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Abstract

Functional linear discriminant analysis offers a simple yet efficient method for
classification, with the possibility of achieving a perfect classification. Several meth-
ods are proposed in the literature that mostly address the dimensionality of the
problem. On the other hand, there is a growing interest in interpretability of the
analysis, which favors a simple and sparse solution. In this work, we propose a new
approach that incorporates a type of sparsity that identifies non-zero sub-domains in
the functional setting, offering a solution that is easier to interpret without compro-
mising performance. With the need to embed additional constraints in the solution,
we reformulate the functional linear discriminant analysis as a regularization prob-
lem with an appropriate penalty. Inspired by the success of `1-type regularization
at inducing zero coefficients for scalar variables, we develop a new regularization
method for functional linear discriminant analysis that incorporates an L1-type
penalty,

∫
|f |, to induce zero regions. We demonstrate that our formulation has

a well defined solution that contains zero regions, achieving a functional sparsity in
the sense of domain selection. In addition, the misclassification probability of the
regularized solution is shown to converge to the Bayes error if the data are Gaus-
sian. Our method does not presume that the underlying function has zero regions
in the domain, but produces a sparse estimator that consistently estimates the true
function whether or not the latter is sparse. Numerical comparisons with existing
methods demonstrate this property in finite samples with both simulated and real
data examples.
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1 Introduction

We consider a classification problem when data are curves. Denote the functional pre-
dictor by X ∈ L2(I), observable on a real interval I, and the class label by Y . Assuming
that X is a member of two possible groups (Y = 0 or Y = 1), we seek a classification
rule that depends on a linear map, with unknown function β,

Fβ(X) =

∫
I
X(t)β(t) dt.

This defines a functional linear classification problem, where we wish to determine β(·)
in such a way that the linear map yields a good class separation. As functional data
models are inherently infinite-dimensional, dimension reduction techniques are essential
in constructing a solution.

The standard logistic regression framework for classification can be extended with
functional variables (Müller, 2005) as

log
pr(Y = 1 | X)

pr(Y = 0 | X)
= a0 +

∫
I
X(t)β(t) dt .

Alternatively, one can try to directly extend the Bayes classifier. If X were finite-
dimensional, the Bayes rule is defined as maximizing the conditional probability given
by

pr(Y = 1 | X) =
π1f1(X)

π0f0(X) + π1f1(X)
,

where i = 0, 1, πi is the probability of X coming from group i and fi(X) is the marginal
density of X if it belongs to group i. An optimal classification can then be achieved
when one classifies new variable X to the class 1 if π1f1(X) > π0f0(X). Consequently,
the main effort is devoted to estimating f1(X) and f0(X). If X is Gaussian, further
simplifications can be made and such an approach is broadly known as linear discriminant
analysis. The main difficulty with extending the Bayes rule to functional data is linked
to the fact that the marginal densities do not exist for functional data (Delaigle and
Hall, 2010). Nevertheless, approaches attempting to directly approximate the marginal
densities with dimension reduction techniques have proven useful, even in the absence
of well-defined target densities. For example, James and Hastie (2001) use a Gaussian
framework to develop regularization methods, while Bongiorno and Goia (2016) and Dai
et al. (2017) develop nonparametric approaches without Gaussian assumptions.

It is well known that functional classification can achieve a perfect classification, if
the infinite-dimensionality is well exploited. This implies that for the purpose of classifi-
cation, it is not necessarily advantageous to have a well-defined finite-dimensional repre-
sentation. Delaigle and Hall (2012) demonstrate such a phenomenon with a simple linear
centroid classifier using asymptotic analysis and suggest a practical representation us-
ing components obtained from functional principal component analysis and partial least
squares. Kraus and Stefanucci (2018) propose L2 regularization methods to obtain the
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representation. Berrendero et al. (2018) further clarify this phenomenon under a repro-
ducing kernel Hilbert space framework for Gaussian processes, suggesting an alternative
finite dimensional approximation.

While optimal performance is an important criterion to consider, the increasing im-
pact of statistical analysis on modern scientific investigations has created the need to
carefully consider interpretability of the outcomes of the analysis. Some attempts have
been made to address interpretability in functional data, based on the idea that a sim-
pler form of function is easier to interpret, and thus more useful in practice. As the
function is an infinite-dimensional object, the formulation is often given in terms of a
basis function representation. Under this setting, three different approaches have been
proposed to construct a simpler form of functions. The first one is to impose a con-
straint on the coefficients directly with an `1 norm (e.g., Zhou et al., 2012). Assuming
that β can be well approximated by a finite number of basis functions, say K, this can
be expressed as β(t) =

∑K
k=1 αkBk(t) subject to

∑K
k=1 |αj | ≤ C and thus encourages the

coefficients to be zero. The second approach is to limit the class of the functions {Bk}
in terms of their shape such as constant or strictly linear functions only (e.g., Tian and
James, 2013). A difficulty with a standard sparse regularization for a function is that
the penalty that encourages a sparse representation of the function does not necessar-
ily have a control over domain selection: i.e., even if αk = 0 for some k, β(t) 6= 0 for
t ∈ Ik(t) = {t ∈ I : Bk(t) 6= 0}. The third one is to limit the support of the function
β to include zero regions (James et al., 2009; Zhou et al., 2013; Martin-Barragan et al.,
2014; Lin et al., 2016; Picheny et al., 2019). We wish to incorporate interpretability in
the latter notion of obtaining zero regions in the solution. However, as noted by Kneip
et al. (2016) and Roche (2018), the theoretical framework appropriate to deal with a
discrete notion of sparsity in high dimensions does not necessarily offer an insight into
a problem in an infinite dimensional setting.

A functional formulation on sparsity is relatively scarce. Wang and Kai (2015) in-
troduce the notion of functional sparsity, distinguishing global sparsity, which relates to
functional variable selection, from local sparsity, which relates to domain selection with
zero regions. Tu et al. (2020) develop a regularization method to achieve simultane-
ous estimation of both types of sparsity in a time varying functional regression setting
and Lin et al. (2017) propose an alternative regularization to achieve local sparsity in
functional linear regression. Both approaches rely on a clever grouping of the sparse
coefficients in the basis function representation. Hall and Hooker (2016) study the issue
of identifiability of domain selection problem in functional linear regression and suggest
a domain search strategy. Kraus and Stefanucci (2018) follow a similar line.

In this work, we seek an alternative approach to functional linear classification with
a direct estimation method that addresses dimensionality, optimality and interpretabil-
ity. With the need to embed additional constraints on the form of the solution, we
reformulate the functional linear discriminant analysis as a regularization problem with
an appropriate choice of penalty functions. So far, the penalty-based regularization
methods have been used mostly for either smoothness in regression (e.g., Cardot et al.,
2003; Crambes et al., 2009) or invertibility in classification (Kraus and Stefanucci, 2018),
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based on an L2-type penalty. The idea of sparsity as variable selection with an `1-type
penalty is actively developed in the high-dimensional setting with scalar variables, but
much less for the infinite-dimensional functional setting. We develop a new regulariza-
tion method for functional linear discriminant analysis with an L1-type penalty in the
functional setting for inducing zero regions, as opposed to zero coefficients. We study
the underlying optimization problem in detail, showing that it has a well defined solu-
tion that contains zero regions, achieving a functional sparsity in the sense of domain
selection. Furthermore, we show that our regularized classifier asymptotically behaves
similarly to the optimal classifier. We do not presume, even in the case where the opti-
mal classifier is well defined, that the underlying projection function β has a local sparse
property with true zero regions in the domain. The role of the L1 penalty is to provide
a sparse estimator that consistently estimates the true function whether or not the lat-
ter is sparse, enhancing interpretability without compromising prediction performance.
Unlike the approaches based on direct dimension reduction techniques such as principal
component analysis or partial least squares, our proposed regularization method does
not require assumptions on the eigenvalue sequences of the covariance function or any
other unknown quantities. Numerical comparisons with existing methods demonstrate
the properties of the proposed estimator in finite samples with both simulated and real
data examples.

2 Methodology

2.1 Functional data framework

We use the following standard notation: for f ∈ Lp(I), 1 ≤ p <∞, the norm is defined
by ‖f‖p = (

∫
I |f(t)|p dt)1/p. When p =∞, ‖f‖∞ = inf{C : |f(t)| ≤ C a.e. on I}.

Assume thatX ∈ L2(I) with the mean µ(t) and covariance function cov{X(s), X(t)} =
γ(s, t), s, t,∈ I. Define the inner product in L2(I) by 〈f, g〉 =

∫
I fg for f, g ∈ L2(I).

Assuming
∫
I
∫
I γ(s, t)2 dsdt <∞, define the covariance operator Γ : L2(I)→ L2(I) as

Γ(β)(t) =

∫
I
γ(s, t)β(s) ds , t ∈ I.

It is known that Γ is a compact operator, and is Hilbert-Schmidt, that admits a spectral
representation given by

Γ(β) =
∞∑
j=1

θj〈β, φj〉φj , θj ≥ 0 , θj → 0 as j →∞ ,

where θj and φj(·) correspond to eigenvalues and eigenfunctions of the covariance op-
erator Γ, respectively. One of the important properties of a compact operator is that
it is not invertible unless it has only finitely many distinct eigenvalues. At the same
time, since θj → 0 as j → ∞, a finite rank approximation to Γ is also well understood,
which has been the basis of many regularization and dimension reduction techniques
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for functional data, notably functional principal component analysis and its applications
(e.g., Hall et al., 2001). More details on theoretical foundations of functional data are
found in Hsing and Eubank (2015).

For our classification problem, we denote the variable in each group by X0 and X1

and we make the following standard assumptions.

Assumption 1. For k = 0, 1, Xk is square integrable function on a compact interval I
with µk = E(Xk) and µ0 6= µ1 with common covariance function γ. The mean functions
and the covariance function are continuous.

Assumption 2. For k = 0, 1, E(‖Xk‖42) <∞.

Without loss of generality, we assume that µ0 = 0 and µ1 = δ.

2.2 An optimal linear classifier

The optimality of the linear methods in the homoskedastic Gaussian scenario is well
established by Delaigle and Hall (2012) based on an asymptotic centroid-based classi-
fier. We briefly review their framework to motivate our regularization method, which is
introduced in the following section.

For given X, the linear classifier with β can be defined in multiple ways. We assume
that β ∈ L2(I) is continuous. The class assignment based on β is done via

T 0(X) =
(
〈X,β〉 − 〈δ, β〉

)2 − (〈X,β〉)2 ,
which assigns to X the group label Y = 1 if T 0(X) < 0 and Y = 0 if T 0(X) > 0. Then,
the misclassification error is π0pr{T0(X) < 0 | Y = 0}+ π1pr{T0(X) > 0 | Y = 1}. If X
is Gaussian, the misclassification probability can be expressed as

errX(β) = 1− Φ

(
|〈δ, β〉|

2〈β,Γβ〉1/2

)
, (1)

with its minimal error given by 1 − Φ(‖Γ−1/2δ‖2/2) (Delaigle and Hall, 2012; Kraus
and Stefanucci, 2018). It can be seen that an optimal function β that minimizes the
misclassification error is

max
β 6=0

〈δ, β〉2

〈Γβ, β〉
= max

β 6=0

〈δ, β〉2

var(〈X,β〉)
.

This is equivalent to the extended criterion for Fisher’s discrimination analysis for func-
tional data (Shin, 2008) defined by

max
β 6=0

var[E{Fβ(X) | Y }]
E[var{Fβ(X) | Y }]

= max
β 6=0

π0π1〈δ, β〉2

〈Γβ, β〉
. (2)

Attempting to directly solve (2) would lead to a form of generalized eigenvalue problem.
Equivalently, this can be formulated as

max
β
〈δ, β〉2 subject to 〈Γβ, β〉 − 1 = 0. (3)

5



The solution can be derived from the Lagrangian formulation of (3)

Jρ(β) = 〈δ, β〉2 − ρ{〈Γβ, β〉 − 1} ,

for some constant ρ, which leads to

Γβ = δ . (4)

Hence, we see that the optimal linear classifier can be defined as the solution to (4).
However, since a bounded inverse of Γ does not exist in the infinite dimensional setting
(e.g., Cardot et al., 2007), this equation clearly illustrates that linear discrimination
analysis for functional data is an ill-posed inverse problem. When the covariance operator
further satisfies ‖Γ−1δ‖2 < ∞, a unique classifier exists in (Ker(Γ))⊥ with the optimal
error 1− Φ(‖Γ−1/2δ‖2/2). When ‖Γ−1δ‖2 =∞, an optimal solution does not exist, but
optimal classification can be achieved asymptotically along a non-convergent path and
perfect classification may be possible if ‖Γ−1/2δ‖2 =∞. Therefore, unlike regression, it
is not necessary to assume the existence of a unique solution to obtain an approximate
solution, whose performance can mimic the optimal classifier asymptotically (Delaigle
and Hall, 2012; Kraus and Stefanucci, 2018). In the following, we will denote the solution
to (4) by β0 when it exists and is finite.

2.3 A regularized solution to discrimination

The primary purpose of regularization is to solve an ill-posed inverse problem. We in-
troduce our regularization method to solve the ill-posed inverse problem (4) above. A
sensible strategy would be to impose some constraints on the solution set or a penalty
term to an objective function. In order to impose the functional equation (4), we in-
troduce a corresponding minimization problem. Specifically, viewing the discriminant
equation in (4) as a type of score equation leads to defining an objective function as

`(β) =
1

2
〈Γβ, β〉 − 〈δ, β〉 . (5)

Hence the functional derivative of (5) with respect to β yields (4). In practice, where Γ
and δ are not available, replacing (Γ, δ) by their empirical counterpart (Γn, δn) gives

`n(β) =
1

2
〈Γnβ, β〉 − 〈δn, β〉 .

For example, the standard sample covariance operator and the sample mean could be
used for Γn and δn. The standard sample estimators often lack smoothness (e.g., Cardot
et al., 1999) so it is often desirable to use their smoothed version by taking into account
the underlying design schemes (Zhang and Wang, 2016). Our formulation does not
rely on the specific choice of estimators as long as they are consistent. To incorporate
additional constraints, we consider the following optimization problem

min
β∈H
{`n(β) + P (β)} , (6)
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where H is an appropriate function space and P (β) is a penalty corresponding to the
constraint. The type of constraint requires some further consideration. As the underlying
problem is defined in L2(I), it seems natural to add a penalty that depends on the L2

norm of β such as ‖β‖22 as in Kraus and Stefanucci (2018), while a smoothness constraint
on β would lead to the L2 penalty on the derivatives. Nevertheless, L2 regularization in
general does not produce a sparse solution (e.g., Lin et al., 2017; Tu et al., 2020). This
phenomenon is well investigated in multivariate data, and the popularity of the `1 or `0
penalty demonstrates the effectiveness of a sparse solution in a broader context.

In order to introduce a type of sparsity in the discriminant function, we propose to
directly impose the functional norm constraints ‖β′‖22 ≤ C1 and ‖β‖1 ≤ C2. Although
other constraints are possible, it turns out that this combination of constraints allows
direct control over the L2 norm. One might wonder whether the derivative penalty is
necessary in our sparse regularization. Our experiences suggest that a combined norm
give more stable results. We have assumed compact support to simplify the statement in
Assumption 1. Under the assumption of compact support for β, the role of the derivative
penalty does not seem so significant with respect to the classification performance. In
general, since we only have ‖β‖1 ≤ ‖β‖2, the bound on the L1 norm alone is not sufficient
to ensure the L2 properties of β and the techniques we have developed below do not
necessarily work. On the other hand, we have (e.g., Gabushin, 1967; Li and Leoni, 2018)
that

‖β‖2 ≤ ‖β‖1 + ‖β′‖2 ,

which suggests that the proposed method is able to control the L2 norm of the function
more effectively by regularizing both the derivative and the L1 norm of the function.

Taking into account the functional constraints in (6) leads to the following objective
function

Jn(β) =
1

2
〈Γnβ, β〉 − 〈δn, β〉+ P (β) , (7)

where P (β) = λ‖β‖1 +(η/2)‖β′‖22 and λ and η are tuning parameters, chosen from data.
In this formulation, the derivative penalty is a standard smoothness penalty. The

non-standard part is the L1 penalty, which is an infinite-dimensional counterpart of the
`1 sparsity penalty. As is demonstrated below, the L1 norm can be linked to a sparse
solution in function space in terms of domain selection (Li and Leoni, 2018), which is a
special case of functional sparsity (Wang and Kai, 2015). Arguably, the result would be
easier to interpret as the localized effects are automatically identified.

We note that it is possible to use the ridge penalty (‖β‖22) instead of the derivative
norm. In fact, this choice makes the analysis of the optimization problem much easier
as it directly controls the L2 norm. In this case, the fact that 〈Γnβ, β〉+ τ‖β‖22 ≥ τ‖β‖22
for all τ > 0 is sufficient to guarantee the existence of a solution. Nevertheless, we
have chosen the derivative norm that has the added consideration of smoothness of the
solution, since a smoother solution is easier to interpret.
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2.4 Properties of the regularized classifier in the population model

In this section we study the characteristics of the proposed regularized solution to the
infinite-dimensional convex optimization problem. In order to simplify the discussion,
we first consider the following optimization problem that replaces the sample quantities
by the population counterparts. Let

J(β) =
1

2
〈Γβ, β〉 − 〈δ, β〉+ λ‖β‖1 +

η

2
‖β′‖22 . (8)

The smoothness constraint with β′ reduces the feasible set of β from L2(I) to a differen-
tiable subspace H1(I) = {β ∈ L2(I) : β is absolutely continuous, β′ ∈ L2(I)}, which is
the Sobolev space H1 = W 1,2 in standard notation (Brezis, 2011). Since L2(I) ⊂ L1(I),
we consider H = {β ∈ H1(I) : ‖β‖1 + ‖β′‖2 < ∞} as the space of feasible solutions,
equipped with the norm given by ‖β‖ = ‖β‖1+‖β′‖2. Then it is clear that H is a convex
set.

Under this setting, it can be shown that J is convex, so that the existence of a
solution is guaranteed. Moreover, we can show that J is strictly convex so the solution
is unique. We summarize the result in the following proposition.

Proposition 1. The function J : H → R defined in (8) has a global minimizer β̃ ∈ H
such that

J(β̃) ≤ J(β)

for all β ∈ H. Furthermore, the solution is unique.

In order to understand the property of the solution β̃, additional characterizations
of the solution beyond its existence are necessary. Note that if the objective function is
differentiable, the first derivative (along with the second derivative) condition sufficiently
characterizes the solution and a Newton-type algorithm can be used to find it. Non-
differentiable functions require an alternative form to replace the derivative condition.
Following similar arguments in Reyes (2015, ch 6) and Glowinski (1984, p. 70-71), we
derive a set of conditions that β̃ satisfies in the following proposition, which could be
used for developing an optimization algorithm.

Proposition 2. If β̃ is the minimizer of J(β) in (8), there exists a function α ∈ L2(I)
with |α(t)| ≤ λ a.e. for t ∈ I such that β̃ satisfies the following relation:

〈Γβ̃, β〉+ η〈β̃′, β′〉 − 〈δ, β〉+ 〈α, β〉 = 0 , for all β ∈ H , (9)

and 
α(t) = λ on {t ∈ I : β̃(t) > 0} ,
|α(t)| ≤ λ on {t ∈ I : β̃(t) = 0} ,
α(t) = −λ on {t ∈ I : β̃(t) < 0} .

(10)

The equations (9) and (10) are necessary conditions for the solution to satisfy. Equa-
tion (9) means that the subgradient of the objective at the minimizer β̃ contains zero.
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Figure 1: Illustration of the roles of the tuning parameters η and λ. Each panel plots
the true β0(t), as well as β̃(t) with a varying tuning parameter.

(a) Setting 3, λ = 2−7 (b) Setting 3, η = 2−5

(c) Setting 5, λ = 2−7 (d) Setting 5, η = 2−5

Furthermore, Proposition 2 demonstrates the domain selection property of the solution.
In order to make an analogy to the finite high dimensional case, consider a simplistic
example where Γ = I, the identity operator, and η = 0 in (8). Note that, since the
identity operator is not compact, this is not a realistic example from the functional data
perspective but serves as a toy example. Then, the optimal solution β̃ can be given
explicitly as

β̃(t) =


δ(t)− λ if δ(t) > λ ,
0 if δ(t) ∈ [−λ, λ] ,
δ(t) + λ if δ(t) < −λ .

Since δ is continuous, the set {t ∈ I : β̃(t) = 0} will be a union of intervals and then
β̃ joins the zero intervals continuously at the boundary. Hence the solution exhibits a
thresholding behaviour, similar to the sparse estimators in the finite dimensional case,
but on the continuous domain, thus justifying the notion of functional sparsity in the
sense of domain selection. When η = 0, the optimization occurs in L2(I), so the bound-
ary points of the zero intervals are not necessarily differentiable. For the general case,
it is difficult to express the solution in an analytical form but the same argument holds
and when η > 0 as in (9) and (10), the function values at zero intervals and non-zero
intervals are joined smoothly.

Moreover, suppose that βc ∈ H1
0 (I) = {u ∈ H1(I) : u is zero at the boundary of I}.
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Then, (9) leads to∫
I
(Γβ̃ − δ + α)βc +

∫
I
(ηβ̃′)β′c = 0 , for all βc ∈ H1

0 (I) . (11)

This implies (e.g., Brezis, 2011) that β̃′, the derivative of the solution, is also absolutely
continuous and satisfies

ηβ̃′′ = Γβ̃ − δ + α , a.e. , (12)

which, together with (10), gives an additional necessary condition for the solution.
The following observation helps us to determine the upper bound of the tuning

parameter λ. Suppose that δ ∈ L∞(I). Then, we have 〈δ, u〉 ≤ ‖δ‖∞‖u‖1. In addition,
it can be shown that the solution β̃ satisfies

〈Γβ̃, β̃〉+ η〈β̃′, β̃′〉+ λ‖β̃‖1 = 〈δ, β̃〉 ≤ ‖δ‖∞‖β̃‖1 .

It follows that
〈Γβ̃, β̃〉+ η〈β̃′, β̃′〉+ (λ− ‖δ‖∞)‖β̃‖1 ≤ 0 .

Since the first two terms are non-negative, if ‖δ‖∞ ≤ λ, then β̃ = 0. This gives a range
of λ values for a non-zero solution and this depends on the magnitude of δ. Figure 1
illustrates the effect of the tuning parameters η and λ on β̃, under two different scenarios
for β0: sparse and non-sparse. The curves in the top and bottom panels respectively
correspond to the simulation settings 3 and 5 in Section 3. We observe that for fixed λ,
larger η gives smoother estimates and for fixed η, larger λ gives a more sparse solution.

Suppose that Ker(Γ) = {0}. If ‖Γ−1δ‖2 < ∞, then β0 = Γ−1δ ∈ L2(I) is the
unique solution to (4). Denote by β̃ the minimizer of J in (8). The following proposition
shows that the regularized solution β̃ approximates the underlying model solution to (4)
whether the latter is finite or not. We write λ̃ = (λ, η), and λ̃ → 0 means that λ → 0
and η → 0.

Proposition 3. Fix any u ∈ L2(I). If ‖Γ−1δ‖2 < ∞, then 〈β̃, u〉 → 〈β0, u〉 as λ̃ → 0.
If ‖Γ−1δ‖2 =∞, then ‖β̃‖ → ∞, as λ̃→ 0.

Using Proposition 3 together with (1), we can study the misclassification error of the
regularized classifier. We show below that our regularized classifier mimics the behaviour
of the optimal classifier in terms of the misclassification rate.

Proposition 4. Assume that X is Gaussian with covariance operator Γ. The misclas-
sification probability of the regularized classifier β̃, denoted by errX(β̃), converges to
1− Φ(‖Γ−1/2δ‖2/2) as λ̃→ 0.

Remark 1. It may be suspected that the two classes have different covariance functions,
say Γ0 and Γ1, in which case a full generalization of our linear approach is not trivial.
For example, a direct generalization of (2) replaces the denominator by 〈Γ̃β, β〉 where
Γ̃ = π0Γ0+π1Γ1, the pooled covariance function. Then the same formulation as (8), with
Γ replaced by Γ̃, follows. Alternatively, we can consider the two-dimensional projection
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approach for quadratic discriminant analysis proposed by Gaynanova and Wang (2019)
in the multivariate setting. In our functional framework, we would optimize the following
two objective functions

Ji(β) =
1

2
〈(Γiβ, β〉 − 〈δ, β〉+ λi‖β‖1 +

ηi
2
‖β′‖22,

for i = 0, 1. The classification will be then made based on the two linear maps with the
respective solutions. An advantage of this method over standard quadratic discriminant
analysis is that the computational complexity is essentially the same as the homoscedas-
tic case being considered here. In either case, the theoretical guarantee on the domain
selection and classification accuracy need to be carefully investigated in the functional
context.

2.5 Properties of the regularized classifier in the sample model

The development in the previous section justifies the use of the L1 penalty in our formu-
lation, by ensuring that we have a well-defined regularization problem (Proposition 1)
with the desired sparsity in the solution (Proposition 2). We can show that these prop-
erties also hold for the empirical estimator, denoted by β̂, the minimizer of Jn defined
in (7).

In the sample case, our formulation of Jn is based on two estimators δn and Γn.
Provided that the sample covariance operator Γn is non-negative definite and δn ∈ L2(I),
it can be shown that Propositions 1 and 2 hold for Jn and β̂. In fact, the proofs are
essentially the same, thus we omit the formal statements of the Corollaries here.

In order to study the limit of the empirical estimator β̂ and the corresponding mis-
classification probability, we make the following assumptions. Assumption 3 says that
some consistent estimators are available for δn and Γn (or γn) and Assumption 4 assumes
that the tuning parameters decrease not too rapidly as the sample size gets large.

Assumption 3. Let (δn, γn) be consistent estimators such that

‖γn − γ‖∞ = Op(an), ‖δn − δ‖∞ = Op(bn) ,

for some sequences an, bn converging to 0.

Assumption 4. Let λ = λn → 0, η = ηn → 0 with λn/ηn = O(1), an/ηn = o(1) and
bn/ηn = o(1).

For sufficiently dense data as we consider here, the standard sample mean and sample
covariance function can be used with a root-n convergence. Alternatively, any preferred
smoothing methods could be employed, then the convergence rates are given as a function
of smoothing parameters used, for example, see Yao et al. (2005); Li and Hsing (2010)
for local linear smoothers. Normally the error for covariance estimation is larger than
that for the mean estimation (an ≥ bn). Zhang and Wang (2016) generalize those
results under a general design scheme and show that a root-n rate can be achieved
for dense and ultra-dense data, in which case the uniform convergence rates can be
an = bn = (log n/n)1/2.
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Proposition 5. Fix any u ∈ L2(I). Suppose that Assumptions 1-4 hold. If ‖Γ−1δ‖2 <
∞, then 〈β̂, u〉 → 〈β0, u〉 in probability as n→∞. On the other hand, if ‖Γ−1δ‖2 =∞,
then ‖β̂‖ → ∞ in probability as n→∞.

Proposition 6. Assume that X is Gaussian with covariance operator Γ. Under As-
sumptions 1-4, the misclassification probability of the regularized classifier β̂, denoted by
errX(β̂), converges to 1− Φ(‖Γ−1δ‖2/2) in probability as n→∞.

2.6 Numerical algorithms

A fundamental strategy to solve infinite-dimensional optimization problems could be
said to be either to discretize-and-optimize or to optimize-and-discretize (Reyes, 2015).
For example, Glowinski (1984) analysed numerical methods based on the former ap-
proaches using piecewise linear and quadratic approximations on H1(I), while Reyes
(2015) includes examples of the latter. Generally, the former is easier, while the latter
may give a more elegant solution. According to Proposition 2, the second approach re-
quires solving equations (9), or (12), and (10) simultaneously. Based on these equations,
Newton-like update steps for both β̃ and α could be derived. However, as this involves
further development of the testable conditions at the iteration to be adapted to a proper
function space (Reyes, 2015), we leave it for future work.

Here we have used piecewise linear approximations in our implementation with
equidistant grid points. We use estimates from the method by Yao et al. (2005) for Γn
and δn and evaluate the derivative by the finite-difference approximation. This strategy,
combined with the rather simple form of the optimization problem, leads to a lasso-type
problem, for which many efficient optimization algorithms are available. We implement
the coordinate descent algorithm by Fu (2012) to solve our discretized problem.

2.7 Implications in functional linear regression

Although we started with a classification problem, our regularization method with an
L1-type penalty can be motivated from a regression point of view. Consider a functional
regression problem with scalar response Y and functional predictor X ∈ H = L2(I).
For simplicity, assume that E(Y ) = 0 and E(X) = 0 and consider a linear regression
given by

Y =

∫
I
β(t)X(t) dt+ ε ,

where E(ε) = 0 and var(ε) = σ2. As before, the covariance operator of X is denoted
by Γ. In addition, let Λ : L2(I)→ R denote the covariance operator between X and Y ,
defined as

Λ(u) =

∫
I
E{X(s)Y }u(s) ds .

Then, the population least squares criterion can be expressed as

E{(Y − 〈β,X〉)2} = 〈Γβ, β〉 − 2Λ(β) + const ,

12



from which it follows that if β̃ is the minimizer if and only if it satisfies

〈Γβ̃, u〉 = Λ(u) for all u ∈ H . (13)

To be consistent with the earlier notation, write Λ(u) = 〈∆, u〉 where ∆(·) = E{X(·)Y }.
Then, (13) can be expressed as

〈Γβ̃, u〉 = 〈∆, u〉 for all u ∈ H .

Note that when Y is binary with values in {−1, 1}, ∆ is equal to δ in (4), the difference
in the group means in X between two classes.

The existence of the solution requires the so-called Picard condition (Cardot et al.,
2003; Hsing and Eubank, 2015)

∞∑
j=1

〈E{X(·)Y }, φj〉2

θ2j
=

∞∑
j=1

〈∆, φj〉2

θ2j
<∞ ,

which is equivalent to ‖Γ−1δ‖2 < ∞ in the case of classification problems (c.f., Sec-
tion 2.2).

The above discussion shows that even though the motivation differs, the underly-
ing problem for functional linear regression is equivalent to that of linear classification.
Hence, our methodology is equally applicable in a regression setting and offers a reg-
ularization method to estimate the coefficient function β. Given a sample of size n of
(Yi, Xi), i = 1, . . . , n, denote the sample version of the operators of Γ and Λ by Γn and
Λn, respectively, defined as

Γn(u)(t) =
1

n

n∑
i=1

〈Xi, u〉Xi(t) , Λn(u) =
1

n

n∑
i=1

〈Xi, u〉Yi = 〈∆n, u〉 u ∈ L2(I) .

where ∆n(·) = (1/n)
∑n

i=1Xi(·)Yi. Assuming that the true coefficient function β is a
smooth function, Cardot et al. (2003) proposed a generalization of a ridge regression
with an L2 derivative penalty as

1

2
〈ΓnβK , βK〉 − 〈∆n, βK〉+

η

2
‖β(m)

K ‖22 ,

where βK =
∑K

j=1 ckBk with Bk is a B-spline basis function and β
(m)
K ,m ≥ 1 is the

mth derivative of βK . Our analysis suggests that adding an L1 penalty would lead to a
sparse estimator that consistently estimates the true function, whether or not the latter
is sparse.

Remark 2. Although the theoretical framework differs, our main consideration of inter-
pretability is not limited to this type of problem. For example, semi-parametric problems
of single-index or multiple-index regression or classification can be expressed as

Y = F

(∑
k

〈X,βk〉

)
+ ε
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with a known or unknown link function F . Then an L1-type functional regularization for
βk can be developed with an appropriate loss function. We leave such a generalization
to our future work.

3 Numerical studies

3.1 Simulation models

We use simulated curves under six different underlying population scenarios to assess the
performance of the proposed method and compare it with existing approaches. Settings
1 – 5 represent scenarios where the underlying structure follows model (4) in Section 2.2
and Setting 6 is borrowed from Delaigle and Hall (2012). The proposed approach, which
we name SFLDA (Sparse Functional Linear Discriminant Analysis), is compared with
eight different approaches: the non-sparse version of the proposed approach (FLDA)
that sets the tuning parameter λ = 0 in (7); ridge FLDA (RFLDA) proposed by Kraus
and Stefanucci (2018); partial least squares (PLS) by Delaigle and Hall (2012); the
three Bayes methods (B-Gauss, B-NPD, B-NPR) in Dai et al. (2017); the quadratic
discriminant analysis (QDA) by Galeano et al. (2015); functional logistic regression
(Logistic) (Müller, 2005).

The first four settings have a sparse underlying discriminant function. The sparse
discriminant functions, β1(t) and β2(t), are generated with 33 cubic B-spline basis func-
tions Bi,4 (i = 1, . . . , 33) with the knots ξj = j/30, j = 0, . . . , 30, where ξ0 and ξ30 are
the boundary knots. We set β1(t) = 0.2B5,4(t) + 0.2B28,4(t) for Settings 1 and 2, and
β2(t) = 0.2B5,4(t)−0.2B24,4(t) for Settings 3 and 4. For the non-sparse β3(t) for Setting
5, we use 8 cubic B-spline basis and set

β3(t) = 0.1B1,4(t)− 0.3B3,4(t)− 0.2B5,4(t) + 0.2B7,4(t)− 0.1B8,4(t).

For the covariance function Γ, we used the Matérn covariance function:

γ(s, t) = σ2
21−ν

G(ν)

{
(2ν)1/2

|s− t|
ρ

}ν
Kν

{
(2ν)1/2

|s− t|
ρ

}
,

where G is the gamma function, Kν is the modified Bessel function of the second kind, for
which the R-function besselK was used, and the parameters were set as σ = 1, ρ = 0.2,
and ν = 3. We set the mean of the first group as µ0(t) = 5t +

∑5
j=1(cj/j)φ(t), where

φ(t) = 21/2 sin(πjt), (c1, . . . , c5) = (2.19,−0.18,−0.19,−2.51,−0.56), and the second
group mean as µ1(t) = µ0(t)+δ(t). Here the mean difference function δ(t) is determined
by δ(t) =

∫
I Γ(t, s)βk(s)ds, k = 1, 2, 3.

The data were assumed to be available on a fine grid. We used T = 100 equispaced
grid points on [0, 1]. For grid points tj , j = 1, . . . , T , let Γ̃ be the T × T matrix with
(i, j) entry Γ(ti, tj), and let m0 and m1 be the T × 1 vectors with ith entry µ0(ti) and
µ1(ti), respectively. Data were generated by x0 = m0 + Γ̃1/2e0 and x1 = m1 + Γ̃1/2e1
where e0 and e1 are the vectors of independent noise for each class, generated from either
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Table 1: Test error rates (%) for simulated data based on 100 repetitions. Standard
errors are in the parentheses.

Setting SFLDA FLDA RFLDA PLS B-Gauss B-NPD B-NPR Logistic QDA

1
33.3 33.4 33.6 33.7 33.4 34.6 35.1 34.7 34.2

(0.22) (0.22) (0.24) (0.23) (0.24) (0.25) (0.25) (0.27) (0.28)

2
33.5 33.5 33.8 33.7 33.6 34.7 35.4 34.9 34.2

(0.21) (0.20) (0.20) (0.20) (0.20) (0.22) (0.24) (0.25) (0.22)

3
37.2 36.9 37.5 37.1 37.2 37.8 39.0 38.5 38.0

(0.23) (0.20) (0.20) (0.21) (0.22) (0.25) (0.29) (0.27) (0.25)

4
37.7 37.3 38.1 37.6 37.5 39.1 40.3 39.2 38.2

(0.24) (0.22) (0.24) (0.23) (0.24) (0.27) (0.30) (0.28) (0.26)

5
3.2 3.1 3.1 3.1 3.2 3.5 3.7 3.6 4.2

(0.08) (0.07) (0.07) (0.07) (0.08) (0.10) (0.10) (0.14) (0.08)

6
3.3 3.2 3.3 3.1 4.0 3.4 2.5 2.5 3.6

(0.08) (0.07) (0.07) (0.07) (0.08) (0.08) (0.10) (0.10) (0.14)

Table 2: Average norm difference (‖β̂ − β0‖j) between the estimated discriminant
function and the true function. Numbers are multiplied by 100.

Setting j SFLDA FLDA RFLDA PLS

1
1 5.37 (0.19) 7.97 (0.10) 8.81 (0.13) 8.20 (0.09)
2 9.64 (0.22) 10.07 (0.11) 11.29 (0.18) 10.14 (0.10)

3
1 5.84 (0.18) 8.10 (0.11) 9.00 (0.12) 8.30 (0.11)
2 10.39 (0.22) 10.40 (0.14) 11.69 (0.18) 10.26 (0.11)

5
1 6.47 (0.14) 4.15 (0.11) 5.78 (0.17) 4.50 (0.10)
2 8.21 (0.18) 5.25 (0.13) 7.23 (0.20) 5.64 (0.11)

a standard normal for Settings 1, 3, and 5 or a t-distribution with 5 degrees of freedom
for Settings 2 and 4.

As mentioned earlier, Setting 6 is borrowed from Delaigle and Hall (2012). Each curve
from the ith group is generated as xi =

∑40
j=1(j

−1Zij + µij)φj(t), where Zij are centred
exponential variables, (µ01, . . . , µ06) = (0,−0.5, 1,−0.5, 1,−0.5), and (µ11, . . . , µ16) =
(0,−0.75, 0.75,−0.15, 1.4, 0.1).

We generated n = 100 curves for each group to train each classifier and independently
generated 300 curves for each group to evaluate the misclassification error. The tuning
parameters in each method are chosen via 5-fold cross-validation within the training
data based on the misclassification error.
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3.2 Results

Table 1 lists test errors based on 100 repetitions. The proposed approach is generally
competitive in all settings, even though the differences among the methods do not stand
out. A main benefit of the proposed sparse estimation can be seen in its ability to esti-
mate zero regions in the discriminant function. Table 2 displays the norm differences of
the estimated discriminant function β̂(t) by the proposed method with sparse functional
penalty, its non-sparse version, ridge regularization, and partial least squares, in Settings
1, 3, and 5. The proposed method has the lowest error with respect to both norms in the
two sparse settings (1 and 3), while its non-sparse version and partial least squares are
better in the non-sparse setting (5). Also shown in Figure 2 are the estimated curves for
each of the four methods for Settings 1, 3, and 5, along with the median in solid black
and the true discriminant curve in a dot-dashed black line. The median curve of the
estimators from the proposed method resembles the true function the most in Settings
1 and 3, successfully identifying the non-signal regions. The estimators with a ridge
penalty show larger variability than other methods, which suggests that a ridge-type
regularization in functional classification does not necessarily reduce variance, unlike in
ridge regression.

3.3 Real data examples

We tested the same set of the functional classification methods as in the previous section
for real data examples. The Tecator dataset (Delaigle and Hall, 2012) has 240 curves
of near infrared absorbance spectra (850 - 1050 nm) of finely chopped meat, using a
Tecator Infratec Food & Feed Analyser. Here the groups are defined according to the
fat content. The Wine spectra dataset (Dai et al., 2017) contains 123 samples of mid
infrared spectra (4000 - 400 cm−1), which are divided into two groups based on the
alcohol content level. The Growth dataset (Gasser et al., 1984; Sheehy et al., 1999) has
height growth curves of 112 boys and 120 girls from births to the 18th year. We also
analysed the velocity of the Growth curves. The Wheat data (Kalivas, 1997) have near
infrared spectra of 100 wheat samples, divided into two groups according to the protein
content. The Phoneme data are log-periodograms constructed from digitized speech of
two different sounds “aa” and “ao”, as described in Hastie et al. (2009). Each panel of
Figure 3 respectively shows 40 randomly selected curves from each data set, with each
class shown with different colors.

To estimate test errors, we split into 2/3 training and 1/3 testing data, and tune
each method in the same way as the simulation study, and repeat this process 30 times.
Mean test errors are displayed in Table 3. While there are no meaningful differences
among the test errors of these methods, we can see that the proposed method achieves
compatible accuracies with a much better ability to find localized discriminant regions,
as can be seen in Figure 4. In particular, we have found that the selected regions of
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Figure 2: Discriminant functions from 100 repetitions of the simulation study estimated
by SFLDA, FLDA, RFLDA, and PLS, for Settings 1, 3, and 5. The thicker black line
in each plot represents the median of the estimated curves, while the dot-dashed curve
is the true discriminant function.

SFLDA FLDA RFLDA PLS

SFLDA FLDA RFLDA PLS

SFLDA FLDA RFLDA PLS

Table 3: Mean test errors (%) from real data examples, based on 30 repetitions. Stan-
dard errors are in the parentheses.

Data SFLDA FLDA RFLDA PLS B-Gauss B-NPD B-NPR Logistic QDA

Tecator
5.0 3.4 7.4 4.8 6.3 4.2 4.8 1.8 3.3

(0.44) (0.41) (0.68) (0.46) (0.48) (0.42) (0.59) (0.27) (0.42)

Wine
10.3 10.0 9.2 9.2 11.1 10.4 9.9 8.7 11.6

(0.81) (0.74) (0.72) (0.81) (0.91) (0.89) (0.57) (0.65) (0.80)

Growth
6.0 5.7 8.3 6.1 6.2 7.2 7.1 5.9 6.7

(0.39) (0.39) (0.43) (0.32) (0.44) (0.36) (0.40) (0.48) (0.40)

dGrowth
7.0 6.4 7.4 6.3 7.4 8.1 7.6 7.1 9.5

(0.57) (0.47) (0.52) (0.52) (0.48) (0.49) (0.55) (0.56) (0.60)

Wheat
0.1 0.0 0.1 0.0 0.1 0.0 0.2 0.2 0.2

(0.09) (0.00) (0.33) (0.00) (0.09) (0.00) (0.13) (0.17) (0.13)

Phoneme
19.7 21.6 20.9 21.4 23.7 23.8 24.2 22.1 24.4

(0.53) (0.59) (0.53) (0.58) (0.60) (0.57) (0.60) (0.62) (0.65)
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Figure 3: For each real data example, 20 sample curves from each class are shown along
with average curves. Solid and dotted curves represent curves from different classes.

(a) Tecator (b) Wine (c) Growth

(d) dGrowth (e) Wheat (f) Phoneme

Tecator, Wine, and Phoneme are consistent with findings from the spectroscopy litera-
ture. Specifically, according to the body composition study (Conway et al., 1984), fat
has high absorbance around 930nm, the absorbance region for ethanol is concentrated in
1200 - 850 cm−1 (Debebe et al., 2017), and it has been found by Hastie et al. (1995) that
the discriminating feature in phonemes are in the low frequencies about 500 - 1000Hz,
corresponding to the frequencies 16–32. All these known regions are consistent with the
estimates from the proposed method in the figure.
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Figure 4: Estimated discriminant curves for real data examples from 30 repetitions. The
median curve is shown as a thicker black solid line.

Tecator - SFLDA FLDA RFLDA PLS

Wine - SFLDA FLDA RFLDA PLS

Growth - SFLDA FLDA RFLDA PLS

Dgrowth - SFLDA FLDA RFLDA PLS

Wheat - SFLDA FLDA RFLDA PLS

Phoneme - SFLDA FLDA RFLDA PLS
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