizer h∗ over Diff+([0, 1])
of∫ 1

0

∥c0(t)− (c1 ∗ h)(t)∥2 + ∥
√
ṡ0(t)− (

√
ṡ1 ∗ h)(t)∥2dt .

(33)

Using the reformulation principle of [3], that is γ = s1 ◦h◦
s−1
0 ∈ Diff+([0, 1]), this registration problem is shown to

be equivalent to finding γ∗ ∈ Diff+([0, 1]) that minimizes

∫ 1

0

∥∥∥∥∥ θ0(s)√
∥θ0(s)∥

−
√
γ′(s)

θ1(γ(s))√
∥θ1(γ(s))∥

∥∥∥∥∥
2

+ ∥1− γ′(s)∥2ds . (34)

Note that this reformulation has the form of a penalized
registration problem. The second term represents a penalty
term on γ and ensures a certain smoothness of the warping
function. In this framework, the deformable templates are
the square-root normalized curvatures which encode more
geometric information than the unit tangent vector.

5. Experiments
In this section, we report the experimental results of the

proposed methods, comparing them with the SRVF method.
We use both synthetic and real data. Additional results and
figures are available in the supplementary material.

5.1. Statistical estimation of the Frenet curvatures

The main limitation of shape analysis methods based on
the Frenet curvatures is the need of additional estimates of
curvatures. Being dependent on higher-order derivatives
(up to order d), they are quite sensitive to the observa-
tion noise of the Euclidean curve. We detail here a sim-
ple method that can be used for their smooth estimation,
and we refer to [21, 18] for a more complex and detailed
statistical estimation algorithm. First, it is possible to use a
local polynomial smoothing algorithm to estimate the d first

derivatives of the Euclidean curve [6]. From these deriva-
tives, the raw estimates of the Frenet curvatures can be com-
puted by using their extrinsic formulas. We propose here a
second method based on the Frenet-Serret ODE approxi-
mation, to obtain the raw estimates, that appear to be more
stable. A simple middle point approximation of the ODE
solution gives

Q(sj) ≈ Q(si) exp

(
(si − sj)Aθ

(
si + sj

2

))
. (35)

where exp(.) is the exponential map of the Lie group
SO(d). Then, using the inverse logarithm map log(.), this
gives an approximation of the matrix Aθ ((si + sj)/2) ≈

1
si−sj

log
(
Q(si)

TQ(sj)
)

and by identification raw esti-
mates of θ ((si + sj)/2). As we consider here a problem
of estimating a functional parameter, we formulate the final
θ estimation problem as a penalized weighted functional re-
gression with the obtained raw estimates, that we solve by
using a B-spline approximation of θ.

5.2. Experiments with synthetic curves

We use synthetic data to highlight the differences be-
tween the methods discussed above (SRVF, SRC, and
Frenet curvatures). The computations related to the SRVF
method are made with the package fdasrsf. The SRC and
Frenet curvatures methods are implemented with the code
provided as supplementary material, including a dynamic
programming algorithm for solving the registration prob-
lems.

We consider the simple case of a set of 20 curves in R2

with a single large peak of curvature. This one is created
by generating curvature functions on [0, 1] with one peak
of maximum value 60.5, width 0.15, and location chosen
randomly between 0.1 and 0.9. These curves have the shape
of a loop made with a wire, where the loop is more or less
close to the right or left wire end, depending on the location
of the curvature peak.

Figure 3: Matrices of pairwise SRVF distance (left), SRC
distance (middle), and unparametrized Frenet curvatures
distance (right) by sorted location of the peak curvature.

We compare the three methods through the pairwise dis-
tance matrices in Figure 3, and the geodesic paths computed
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Figure 4: SRVF (1st row), SRC (2nd row), and Frenet cur-
vatures (3rd row) geodesic paths between curves with cur-
vature peaks located at 0.27 (left) and 0.78 (right).

Figure 5: Curvatures of the Euclidean curves along the
geodesic paths plotted in Figure 4: SRVF (1st row), SRC
(2nd row), and Frenet curvatures (3rd row).

between two of these curves in Figure 4, with peaks located
at 0.27 (red curve) and at 0.78 (blue curve). The corre-
sponding deformations through the variations of the curva-
ture along the different geodesic paths on Euclidean curves
are shown in Figure 5, which highlights the strengths and
weaknesses of each method. First, it emphasizes the ”non-
elasticity” of the unparametrized Frenet curvatures method,
as in the middle of the geodesic path, we have two peaks
of curvature and, therefore, a completely different shape
without any loop. This explains the inconsistency of the
heatmap under this method. Conversely, there is an elas-
tic deformation of the curvature with the SRC transform,
and shapes along the geodesic are consistent with the set
of curves considered, which is well summarised on the cor-
responding heatmap where all distances are rather close to
zero. For the SRVF method, the chosen example with peaks
of curvature that are quite far apart shows that artifacts ap-
pear along the geodesic; the middle curve has two small
loops at the edges. This phenomenon gives unreliable dis-
tances, as shown in the heatmap, where the distances are not
monotone as a function of the spacing between the curva-
ture peaks.

By considering a set of curves characterized by specific
features, we observe a clear difference in consistency of
the shapes along the geodesics with respect to the different

methods. This phenomenon is quite visible on the geodesic
between helices in 2D, Figure 1 or 3D, Figure 2. In that
case, within both geodesic paths under SRVF method, the
curves lose the characteristic geometry of the helix. A three-
dimensional circular helix is characterized by having a con-
stant curvature and torsion, which is not the case along the
SRVF geodesic, but preserved with the SRC method. In that
case the geodesic under the Frenet curvature representation
is very similar to SRC.

5.3. Application to sign language motion data

It appears that curvilinear velocity and Frenet curva-
tures are particularly relevant parameters for the analysis
of human motion. Several laws involving these parame-
ters can be found in the literature [10, 14, 19, 7]; among
others, the power laws state a special relationship between
the curvature, the torsion, and the velocity of a point tra-
jectory representing human motion. Using a method that
conserves the shape of these parameters is, therefore, of
particular interest in this application. We demonstrate here
with the case of wrist trajectories in sign language, acquired
with a motion capture system by the company MocapLab
(https://www.mocaplab.com/fr/). We compute the geodesic
paths, under each of the frameworks, between the arbitrar-
ily chosen red and blue curves within the set of several rep-
etitions of the sign ”Femme”, shown in Figure 6 with the
corresponding time-parameterized Frenet curvatures.

Figure 6: Trajectories of the right wrist while sign-
ing ”Femme” in sign language: 3D curves (left), time-
parametrized curvatures (top right), torsions (bottom right).
The blue and red ones are used to compute the geodesic in
Figure 7.

Figure 7 emphasizes the advantage of considering a rep-
resentation depending on the parameterization, allowing a
registration before computing the geodesic. However, it
also shows that considering only the tangent vector as a
representative object (SRVF) is not sufficient to find the
optimal reparametrization that correctly aligns the torsions,
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(a) SRVF (b) SRC (c) Frenet curvatures

Figure 7: Comparison between time-parametrized curvature and torsion along the geodesic path under SRVF (left), SRC
(middle), and Frenet curvatures (right).

(a) Warping functions h (b) Warping functions γ

Figure 8: Comparison of estimated warping functions h
(left) and γ (right) to compute the geodesic in Figure 7.

and could affect subsequent analyses made by the SRVF
method, such as the mean. This results in the appearance of
new minimums, maximums and zeros in the torsion func-
tions along the SRVF geodesic. However, such character-
istic points of the curvature, torsion and velocity functions
are crucial in the observation of the laws of motion. It is
therefore preferable to use a method that preserves these
characteristics by directly optimizing the optimal alignment
from these parameters, such as the proposed SRC method.

6. Conclusion
The square-root curvature transform of a Euclidean

curve in Rd is a representation that encodes more geometric
information of the curves, and thus the results are easier to
interpret than existing methods. The main limitation lies in
the estimation of the Frenet curvatures from real and noisy
data, nevertheless recent smooth statistical estimators can
be used for computing the SRC [21, 18]. We believe our

method is particularly interesting for motion trajectory anal-
ysis and could be developed further in the future as a tool
for generation, segmentation and classification of complex
trajectories.
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Michael M. Bronstein, and Daniel Cremers. Efficient glob-
ally optimal 2d-to-3d deformable shape matching. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), May 2016. 1

[14] Uri Maoz, Alain Berthoz, and Tamar Flash. Complex un-
constrained three-dimensional hand movement and constant
equi-affine speed. Journal of Neurophysiology, 101:1002–
1015, 2009. 8

[15] J. S. Marron, James O. Ramsay, Laura M. Sangalli, and Anuj
Srivastava. Functional data analysis of amplitude and phase
variation. Statistical Science, 30:468–484, 2015. 5

[16] Turk J Math. Submanifolds of Riemannian Product Mani-
folds. 29:389–401, 2005. 5

[17] Tom Needham. Shape Analysis of Framed Space Curves.
Journal of Mathematical Imaging and Vision, 61(8):1154–
1172, Oct. 2019. 1

[18] Juhyun Park, Nicolas Brunel, and Perrine Chassat. Curva-
ture and torsion estimation of 3d functional data: A geomet-
ric approach to build the mean shape under the frenet serret
framework, 2022. arXiv:2203.02398 [stat]. 7, 9

[19] Frank E. Pollick, Uri Maoz, Amir A. Handzel, Peter J. Gib-
lin, Guillermo Sapiro, and Tamar Flash. Three-dimensional
arm movements at constant equi-affine speed. Cortex,
45:325–339, 2009. 8

[20] Marianna Saba. On the usage of the curvature for the com-
parison of planar curves. PhD thesis, University of Cagliari,
2012. 2, 5

[21] Laura M Sangalli, Piercesare Secchi, Simone Vantini,
and Alessandro Veneziani. Efficient estimation of three-
dimensional curves and their derivatives by free-knot regres-
sion splines, applied to the analysis of inner carotid artery
centrelines. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 58(3):285–306, 2009. 7, 9

[22] Stefan Sommer, Tom Fletcher, and Xavier Pennec. Introduc-
tion to differential and Riemannian geometry. 2020. 2

[23] Anuj Srivastava and Eric Klassen. Functional and Shape
Data Analysis. Springer Series in Statistics. Springer New
York, 2016. 1, 2, 3, 5, 6

[24] Anuj Srivastava, Eric Klassen, Shantanu H. Joshi, and Ian H.
Jermyn. Shape analysis of elastic curves in euclidean spaces.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 33(7):1415–1428, 2011. 1, 3

[25] Tatiana Surazhsky and Gershon Elber. Metamorphosis of
planar parametric curves via curvature interpolation. Inter-
national Journal of Shape Modeling, 8:201–216, 2002. 2,
5

[26] Wang Tixiang. Morse theory on banach manifolds. Acta
Mathematica Sinica, 5:250–262, 1989. 5

[27] J. Derek Tucker, Wei Wu, and Anuj Srivastava. Generative
models for functional data using phase and amplitude separa-
tion. Computational Statistics and Data Analysis, 61:50–66,
2013. 5

[28] Laurent Younes. Computable Elastic Distances between
Shapes. SIAM Journal on Applied Mathematics, 58(2):565–
586, 1998. Publisher: Society for Industrial and Applied
Mathematics. 1

[29] Laurent Younes. Shapes and Diffeomorphisms. Applied
Mathematical Sciences. Springer, 2010. 3

[30] Laurent Younes. Elastic distance between curves under the
metamorphosis viewpoint, 2018. arXiv:1804.10155. 3

4036


