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Filtered High Gain Interval Observer for LPV Systems
with Bounded Uncertainties

Antoine Hugo, Rihab El Houda Thabet, Luc Meyer, Sofiane Ahmed-Ali and Helène Piet-Lahanier

Abstract— In this paper, a new High-Gain Interval Observer
(HGIO) structure and its filtered version, named Filtered
High-Gain Interval Observer (FHGIO), are proposed for a
class of Linear Parameter Varying (LPV) systems subject to
additive disturbances and measurement noise. Those uncer-
tainties are assumed to be unknown but bounded with known
values. The HGIO is based on a high-gain observer structure
from which an interval formulation is deduced taking into
account the uncertainties bounds. Then, the proposed HGIO
is extended to incorporate a filter for the output estimation
error, leading to the FHGIO design whose goal is to reduce
the measurement noise amplification. Usually, the design of
such interval observers is based on monotone systems theory
which is hard to satisfy in many cases. In this paper, suitable
changes of coordinates are used to overcome this limitation.
Moreover, a sufficient condition for the non-divergence of the
radius dynamics and a procedure to design the observers gains
ensuring the stability are given for each observer. The efficiency
of the proposed observers is illustrated through a simulation
on a numerical example.

I. INTRODUCTION

Model-based state estimation of uncertain systems is a
challenging problem when it comes to controlling com-
plex applications. Uncertainties are often due to insufficient
knowledge about the system itself or its environment. It
can include unmodelled or neglected dynamics, parameter
variations, disturbances, noise, and more. To tackle this
challenge, different techniques have been developed. In the
stochastic framework, Extended, Unscented Kalman Filters
and Particle Filters are the most frequently used approaches
as presented in [10]. However, they prove complex to setup
because of the tuning process that requires to quantify the
accuracy of the model and some insight on the probability
density function. Moreover, the stability is not guaranteed.
In the deterministic framework, Sliding Modes Observers,
High Gain Observers (HGO), Interval Observers or Adaptive
Observers offer robust tools to cope with uncertainties for
state estimation. Neural Networks methods [17] have also
been recently introduced for state estimation to tackle the
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problem of accounting for unmodelled uncertainties.
Among all these various possibilities, HGOs had become one
of the most popular solution because of their simplicity of
implementation. They were first developed in the eighties
as a robust observer design for linear feedback systems and
they have been progressively extended to specific classes of
nonlinear systems. Nowadays, the most common class of
systems for designing HGOs is the observability canonical
form [11], however it is possible to carry out the design
for unstructured systems by taking additional considerations
[16]. Besides their simplicity coming from a Luenberger type
of structure, HGOs can be tuned by a unique high gain
parameter, usually denoted θ. This parameter should be taken
large enough to ensure robustness and fast convergence.
However, the high gain effect induces three major drawbacks.
The first one concerns the numerical implementation for high
dimension systems and large value of θ. The second draw-
back is the well-known peaking phenomenon of the state
estimations in the transient periods. Finally, the last drawback
is the effect of measurement noise that are amplified in the
corrective term.
To overcome those issues, different techniques have been
developed in the literature. In [22], a new HG/LMI design
is presented where the standard high-gain methodology and
the LMI-based observer design technique are combined in
order to reduce the maximum power of θ. In [21] and
[1], a filter is used inside a high-gain structure in order
to reduce the impact of the measurement noise. Thus, the
output estimation error is filtered before being amplified in
the corrective term. Finally, a solution to reduce disturbances
impact is to compensate by estimation such as presented by
the survey in [3].
Another popular way to deal with the uncertainties in
the deterministic context is to consider a set-membership
framework. In this case, all the considered uncertainties are
assumed unknown but bounded with known bounds. There
are two main types of set-membership observers. On the one
hand, those which are based on geometrical sets, such as
polytopes, ellipsoids ([14]) or zonotopes ([4]). On the other
hand, those based on the description of the sets under the
interval forms ([7], [20]). They provide intervals containing
the actual state values, usually defined by minimal and max-
imal values. They were first introduced in [9] and they still
are an active topic of research since then. Set-membership
observers have been frequently used for LPV systems. They
are indeed able to represent a wide variety of non-linear
systems, notably thanks to guaranteed transformations [12],
and allow the use of well established tools for linear systems



[2], [13], [8].
To the best of the authors knowledge, observers that combine
both the high-gain and intervals advantages have been little
studied so far [18], [19], [15]. In [18] and [19], two similar
HGIO structures based on center-radius interval definition
have been proposed and rely on three design steps. The
first one is the observer gain selection, the second one
deals with the time-varying change of coordinate settings
and the third one establishes the interval observer structure.
In [19], the observer gain is designed using a LMI pole
placement technique without considering actual high-gain
poles. Moreover, in both [18] and [19], the norm of the
change of coordinates is exponentially decreasing over time
which may induce numerical precision issues. All those
limitations have been overcome in this work.
This paper presents a new High Gain Interval Observer
(HGIO) and its filtered version named Filtered-HGIO (FH-
GIO) for a class of LPV systems subject to uncertainties.
Based on the high-gain observers theory, a high-gain param-
eter θ will be used to reduce the width of the estimation
bounds by increasing its value. To overcome the drawback
of measurement noise amplification induced by large θ, the
proposed FHGIO design incorporates an output error filter
in the observer structure. The uncertainties are considered
unknown but bounded with known values and the intervals
are formulated in the centered form. A procedure to compute
the observer gains is given and a suitable change of coor-
dinates ensuring the cooperativity of the system in the new
base is introduced. A sufficient condition ensuring the non-
divergence of the radius dynamics is also detailed for each
interval observer. To illustrate their efficiency, both observers
are compared in simulation on a numerical example.
The paper is organized as follows: Section 2 presents some
notations and preliminaries material before introducing the
problem statement. Then, in Section 3, the HGIO and FHGIO
designs are presented with their stability analysis. Section
4 deals with the numerical simulation of the proposed
observers. Finally, a conclusion is drawn in Section 5.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations and interval preliminaries

Throughout this paper, the following notations will be
used. For any positive integers n and m, In and On are
respectively the identity and zero matrices of dimension n.
On×m is the n×m zero matrix. 1 and 0 are column vectors
of respectively ones and zeros, with appropriate dimensions.
For a vector v ∈ Cn, diag(v) is the operator that creates a
diagonal matrix with the components of v. Note that C is
the set of complex numbers.
Complex intervals will be used in this work which will
require to state some definitions. First, a partial order over C
is introduced : ∀(a, b) ∈ C×C, a ⋆ b ⇔ (aR ⋆ bR)∧ (aI ⋆ bI)
where ⋆ ∈ {=, <,>,≤,≥}. The superscripts .R and .I

stand respectively for the real and imaginary parts. Then
if a < b, a complex interval can be defined as [a, b] =
[aR, bR] + i[aI , bI ]. It can also be expressed in the centered

form using the operator ± defined as :

± : C× C+ → IC
(c, r) 7→ c± r = [c− r, c+ r]

(1)

The two forms are related by c = a+b
2 and r = b−a

2 .
The superscripts .c and .r will be used to denote respectively
the center and the radius of an interval.
Complex intervals arithmetic requires to introduce the op-
erators ctimes and cabs, defined respectively as a ⋄ b =
|a||b| + 2|aI ||bI | and |a| = |aR| + i|aI | where |.| applied
to real scalars is the classic absolute value. The modulus of
a ∈ C is denoted ∥a∥. Note that the previous definitions
can be directly extended to vectors and matrices considering
element-by-element operations.
The following theorem establishes the expression of the
linear image of a complex interval matrix.

Theorem 1. ∀(A,B,C) ∈ Cn×p × Cp×q × Cp×q ,

A(B ± C) = (AB)± (A ⋄ C) ∈ ICn×q (2)

where A ⋄ C = |A||C|+ 2|AI ||CI |

The proof is given in [6]. The next propositions and
corollaries have all been presented and proven in [5].

Proposition 1. ∀(A,B, v) ∈ Cn×p × Cn×q × (R+)n,

|[A,B]|1 = |A|1 + |B|1
|A|1 ≤ ∥A∥1(1 + i)

∥Adiag(v)∥1 = ∥A∥v
(3)

Proposition 2. Let z : R+ → Cn, zc : R+ → Cn and
zr : R+ → (C+)n be three continuous functions. If ∀t ∈ R+,
z(t) ∈ zc(t)±zr(t), then ∃σ : R+ → [−1, 1]2n a continuous
function returning bounded real vector values such that:

z(t) = zc(t) + ∆(zr(t))σ(t) (4)

where ∀v ∈ Cn,∆(v) =
[
diag(vR) i.diag(vI)

]
∈ Cn×2n

Corollary 1. Consider the state z(t) ∈ Cn of the system

ż(t) = diag(ξ)z(t) + Φ(t, z(t)) (5)

where ξ ∈ Rn and Φ : R+ ×Cn → (C+)n is a positive and
locally Lipschitz function w.r.t z(t), i.e:

∀t ∈ R+,Φ(t, z(t)) ≥ 0 (6)

Then if z(0) ≥ 0,∀t ∈ R+, z(t) ≥ 0

Proposition 3. Consider the notations of Corollary 1 and
z̄(t) ∈ Cn as the state of the system

˙̄z(t) = diag(ξ)z̄(t) + Φ̄(t, z̄(t)) (7)

where ξ ∈ Rn, z̄(0) ≥ z(0) and Φ̄ : R+ × Cn → (C+)n is
a positive and locally Lipschitz function satisfying

∀t ∈ R+,Φ(t, z(t)) ≤ Φ̄(t, z̄(t)) (8)

Hence, Φ̄(t, z̄(t)) is an upper bound of Φ(t, z(t)) and so is
z̄(t) for z(t).
The upper bound Φ̄(t, z̄(t)) is written:

Φ̄(t, z̄(t)) = g(t) +H(1 + i)zR(t) +H(1 + i)zI(t) (9)



where g : R+ → (C+)n is a positive continuous function
and H ∈ R+n×n.

Using the previous proposition and based on the Corollary
14 in [5] where MR = M I = NR = N I = H , the following
corollary can be deduced.

Corollary 2. Let M̂ = [diag(ξ) +H,H;H, diag(ξ) +H] ∈
R2n×2n. If the Metzler matrix M̂ is Hurwitz and g(t) is
bounded, then z̄(t) is bounded and follows a stable dynamics.
z(t) is also bounded by the upper bound z̄(t).

B. Problem statement

Consider a class of Linear Parameter Varying (LPV)
system described by :{

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t) + Ed(t)

y(t) = Cx(t) + w(t)
(10)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the
known input and y(t) ∈ Rny is the output vector, d(t) ∈
Rnd and and w(t) ∈ Rny denote respectively the unknown
disturbances and the measurement noise, ρ(t) ∈ Rnr is the
unmeasurable scheduling vector.
The matrices A(ρ(t)) and B(ρ(t)) can be decomposed as:

A(ρ(t)) = A0 +

nr∑
i=1

Aiρi(t)

B(ρ(t)) = B0 +

nr∑
i=1

Biρi(t)

(11)

where A0 and B0 are known constant matrices that represent
the nominal part of the system. Ai and Bi (i = 1, ..., nr)
are known constant matrices representing the uncertainties
related to the scheduling vector ρ(t) whose i-th component
is denoted by ρi(t).
In order to make the link with classic HGOs designs, the
system (10) is written as a partially linear system:{

ẋ(t) = A0x(t) + φ(u(t), x(t)) + Ed(t)

y(t) = Cx(t) + w(t)
(12)

where φ(u(t), x(t)) =
∑nr

i=1 Aiρi(t)x(t) + B(ρ(t))u(t) is
locally Lipschitz w.r.t to x(t) uniformly in u(t), provided
that ρ(t) is differentiable and bounded.
Three assumptions are considered for the design of the
proposed observers.

Assumption 1. The pair (A0, C) is observable.

Assumption 2. The input u(t) is bounded ∀t ∈ R+.

Assumption 3. The initial state is unknown but bounded
with known bounds, i.e : x(0) ∈ xc(0)± xr(0)
where xc(0) ∈ Rnx and xr(0) ∈ (R+)nx .
The other considered uncertainties are unknown but bounded
with known bounds such that:

∀t ∈ R+,


ρ(t) ∈ 0 ± 1
d(t) ∈ dc ± dr

w(t) ∈ wc ± wr

where (dc, dr) ∈ Rnd × (R+)nd , (wc, wr) ∈ Rny × (R+)ny .

Remark 1. The assumption on the scheduling vector bounds
is not restrictive since the matrices A0, Ai, B0 and Bi can
be easily adapted so that it is satisfied.

III. MAIN RESULTS
A. High-Gain Interval Observer (HGIO)

1) HGIO design: In this section, the new HGIO design
is presented for system (12). Three steps are required to
build its structure. The first step is to establish a HGO for
the considered system and to design the observer gain.
Then, a time-varying change of coordinates is introduced to
guarantee the Metzler character of the state matrix in the
new base. Finally, the last step is the interval formulation
of the observer which is derived based on the uncertainties
bounds.

STEP 1: HGO structure and gain design.
The proposed HGO structure for system (12) is given by:

˙̂x(t) = (A0−LC)x̂(t)+φ(u(t), x̂(t))+Ed̂(t)+Ly(t) (13)

where x̂(t) is the state estimate and d̂(t) represents an
estimation of the disturbances. It is assumed that d̂(t) has the
same bounds as d(t), i.e d̂(t) ∈ dc ± dr. L is the observer
gain designed following the three steps below:

1) Compute a gain L′ by a pole placement technique such
that (A0−L′C) is Hurwitz with distinct desired poles
ξ+iζ ∈ Cnx lying in the left half plane and close to the
origin (the proximity depends on the studied system).
ξ and ζ represent respectively the real and imaginary
parts of the eigenvalues of (A0 − L′C).

2) Verify that L′ satisfies the following stability sufficient
condition (see Therorem 2 in [16]):

min
ω≥0

σmin(A0 − L′C − iωInx
) > γφ (14)

where σmin is the minimum singular value and γφ is
the Lipschitz constant of the function φ(u(t), x(t)).
If the condition is not satisfied then go back to step 1)
and change the eigenvalues, else go to step 3).

3) Now, for a given θ ≥ 1, compute the observer gain L
such that the poles of (A0 − LC) are θ(ξ + iζ). This
allows the poles of (A0 − LC) to be placed further
into the left half plane so that the high-gain effect is
guaranteed while satisfying the condition (14) for L.

Remark 2. Notice that the following relation holds:

min
ω≥0

σmin(A0 − L′C − iωInx
)

≤ min
ω≥0

σmin(A0 − LC − iωInx
)

(15)

Then, it is straightforward that equation (14) is satisfied for
the computed observer gain L. On the other hand, it is worth
noticing that the condition (14), with the observer gain L,
allows to relax the assumption that the pair (A0, C) is under
the canonical form of the classic high-gain observer design
framework as in [11].
Thus, this method allows to find a high-gain type observation
gain L, indirectly parameterized by θ, that makes the HGO



asymptotically stable as well as (A0 − LC) Hurwitz and
C-diagonalizable (diagonalizable in the field of complex
numbers). The latter condition is required in order to define
the time-varying change of coordinates in the next step
which will ensure the cooperativity of the system in the
new base.

STEP 2: Change of coordinates.
Assuming L has been designed as previously mentioned,
(A0 − LC) is thus C-diagonalizable:

A0 − LC = vdiag(θξ + iθζ)v−1 (16)

where v ∈ Cnx×nx is formed from the eigenvectors. θξ <
0 represents the real parts of the eigenvalues and θζ the
imaginary parts.
Consider the following time-varying change of coordinates:

z(t) = Ω(t)x̂(t) (17)

where Ω(t) = diag(e−iθζt)v−1.
Then, the observer dynamics in the new base (z) is:

ż(t) = diag(θξ)z(t) + Ψ(t) (18)

where Ψ(t) = Ω(t)(φ(u(t), x̂(t)) + Ed̂(t) + Ly(t)).

Proof. Using the usual derivative rules, equations (13),
(16) and (17) as well as the commutativity of diagonal
matrices, one could derive the following computations:
ż(t) = Ω̇(t)x̂(t) + Ω(t) ˙̂x(t)

= diag(−iθζ)Ω(t)x̂(t) + Ω(t)((A0 − LC)x̂(t)+

φ(u(t), x̂(t)) + Ed̂(t) + Ly(t))

= −diag(iθζ)z(t) + Ω(t)vdiag(θξ + iθζ)v−1Ω−1(t)z(t)

+ Ω(t)(φ(u(t), x̂(t)) + Ed̂(t) + Ly(t))

= diag(θξ)z(t) + Ψ(t)

Remark 3. The observer dynamics in the new base (z)
is driven by diag(θξ) which is Hurwitz and Metzler by
construction. Therefore, the change of coordinates overcomes
the difficulty of designing L such that the system (13)
is stable and monotone. Indeed, such properties are very
hard to satisfy at the same time. Moreover, note that if the
desired poles are real, the change of coordinate becomes
time-invariant.

STEP 3: Interval observer structure.
Based on the proposed high-gain observer dynamics (18) in
the new base and using the bounds of the uncertainties, the
HGIO is given by the following theorem:

Theorem 2. Consider the system described by (13) and the
Assumptions 1-3. The system:{

żc(t) = diag(θξ)zc(t) + Ψc(t)

żr(t) = diag(θξ)zr(t) + Ψr(t)
(19)

is an interval observer for system (13), named HGIO, de-
scribed by its center zc(t) and radius zr(t) state dynamics

in the new base (z) with:
Ψc(t) = Ω(t)(B0u(t) + Edc + Ly(t))

Ψr(t) = |Ω(t)[. . . AiΩ
−1(t)zc(t) +Biu(t) . . . ,

. . . AiΩ
−1(t)∆(zr(t)) . . . , Edr]|1

(20)

Moreover, the observer satisfies the inclusion property (21)
in the new base which can also be expressed by (22) in the
original base.

∀t ∈ R+, zr(t) ≥ 0 ∧ z(t) ∈ zc(t)± zr(t) ⊂ Cnx (21)

∀t ∈ R+, x̂r(t) ≥ 0 ∧ x̂(t) ∈ x̂c(t)± x̂r(t) ⊂ Rnx (22)

where:

∀t ∈ R+, x̂c(t) = Ω−1(t)zc(t), x̂r(t) = Ω−1(t)⋄zr(t) (23)

Proof. Consider the bounds of the uncertainties given in
Assumption 3 and zc(t) and zr(t) as being any two con-
tinuous functions such that z(t) ∈ zc(t)±zr(t). Then, using
Proposition 2 for z(t), the following property for Ψ(t) is
deduced:

Ψ(t) ∈ Ω(t)(B0u(t) + Edc + Ly(t)) + Ω(t)[. . . AiΩ
−1(t)zc(t)

+Biu(t) . . . , . . . AiΩ
−1(t)∆(zr(t)) . . . , Edr](0 ± 1)

(24)

Then applying Theorem 1 to Ψ(t), the expressions in
equation (20) can be deduced. Hence, using Theorem 3 in
[6], Theorem 2 is proven.

2) HGIO stability analysis: The proof of stability of the
HGIO presented in Therorem 2 is divided in two parts.
The first one deals with the stability of the center dynamics
whereas the second one is about the radius dynamics.

Proof. Stability of the center dynamics:
The first line of equation (19) gives the center dynamics
of the observer. It is composed of the endogenous term
diag(θξ)zc(t) and the term Ψc(t). The latter depends only
on the bounded exogenous variables u(t) and y(t) according
to Assumption 2. Thus Ψc(t) is bounded. Hence, the center
stability condition comes down to having diag(θξ) Hurwitz,
which is achieved by the suitable design of L.

Proof. Stability of the radius dynamics:
The stability of the radius dynamics, given by the second
line of equation (19), can not be deduced directly. Indeed
the term Ψr(t) depends on the bounded exogenous variables
u(t), y(t) and zc(t) but also depends on the endogenous term
zr(t). Thus, a non-divergence sufficient condition to ensure
the stability is proposed. It is formulated in the following
proposition settled using Proposition 3 and Corollary 2 with
H =

∑nr

i=1 ∥v−1Aiv∥.

Proposition 4. Let H =
∑nr

i=1 ∥vAiv
−1∥ ∈ (R+)n. If

diag(θξ) is Hurwitz and if the Metzler matrix [diag(θξ) +
H,H;H, diag(θξ) + H] is Hurwitz, then ∀t ∈ R+, 0 ≤
zr(t) ≤ z̄r(t) where z̄r(t) follows a stable dynamics and
so is zr(t).



B. Filtered High-Gain Interval Observer (FHGIO)

1) FHGIO design: This section presents the design
of a FHGIO for system (10). It is an extension of the
work done with HGIO where an estimation error filter is
incorporated within the observer structure. As a first step,
the observer and filter structures are established. Then, a
suitable time-varying change of coordinates is proposed
to guarantee the Metzler character of the state matrix in
the new base. Finally, the assumptions on the bounded
uncertainties are used to derived the interval observer
structure.

STEP 1: FHGO structure and gains design.
The proposed structure for the FHGO is composed of two
subsystems. The first one, dedicated to state estimation, is
similar to the HGO presented before where the corrective
term depends now on the state of the second subsystem. The
latter is a linear low-pass filter applied to the estimation error.
Hence, the FHGO structure for the system (12) is:{

˙̂x(t) = A0x̂(t) + φ(u(t), x̂(t)) + Ed̂(t) + L̄η(t)

η̇(t) = Dη(t) + θ(y(t)− Cx̂(t))
(25)

where x̂(t) is the state estimate and η(t) ∈ Rny is the
filtered estimation error. L̄ ∈ Rnx×ny and D ∈ Rny are two
matrices which will be designed later in order to guarantee
the stability. Again, d̂(t) is a disturbance estimation which
satisfy d̂(t) ∈ dc ± dr. θ ≥ 1 is the high-gain parameter.
A compact writing of (25) is deduced by considering the aug-
mented state x̃(t) =

[
x̂T (t) ηT (t)

]T
and the augmented

input ũ(t) =
[
d̂T (t) yT (t)

]T
:

˙̃x(t) = Mx̃(t) + Φ(u(t), x̃(t)) +Nũ(t) (26)

where M =

[
A0 L̄
−θC D

]
, N =

[
E Onx×ny

Ony×nd
θIny

]
and

Φ(u(t), x̃(t)) =

[∑nr
i=1 Aiρi(t) Onx×ny

Ony×nx Ony

]
x̃(t) +

[
B(ρ(t))
Ony×nu

]
u(t).

To design the gains L̄ and D, the following procedure is
proposed:

1) Consider the matrices Ā =

[
A0 Onx×ny

θC Ony

]
and C̄ =[

Ony×nx
−Iny

]
that is an observable pair if (A0, C)

is observable (the proof is straightforward and thus
omitted due to space limitation).
Compute K̄ ′ =

[
L̄′T D′T ]T by a pole placement

technique such that M ′ = Ā − K̄ ′C̄ is Hurwitz with
the distinct desired poles ξ̄ + iζ̄ ∈ Cnx+ny lying
in the left half plane and close to the origin. Note
that there are nx + ny poles to place. The first nx

poles are for the state estimation dynamics and the
last ny poles tune the filter dynamics. If the filter
poles are taken close to the state estimation poles, then
the filter will be more efficient but it will lead to a
greater conservatism in the state estimation intervals.
Conversely, when the filter poles are selected further
from the other poles, the effect of filtering is reduced,
inducing less conservatism.

2) Verify that M ′ satisfies the following stability suffi-
cient condition (see Therorem 2 in [16]):

min
ω≥0

σmin(M
′ − iωInx+ny ) > γΦ (27)

where γΦ is the Lipschitz constant of the function
Φ(u(t), x̃(t)). Note that γΦ = γφ.
If the condition is not satisfied then go back to step 1)
and change the eigenvalues, else go to step 3).

3) Now, for a given θ ≥ 1, compute K̄ such that the poles
of M are θ(ξ̄ + iζ̄). This allows the poles of M to be
placed further into the left half plane so that the high-
gain effect is guaranteed while satisfying the condition
(27) for M .

Hence, this method allows to compute the gains L̄ and D,
indirectly parameterized by θ, such that the FHGO is stable
and the matrix M is Hurwitz as well as C-diagonalizable.

STEP 2: Change of coordinates.
Assuming that the gains K̄ and D have been computed
following the previous method. M is thus Hurwitz and C-
diagonalizable such that:

M = v̄diag(θξ̄ + iθζ̄)v̄−1 (28)

where v̄ ∈ C(nx+ny)×(nx+ny) is formed from the eigenvec-
tors and θξ̄+ iθζ̄ ∈ Cnx+ny is the vector of the eigenvalues.
The following change of coordinates is thus considered:

z̃(t) = Ω̄(t)x̃(t) (29)

where Ω̄(t) = diag(e−iθζ̄t)v̄−1.
Hence, the observer dynamics in the new base is:

˙̃z(t) = diag(θξ̄)z̃(t) + Ψ̄(t) (30)

where Ψ̄(t) = Ω̄(t)(Φ(u(t), Ω̄−1(t)z̃(t)) +Nũ(t)).
The proof is similar to the one of equation (18) and Remark
3 applied to (30) still holds.

STEP 3: Interval observer structure.
Based on the FHGO dynamics (30) in the new base and
using the bounds of the uncertainties, the FHGIO is given
by the following theorem:

Theorem 3. Consider the system described by (25) and the
Assumptions 1-3. The system:{

˙̃zc(t) = diag(θξ̄)z̃c(t) + Ψ̄c(t)

˙̃zr(t) = diag(θξ̄)z̃r(t) + Ψ̄r(t)
(31)

is an interval observer for system (25), named FHGIO,
described by its center z̃c(t) and radius z̃r(t) state dynamics
in the new base (z̃) with:
Ψ̄c(t) = Ω̄(t)(Φc(u(t)) +Nũc(t))

Ψ̄r(t) = |Ω̄(t)[...Φr
i (u(t), Ω̄

−1(t)z̃c(t), Ω̄−1(t)∆(z̃r(t)))...,

Nũr]|1
(32)



Moreover, the observer satisfies the inclusion property (33)
in the new base which can also be expressed by (34) in the
original base.

∀t ∈ R+, z̃r(t) ≥ 0 ∧ z̃(t) ∈ z̃c(t)± z̃r(t) ⊂ Cnx+ny (33)

∀t ∈ R+, x̃r(t) ≥ 0∧ x̃(t) ∈ x̃c(t)± x̃r(t) ⊂ Rnx+ny (34)

where:

∀t ∈ R+, x̃c(t) = Ω−1(t)z̃c(t), x̃r(t) = Ω−1(t)⋄z̃r(t) (35)

Proof. Consider the bounds of the uncertainties given in
Assumption 3 and z̃c(t) and z̃r(t) as being any two con-
tinuous functions such that z̃(t) ∈ z̃c(t)± z̃r(t). Then, using
Proposition 2 for z̃(t), the following property for Ψ̄(t) is
deduced:
Ψ̄(t) ∈ Ω̄(t)(Φc(u(t)) +Nũc(t))+

Ω̄(t)[...Φr
i (u(t), Ω̄

−1(t)z̃c(t), Ω̄−1(t)∆(z̃r(t)))..., Nũr(t)](0 ± 1)
(36)

where Φc(u(t)) =

[
B0

Ony×nu

]
u(t), and for i = 1, ..., nr,

Φr
i (u(t), Ω̄

−1(t)z̃c(t), Ω̄−1(t)∆(z̃r(t)))

=
[
ĀiΩ̄

−1(t)z̃c(t) + B̄iu(t), ĀiΩ̄
−1∆(z̃r(t))

]
with Āi =

[
Ai Onx×ny

Ony×nx Ony

]
, B̄i =

[
Bi

Ony×nu

]
,

ũc(t) =

[
dc

y(t)

]
and ũr(t) = ũr =

[
dr

0

]
.

Then, applying Theorem 1 to Ψ̄(t) yields to the expressions
in equation (32). Hence, using Theorem 3 in [6], Theorem
3 is proven.

2) FHGIO stability analysis: The proof of stability of
the FHGIO presented in Therorem 3 is divided in two parts
as for the HGIO. The first one deals with the stability of the
center dynamics whereas the second one is about the radius
dynamics.

Proof. Stability of the center dynamics:
The first line of equation (31) gives the center dynamics
of the observer. It is composed of the endogenous term
diag(θξ̄)z̃c(t) and the term Ψ̄c(t). The latter depends only
on the bounded exogenous variables u(t) and y(t), thus it
is also bounded. Hence, the center stability condition comes
down to having diag(θξ̄) Hurwitz, i.e M Hurwitz, which is
achieved by the suitable design of L̄ and D.

Proof. Stability of the radius dynamics:
The stability of the radius dynamics given by the second line
of equation (31) can not be deduced directly. Indeed, the term
Ψ̄r(t) depends on the bounded exogenous variables u(t) and
zc(t) but it also depends on the endogenous term z̃r(t). Thus,
a non-divergence sufficient condition to ensure the stability is
formulated in the following proposition based on Proposition
3 and Corollary 2 where H = H̄ =

∑nr

i=1 ∥v̄Āiv̄
−1∥.

Proposition 5. Let H̄ =
∑nr

i=1 ∥v̄Āiv̄
−1∥ ∈ (R+)nx+ny . If

diag(θξ̄) is Hurwitz and if the Metzler matrix [diag(θξ̄) +
H̄, H̄; H̄, diag(θξ̄) + H̄] is Hurwitz, then ∀t ∈ R+, 0 ≤
z̃r(t) ≤ ¯̃zr(t) where ¯̃zr(t) follows a stable dynamics and
so is z̃r(t).

IV. SIMULATION RESULTS

Consider the LPV system described by (10) with:

A0 =

−1 0 0
2 −3 0
3 1 −2

, A1 =

0.2 0 0
0 −0.1 0
0 0 0

,

B0 =
[
1 0 0

]T
, B1 =

[
0 0.5 −0.2

]T
,

E =
[
1 0 0

]T
and C =

[
0 1 0
0 0 1

]
.

The input of the system is defined as u(t) = sin(2πt). The
scheduling vector is taken as ρ(t) = cos(πt). The disturbance
is considered as d(t) = dc + dr sin(0.4πt) with dc = 0
and dr = 0.3. For simulation purpose, the measurement
noise is defined as a high frequency sine wave w(t) =
wc + wr sin(400πt) with wc = 0 and wr = 0.5. The initial
condition for the system is set to x(0) = [0, 0, 0]T . However,
it is assumed unknown but bounded by known values for
the observers. Thus, their initial conditions are taken as
xc(0) = [0, 0, 0]T and xr(0) = [0.1, 0.1, 0.1]T . Hence, one
could check that the Assumptions 1-3 are verified.
The gains for each observer have respectively been designed
using the methods detailed in the STEPS 1. The poles with-
out amplification by θ have been taken real for both HGIO
and FHGIO, respectively equal to ξ+iζ = [−0.9,−0.95,−1]
and ξ̄ + iζ̄ = [−0.9,−0.95,−1,−9,−10]. The stability
conditions (14) and (27) are thus satisfied. To illustrate the
influence of the high-gain parameter θ, two different values
were taken for the simulations, θ = 10 and θ = 30, leading
to different observer and filter gains that are summarized in
the Table I. For each θ, the non-divergence conditions of
Proposition 4 and 5 are satisfied. Finally, the sampling time
of simulation is set to Ts = 10−4s.

θ 10 30

L

11.4884 16.3414
9.2112 3.8601
5.0660 13.2888

 120.0186 171.3237
34.2511 12.5020
14.1245 45.2489


L̄

95.2144 157.5594
87.0322 39.8196
47.7480 126.8238

 0.9827 1.6738
0.3303 0.1333
0.1306 0.4381

 .103

D

[
−108.7399 −4.1485
−5.2844 −103.7601

] [
−332.6057 −13.4004
−14.2297 −316.8943

]
TABLE I

COMPUTED GAINS FOR EACH HIGH-GAIN PARAMETER θ.

The Fig. 1 and 2 show together an increase of the high-
gain parameter θ reduces the estimation bounds for both the
HGIO and the FHGIO. Hence, both observers can compute
precise state estimations provided that they are fine tuned
using θ. However, it can be noticed in Fig. 2 that having
large θ amplify the measurement noise, as expected and
clearly visible in the HGIO bounds (in blue). This issue is
addressed by the output observation error filter incorporated
in the FHGIO structure. A much smaller noise amplification
can be seen in the FHGIO bounds (in green) compared to
the HGIO.



Fig. 1. HGIO and FHGIO state estimations for θ = 10

Fig. 2. HGIO and FHGIO state estimations for θ = 30

V. CONCLUSIONS AND FUTURE WORKS

This paper has presented two new high-gain interval
observer structures, namely the HGIO and the FHGIO, for a
class of LPV systems subject to uncertainties. The proposed
HGIO provides an effective way for state interval estimation
when there is little to no measurement noise. For stronger
measurement noise and fast convergence requirements (large
θ), the FHGIO shows its interest by its ability to reduce the
measurement noise amplification using an output estimation
error filter. Moreover, constructive procedures for comput-
ing the observation and filter gains have been given. To
ensure the interval observers stability, a sufficient condition
ensuring the non-divergence of the radius dynamics is also
proposed for each structure. The simulation illustrated the
main advantages of such designs, i.e the ability to reduce the
estimation bounds by increasing the high-gain parameter and
filter the measurement noise when required. Future works
will deal with the maximum authorized value of θ such that
the inclusion property is also satisfied with respect to the
studied system. Discrete and delayed measurements may also
be considered.
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