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Abstract

We develop a data-driven methodology based on parametric Itô’s Stochastic Differential Equations (SDEs) to

capture the real asymmetric dynamics of forecast errors. Our SDE framework features time-derivative tracking of

the forecast, time-varying mean-reversion parameter, and an improved state-dependent diffusion term. Proofs of

the existence, strong uniqueness, and boundedness of the SDE solutions are shown under a principled condition

for the time-varying mean-reversion parameter. Inference based on approximate likelihood, constructed through

the moment-matching technique both in the original forecast error space and in the Lamperti space, is performed

through numerical optimization procedures. We propose another contribution based on the fixed-point likelihood

optimization approach in the Lamperti space.

All the procedures are agnostic of the forecasting technology, and they enable comparisons between different

forecast providers. We apply our SDE framework to model historical Uruguayan normalized wind power production

and forecast data between April and December 2019. Sharp empirical confidence bands of future wind power

production are obtained for the best selected model.

Keywords: Uncertainty Quantification, Forecasting Error, Time-Inhomogeneous Jacobi Diffusion, Lamperti Space,

Fixed-point Likelihood Numerical Optimization, Model Selection, Wind Power.
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1. Introduction

In this work, we develop a methodology for analyzing a kind of data, often available in real-world problems,

that consists of historical observations and their forecasts. Data-driven parametric stochastic differential equations

(SDEs), whose solution defines a stochastic process, are the tool chosen to model the forecast errors.

This resultant stochastic process describes the time evolution dynamics of forecast errors while capturing properties

such as a correlation structure and the inherent asymmetry. The model we propose is agnostic of the forecasting
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technology and serves to complement forecasting procedures by providing a data-driven stochastic forecast. Hence,

we can evaluate forecasts according to their performance, and we can compare different forecasting technologies.

Most notably, we set up the ability to sample in the path space of the observed phenomena given a deterministic

forecast {pt, t ∈ [0, T ]}. Future simulated paths using Monte Carlo methods, as well as the analytic form of the

proposed SDE, can be used in optimal control problems.

As a motivating application to show the proposed SDE framework at work, we consider probabilistic wind power

forecasting.

Some interesting works have been devoted to probabilistic forecasting related to renewable energies based on

stochastic differential equations, among them (Møller et al. (2016)) and (Elkantassi et al. (2017)) on wind power

forecast, (Iversen et al. (2014)) and (Badosa et al. (2018)) on forecasts of solar irradiance. Here, we propose an im-

proved model featuring time derivative tracking of the forecast, time-dependent mean reversion, modified diffusion,

and non-Gaussian approximations. We apply the model to Uruguayan wind power forecasts together with historical

wind power production data pertaining to the year 2019.

The rest of the paper is organized as follows. In Section 2, we introduce the significant steps for constructing

data-driven models for the normalized forecast process based on stochastic differential equations resulting in time-

inhomogeneous generalizations of Jacobi type processes with mean-reversion. More precisely, we develop a modified

drift for the model that incorporates the derivative of the available forecast so that the corresponding model is centered

around {pt, t ∈ [0, T ]}. Up to our knowledge, this is a new contribution that allows to kill efficiently the bias in the

statistical inference problem. The application of the Lamperti transform with unknown parameters in Section 3 leads

to model the forecast error through a stochastic differential equation with a unit diffusion coefficient. In Section 4,

we write down the expressions for the likelihood functions of the forecast error in its original space and the Lamperti

space. We also derive tractable approximations of the likelihood functions based on the moment-matching technique.

Section 4 concludes with the description of the optimization algorithms to compute approximate maximum likelihood

estimates in the original forecast error space and in the Lamperti space. In the latter case, the optimization step

involves the use of a fixed-point approach that makes this procedure more stable than working with the raw data (See

Algorithm 1). Up to our knowledge, it is a new approach to optimize efficiently the likelihood in a numerical stable

and robust way. We also expand the model comprising an initial transition from the time the forecast is performed

to the time of the first forecast. This generalization is relevant for applications since it allows the user to quantify

forecast uncertainty from the beginning of every future period in an optimal way. In Section 5, we first describe

the main characteristics of a real data set encompassing the normalized wind power production in Uruguay between

April and December 2019, with the most accurate predictions, as highlighted in our posterior analysis, performed by

one out of the three sources of forecast providers. Then, we apply our proposed numerical estimation procedures to

the Uruguay wind and forecast dataset, comparing two alternative models with and without the derivative tracking

drift component to assess the performance of the three different forecast providers. Our numerical results confirm

that the latter is the best candidate model. Section 6 concludes the paper. The proofs of the existence, strong

2



uniqueness, and boundedness of the SDE solutions used to model normalized wind power production and its forecast

error are given in the Appendix.

2. Data-driven stochastic differential equation models

We build a type of phenomenological model for the normalized forecasts of an observable phenomena that, in

its most general form, is a stochastic process X = {Xt, t ∈ [0, T ]} defined by the following stochastic differential

equation (SDE): dXt = a(Xt; pt, ṗt,θ) dt+ b(Xt; pt, ṗt,θ) dWt , t ∈ [0, T ]

X0 = x0 ∈ [0, 1],
(1)

where

• a(·; pt, ṗt,θ) : [0, 1]→ R denotes a drift function,

• b(·; pt, ṗt,θ) : [0, 1]→ R+ a diffusion function,

• θ is a vector of unknown parameters,

• (pt)t∈[0,T ] is a time-dependent deterministic function

[0, 1]-valued and (ṗt)t∈[0,T ] is its time derivative,

• {Wt, t ∈ [0, T ]} is a standard real-valued Wiener process.

In this work, (pt)t∈[0,T ] is to be considered a deterministic forecast for the normalized data, which is provided by

an official source.

Our goal is to achieve a specification of the model (1) to follow the available normalized forecasts closely while

ensuring its unbiasedness with respect to the forecast.

2.1. Data constraints

Let (pt)t∈[0,T ] be the available prediction function for the normalized observed real data, which is the main input

to this approach. Most of previous studies dealing with the problem of error forecast quantification through S.D.E.

models proposed a drift of the form −θt(Xt − pt) (see e.g. Elkantassi et al. (2017) and Badosa et al. (2018) with

θt ≡ a a positive constant). However, it is clear that such a choice leads the model to revert to

E[Xt] = e−
∫ t
0
θsds

(
E[X0] +

∫ t

0

e
∫ s
0
θudupsθsds

)
,

which is not the natural value that one would expect for a forecast probabilistic model (See Remark 1 below).

To overcome this crucial data constraint, we introduce a time-dependent drift function that features the expected

mean-reverting property as well as derivative tracking:

a(Xt; pt, ṗt,θ) = ṗt − θt(Xt − pt), (2)
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where (θt)t∈[0,T ] is a positive deterministic function, whose range depends on θ, as will be explained shortly. More

precisely, the normalized forecast process Xt, modeled as solution to the Itô stochastic differential equation (1) with

the drift specified in (2) satisfies now E [Xt] = pt, given that E [X0] = p0, since by Itô’s lemma we get

e
∫ t
0
θsdsXt −X0 =

∫ t

0

(ṗs + θsps)e
∫ s
0
θududs

+

∫ t

0

b(Xs; ps, ṗs,θ)e
∫ s
0
θududWs.

and consequently

E [Xt] = e−
∫ t
0
θsds

(
E [X0] + pt e

∫ t
0
θsds − p0

)
= pt. (3)

At this stage, this novel process model satisfies the two main following properties:

• it reverts to its mean pt, with a time-varying speed θt that is proportional to the deviation of the process Xt

from its mean,

• it tracks the time derivative ṗt,

which to the best of our knowledge is an original contribution for the study of forecast modeling problem using

stochastic differential equations.

Remark 1. Observe that a mean-reverting model without derivative tracking shows a delayed path behavior. For

instance, consider the diffusion model (1) with a(Xt; pt,θ) = −θ0(Xt − pt) , θ0 > 0. In this case, given E [X0] = p0,

the diffusion has mean E [Xt] = pt − e−θ0t
∫ t

0
ṗse

θ0sds. Figure (1) illustrates, on the wind power forecast data, how

different behave the estimated confidence bands for two diffusion models with and without derivative tracking, fitting

the same daily segment.
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Figure 1: Pointwise confidence bands fitted, for the same daily segment, through diffusion models without derivative tracking (plot on

the left) and with derivative tracking (plot on the right).
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The observable phenomena measurements and forecasts data are properly normalized. For example, the forecast

and production wind power data of Uruguay are normalized with respect to the installed power capacity during the

period of observation. Thus, the mean-reverting level lies in [0, 1], and the process Xt must take values in the same

interval, a requirement that is not automatically fulfilled through the derivative tracking. To impose that the state

space of Xt is [0, 1], we may choose a convenient diffusion term, and require that the time-varying parameter θt

satisfies an ad-hoc condition.

Let θ = (θ0, α), and choose a state-dependent diffusion term that avoids the process exiting from the range [0, 1]

as follows:

b(Xt;θ) =
√

2αθ0Xt(1−Xt) (4)

where α > 0 is an unknown parameter that controls the path variability. This diffusion term belongs to the Pearson

diffusion family and, in particular, it defines a Jacobi type diffusion. It is useful to recall that (Forman and Sorensen,

2008, 440) a Pearson diffusion is a stationary solution to a stochastic differential equation of the form

dXt = −θ(Xt − µ)dt+
√

2θ (aX2
t + bXt + c)dWt (5)

where θ > 0, and a, b, and c are parameters such that the square root is well defined when Xt is in the state space.

These parameters, together with µ, the mean of the invariant distribution, determine the state space of the diffusion

as well as the shape of the invariant distribution.

An exhaustive classification of the (stationary) Pearson diffusions is presented in (Forman and Sorensen, 2008,

440-443) where, in particular, it is discussed the case a < 0 and b(x;θ) =
√

2aθx(x− 1), where the invariant

distribution is a Beta distribution with parameters
(
µ
−a ,

1−µ
−a

)
, that leads to the well-known Jacobi diffusions, so-

called because the eigenfunctions of the infinitesimal generator of these processes are the Jacobi polynomials (see,

for example, (Leonenko and Phillips, 2012, 2860-2861)).

It is worth mentioning that Jacobi diffusions have been successfully applied in several disciplines, among them

finance (see (Valéry and Gouriéroux (2011)) and references therein) and neuroscience (D’Onofrio et al. (2018)).

However, a distinctive feature in our proposed modeldXt = (ṗt − θt(Xt − pt))dt+
√

2αθ0Xt(1−Xt)dWt , t ∈ [0, T ]

X0 = x0 ∈ [0, 1] ,
(6)

is that the drift term contains the time-varying parameter θt, rendering the solution Xt of (6) to a non-stationary

and time-inhomogeneous process. To ensure that the process Xt is the unique strong solution of (6) for all t ∈ [0, T ]

with state space [0, 1] a.s., the mean-reversion time-varying parameter must satisfy the condition:

θt ≥ max

(
αθ0 + ṗt
1− pt

,
αθ0 − ṗt

pt

)
. (B)

The proof of this theoretical statement is presented in the Appendix.

Remark 2. Condition (B) shows that the time-varying parameter θt becomes unbounded when pt = 0 or pt = 1.
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Therefore, we consider the following truncated prediction function

pεt =


ε if pt < ε

pt if ε ≤ pt < 1− ε

1− ε if pt ≥ 1− ε

(7)

that satisfies pεt ∈ [ε, 1− ε] for any 0 < ε < 1
2 and t ∈ [0, T ], providing that θt is bounded for every t ∈ [0, T ].

For any forecast dataset, a small ε > 0 needs to be specified to define the truncated prediction function fulfilling the

above condition.

From now on, we will keep the notation pt to denote the truncated prediction function (7), unless specified

otherwise.

2.2. A model specification for the forecast error

After applying to (6) the simple change of variables

Vt = Xt − pt ,

we may introduce the following model for the normalized forecast error:dVt = −θtVtdt+
√

2αθ0(Vt + pt)(1− Vt − pt)dWt, t ∈ [0, T ]

V0 = v0 ∈ [−p0, 1− p0].
(8)

3. State independent diffusion term: Lamperti transform

Our model (8) for the forecast error has a diffusion term that depends on the state variable Vt. Under the

conditions that permit the use of Itô’s formula on a well-chosen transformation of the process V , John Lamperti

(Lamperti (1964)) first showed that the transformed process is again a diffusion process that is solution to a SDE

with unit coefficient for the diffusion term. The vast literature nowadays refers to this result as the so-called Lamperti

transform (see, for example, (Iacus, 2008, 40–41); Møller and Madsen (2010); (Panik, 2017, 199–203); (Särkkä and

Solin, 2019, 98–100)), which is a basic tool to obtain a SDE for the transformed process whose diffusion term does not

depend anymore on the state variable. A remarkable effect of removing the state dependency from the random noise

term is to increase the numerical stability of the simulated paths of the transformed process. For this reason, some

estimation methods of the unknown parameters of non-linear SDE models incorporated the Lamperti’s change of

variable as part of a more complex approximation procedure (for example, in the case of one-dimensional diffusions,

the local linearization method in Shoji and Ozaki (1998), or the expansion method in Aı̈t-Sahalia (2002), later

extended to time-inhomogeneous SDEs in Egorov et al. (2003)).

We consider the following Lamperti transform with unknown parameters

Zt = h(Vt, t;θ) =
1√

2αθ0

∫
1√

(v + pt)(1− v − pt)
dv

∣∣∣∣∣
v=Vt

= −
√

2

αθ0
arcsin(

√
1− Vt − pt)

(9)
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that, after applying Itô’s formula on h(Vt, t;θ), leads to the following SDE with state independent unit diffusion term

dZt =

[
ṗt√

2αθ0(Vt + pt)(1− Vt − pt)
+

−θtVt√
2αθ0(Vt + pt)(1− Vt − pt)

− 1

4

√
2αθ0 (1− 2(Vt + pt))√
(Vt + pt)(1− Vt − pt)

]
dt+ dWt. (10)

After replacing Vt = 1− pt − sin2

(
−
√

αθ0
2 Zt

)
in (10), we obtain that the process Zt satisfies the SDE

dZt =

 ṗt − θt
(
1− pt − sin2

(
−
√

αθ0
2
Zt
))

√
2αθ0 cos

(
−
√

αθ0
2
Zt
)
sin
(
−
√

αθ0
2
Zt
) − 1

4

√
2αθ0

(
1− 2 cos2

(
−
√

αθ0
2
Zt
))

cos
(
−
√

αθ0
2
Zt
)
sin
(
−
√

αθ0
2
Zt
)
 dt+ dWt

=

[
2ṗt − θt(1− 2pt) + (αθ0 − θt) cos(−

√
2αθ0Zt)√

2αθ0 sin (−
√
2αθ0Zt)

]
dt+ dWt.

(11)

A visual summary of the effect of the Lamperti transform can be appreciated later in Section 5, Figure (6), where

we can see in the wind power application how the forecast error transition histograms (without curtailment) modify

in comparison with Figure (5).

The shape of the forecast error transition histograms after applying the Lamperti transform has similarities

with the Gaussian distribution, motivating toward the use of Gaussian-like approximations of the unknown density

transition functions of the process Zt.

Remark 3. In general, when we introduce a diffusion term of a Jacobi type process, on one side the Beta density

function appears as a natural candidate to deal with the asymmetric trait of the data. On the other side, the

advantage of the Lamperti transform is contributing to remove asymmetry in data, allowing the use of the Gaussian

density as surrogate for the unknown transition density function. Moreover, this obtained Gaussian distribution

supports the validity of the choice of our model diffusion coefficient given by (5).

4. Likelihood functions of the forecast error data and optimization algorithm

4.1. Likelihood in the V−space

Suppose that any of M non-overlapping paths of the continuous-time Itô process V = {Vt, t ∈ [0, T ]}, each one

starting at a different time tj with j = 1, . . . ,M , is sampled at N+1 equispaced discrete points with given length inter-

val ∆. Let VM,N+1 =
{
VtN+1

1
, VtN+1

2
, . . . , VtN+1

M

}
denote this random sample, with VtN+1

j
=
{
Vtj+i∆ , i = 0, . . . , N

}
.

Let ρ(v|vj,i−1;θ) be the conditional probability density of Vtj+i∆ ≡ Vj,i given Vj,i−1 = vj,i−1 evaluated at v,

where θ = (θ0, α) are the unknown model parameters.

The Itô process V defined by the SDE (8) is Markovian, and the likelihood function of the sample VM,N+1 can

be written as the following product of transition densities:

L
(
θ;VM,N+1

)
=

M∏
j=1

{
N∏
i=1

ρ
(
Vj,i|Vj,i−1; p[tj,i−1,tj,i],θ

)}
, (12)

where tj,i ≡ tj + i∆ for any j = 1, . . . ,M and i = 0, . . . , N .
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Remark 4. In the last subsection of this section, we will extend the statistical model (12) by adding the transition

that occurs during the time interval, say of length δ, between the epoch when the forecast is done and the first

epoch (1 pm) of each day-ahead forecast. To this purpose, the likelihood function (12) must include for any of the

M paths an additional factor, say ρ0(Vj,0|Vj,−δ;θ, δ), expressing the conditional density of the early transition. The

parameter δ can be calibrated together or after the estimation of θ, suggesting an optimal time for the scheduling of

the forecasts.

The exact computation of the likelihood (12) relies on the availability of a closed-form expression for the transition

densities of V that, on the basis of the Markovian property of V , are characterized for tj,i−1 < t < tj,i, as solutions

of the Fokker-Planck-Kolmogorov equation ((Iacus, 2008, 36); (Särkkä and Solin, 2019, 61-68)):

∂f

∂t
ρ(v, t|vj,i−1, tj,i−1;θ) = − ∂

∂v
(−θtv ρ(v, t|vj,i−1, tj,i−1;θ))

+
1

2

∂2

∂v2
(2θ0α(v + pt)(1− v − pt) ρ(v, t|vj,i−1, tj,i−1;θ)),

v ∈ (−1, 1), t > 0 (13)

subject to the initial conditions ρ(v, tj,i−1;θ) = δ(v − Vj,i−1) , where δ(v − Vj,i−1) is the Dirac-delta generalized

function centered at Vj,i−1 .

However, closed-form solutions to initial-boundary value problems for time-inhomogeneous diffusions can be

obtained only in a few cases (see, for example, (Egorov et al., 2003, Section 3.1)). In our case, solving numerically (13)

for the transition densities of the process V at every transition step is computationally expensive. Several numerical

techniques have been devised to obtain estimates for the unknown parameters of continuous-time SDE models with

discrete observations (see, for example, Preston and Wood (2012) for likelihood-based inference techniques, Sørensen

(2012) for an estimating function approach). As explained in the next subsection, we have considered approximate

likelihood methods, similar in spirit to (Särkkä and Solin, 2019, Section 11.4).

4.2. Approximate likelihood in the V−space

Gaussian approximations to the transition densities of nonlinear time-inhomogeneous SDEs are available through

different algorithms (Särkkä and Solin, 2019, Chapter 9). However, as Figure 5 may suggest at first glance, the

choice of a Gaussian density could be inadequate when straightly applied to approximate the transition density of

the forecast error V of the normalized wind power production.

Therefore, we propose to use a surrogate transition density for V other than Gaussian. The moments of the SDE

model (8) are then matched to the surrogate density moments.

From (3), we havem1(t) ≡ E [Vt] = e
−

∫ t
tj,i−1

θsds E
[
Vtj,i−1

]
, for any t ∈ [tj,i−1, tj,i[, j = 1, . . . ,M and i = 1, . . . , N .

For m ≥ 2, using Itô’s lemma we derive

dE [V mt ]

dt
= −m(θt + (m− 1)αθ0)E [V mt ]

+m(m− 1)αθ0(1− 2pt)E
[
V m−1
t

]
+m(m− 1)αθ0pt(1− pt)E

[
V m−2
t

]
. (14)

8



For any t ∈ [tj,i−1, tj,i[, the first two moments of V , m1(t) and m2(t) ≡ E
[
V 2
t

]
, can be computed by solving the

following system 
dm1(t)
dt = −m1(t)θt

dm2(t)
dt = −2(θt + αθ0)m2(t) + 2αθ0(1− 2pt)m1(t) + 2αθ0pt(1− pt)

(15)

with initial conditions m1(tj,i−1) = vj,i−1 and m2(tj,i−1) = v2
j,i−1 .

4.2.1. Moment Matching

A suitable candidate for a surrogate transition density of V is a Beta distribution on a compact interval param-

eterized by two positive shape parameters, ξ1, ξ2. Recall that the choice of the Beta proxy distribution is a natural

choice as it is the invariant distribution of the Jacobi type processes.

For any t ∈ [tj,i−1, tj,i[, we approximate the transition densities of the process V using a Beta distribution. We

equal the first two central moments of V with the corresponding moments of the Beta surrogate distribution on

[−1 + ε, 1− ε] with shape parameters ξ1, ξ2.

The shape parameters are given by

ξ1(t) = − (µt + 1− ε)(µ2
t + σ2

t − (1− ε)2)

2(1− ε)σ2
t

,

ξ2(t) =
(µt − 1 + ε)(µ2

t + σ2
t − (1− ε)2)

2(1− ε)σ2
t

,

(16)

where µt = m1(t) and σ2
t = m2(t)−m1(t)2 .

The approximate log-likelihood ˜̀(·; vM,N+1) of the observed sample vM,N+1 can be expressed as

˜̀
(
θ; vM,N+1

)
=

M∑
j=1

N∑
i=1

log

{
1

2(1− ε)
1

B(ξ1(t−j,i), ξ2(t−j,i))

(
vj,i + 1− ε

2(1− ε)

)ξ1(t−j,i)−1(
1− ε− vj,i

2(1− ε)

)ξ2(t−j,i)−1
}
, (17)

where the shape parameters ξ1(t−j,i) and ξ2(t−j,i), according to (16), depend on the limit quantities µ(t−j,i;θ) and

σ2(t−j,i;θ) as t ↑ tj,i that are computed solving numerically the initial-value problem (15). B(ξ1, ξ2) denotes the beta

function.

4.3. Approximate likelihood in the Z−space

The transition density of the process Z, which has been defined through the Lamperti transformation (9) of V ,

can be conveniently approximated by a Gaussian surrogate density.

The drift coefficient a(Zt; pt, ṗt,θ) of the process Z that satisfies (11) is nonlinear. After linearizing the drift

around the mean of Z, µZ(t) ≡ E [Zt], we obtain the following system of ODEs to compute, for any t ∈ [tj,i−1, tj,i[,

the approximations of the first two central moments of Z, say µ̃Z(t) ≈ E [Zt] and ṽZ(t) ≈ Var [Zt]:
dµ̃Z(t)
dt = a

(
µ̃Z(t); pt, ṗt,θ

)
dṽZ(t)
dt = 2a′

(
µ̃Z(t); pt, ṗt,θ

)
ṽZ(t) + 1

(18)
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with initial conditions µ̃Z(tj,i−1) = zj,i−1 and ṽZ(tj,i−1) = 0 , and where

a′ (µ̃Z(t); pt, ṗt,θ) =
(αθ0 − θt)− cos(

√
2αθ0Zt)[θt(1− 2pt)− 2ṗt]

sin2 (
√

2αθ0Zt)
.

The approximate Lamperti log-likelihood ˜̀
Z

(
·; zM,N+1

)
for the observed sample zM,N+1 is given by

˜̀
Z

(
θ; zM,N+1

)
=

M∑
j=1

N∑
i=1

log

 1√
2πṽZ(t−j,i;θ)

exp

(
−

(zj,i − µ̃Z(t−j,i;θ))2

2ṽZ(t−j,i;θ)

) , (19)

where the limits µ̃Z(t−j,i;θ) and ṽZ(t−j,i;θ) are computed solving numerically the initial-value problem (18).

4.4. Algorithm for the approximate maximum likelihood estimations

In this subsection, we aim to infer the model’s parameters using optimization techniques. We start by finding an

initial guess close enough to the optimal value, and from that point, start the optimization.

4.4.1. Initial guess

To guarantee the good behave for our optimization algorithm, we aim to start the optimization as close as we

can from the optimal parameters. We use least square minimization and quadratic variation over the data to find

an initial guess (θ∗0 , α
∗).

• Least square minimization: We consider the observed data vM,N+1 with length between observations ∆, where

i ∈ {0, . . . , N} and j ∈ {1, . . . ,M}. For any t ∈ [tj,i−1, tj,i[, the random variable (Vj,i|vj,i−1) has a conditional

mean that can be approximated by the solution of the systemdE [V ] (t) = −θtE [V ] (t)dt

E [V ] (tj,i−1) = vj,i−1,

in the limit t ↑ tj,i, i.e., E [V ] (t−j,i). Then, the random variable (Vj,i −E [V ] (t−j,i)) has zero mean. If we assume

that θt = c ∈ R+ for all t ∈ [tj,i−1, tj,i[, then E [V ] (t−j,i) = vj,i−1e
−c∆. If we have a total of M ×N transitions,

we can write the regression problem for the conditional mean with L2 loss function as

ĉ = arg min
c ≥ 0

 M∑
j=1

N∑
i=1

(
vj,i − E [V ] (t−j,i)

)2
≈ arg min

c ≥ 0

 M∑
j=1

N∑
i=1

(vj,i − vj,i−1(1− c∆))
2

 .
(20)

As Equation (20) is convex in c, it is enough to verify the first order optimality conditions. It follows that

ĉ ≈
∑M
j=1

∑N
i=1 vj,i−1(vj,i−1 − vj,i)

∆ ·
∑M
j=1

∑N
i=1(vj,i−1)2

. (21)

We approximate θ0 by Equation (21) setting θ∗0 = ĉ.
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• Quadratic variation: We approximate the quadratic variation of the Itô’s process V , 〈V 〉t =
∫ t

0
b(Vs;θ, ps)

2ds,

where

b(Vs;θ, ps) =
√

2αθ0(Vs + ps)(1− Vs − ps),

with the discrete sum
∑

0<tj,i−1≤t
(
Vtj,i − Vtj,i−1

)2
.

As initial guess for the diffusion variability coefficient θ0α, we choose

θ∗0α
∗ =

∑M
j=1

∑N
i=1(vj,i − vj,i−1)2

2∆ ·
∑M
j=1

∑N
i=1(vj,i + pj,i)(1− vj,i − pj,i)

, (22)

where ∆ is the length of the time interval between two consecutive measurements.

4.4.2. Negative log-likelihood minimization in the V−space

To find the optimal parameters, we minimize the negative log-likelihood (negative version of (17)) using the

derivative-free function fminsearch from MATLAB R2019b over the parameters (θ0, α). At each step of the iteration,

we:

• Use the training dataset to find the SDE’s first and second moments as explained in Subsection 4.2.

• Match the proxy distribution moments with the SDE’s moments.

• Evaluate the negative log-likelihood using the training dataset.

4.4.3. Negative log-likelihood minimization in the Z−space

Let vM,N+1 be the observed data, and h(vj,i, tj,i;θ) the Lamperti transform of the observation vj,i. As we can

see in Section 4, the transformed observations zM,N+1 depend on the vector θ.

The problem of maximizing the approximated Lamperti log-likelihood (19), i.e.,

max
θ

˜̀
Z

(
θ; zM,N+1

)
,

is not totally defined as the data zM,N+1 depend on θ. To address this issue, we propose to find a fixed point θ?

such that

θ? = arg max
θ

˜̀
Z

(
θ; {h(vj,i, tj,i;θ

?)}M,N
j=1,i=0

)
. (23)

Thus, at a fixed point, the likelihood has a maximum for the transformed data set corresponding to that parameter

value. The solution to (23) is not available in closed form and therefore approximated numerically.

Remark 5. The optimization approach introduced in this subsection constitutes, up to our knowledge, a new

proposal to get numerically robust and stable maximum likelihood estimates when applying the Lamperti transform

to a diffusion process with unknown parameters.
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4.5. Model specification with the additional parameter δ

In real-world applications, the forecast error at time tj,0 = 0 is not usually zero. According to the forecasts

procedure, we may assume that there is a time in the past tj,−δ < tj,0, such that the forecast error Vj,−δ = 0.

For any j = 1, . . . ,M , we extrapolate backward linearly the truncated prediction function to get its value at time

tj,−δ, pj,−δ, and set vtj,−δ = 0. We assume that the initial transition (Vj,0|vj,−δ;θ, δ) has a Beta distribution and

apply to it the same moment matching method used above. Given a vector of parameters θ, we estimate δ solving

the following problem

arg max
δ
L̃δ
(
θ, δ; vM,1

)
= arg max

δ

M∏
j=1

ρ0 (vj,0|vj,−δ;θ, δ) , (24)

where L̃δ is the approximated δ−likelihood. To solve this problem, we repeat the steps described in Subsection 4.4.2,

with the additional initial step of creating the linear extrapolation for pj,−δ at each j ∈ {1, 2, . . . ,M}.

As anticipated in Remark 4, we extend the statistical model (12) to include the extra parameter δ. The approx-

imated complete likelihood L̃c, which estimates the vector (θ0, α, δ), is given by

L̃c
(
θ, δ; vM,N+1

)
= L̃

(
θ; vM,N+1

)
L̃δ
(
θ, δ; vM,1

)
, (25)

where L̃
(
θ; vM,N+1

)
is the non-log version of (12). As we can provide initial guesses for θ and δ, we have a starting

point for the numerical optimization of the approximated complete likelihood (25).

5. Application: the April-December 2019 Uruguay wind and forecast dataset

In recent years, Uruguay has triggered a remarkable change in its energy matrix. In (IRENA (2019), p.23),

Uruguay was among those countries showcasing innovation, like Denmark, Ireland, Germany, Portugal, and Spain,

with proven feasibility of managing annual variable renewable energy (VRE) higher than 25% in power systems.

According to (REN21 (2019), pp.118–119), in 2018, Uruguay achieved 36% of its electricity production from

variable wind energy and solar PV, raising the share of generation from wind energy more than five-fold in just four

years, from 6.2% in 2014 to 33% in 2018.

At present, Uruguay is fostering even higher levels of wind penetration by boosting regional power trading with

Argentina and Brazil. In this rapidly evolving scenario, it is essential to analyze national data on wind power

production with wind power short-term forecasting to orientate and assess the strategies and decisions of wind

energy actors and businesses.

Our study is based on publicly available data (source: Administrator of Electric Market) on the wind power

production in Uruguay between April and December 2019, that we adequately normalized with respect to the

present

1474 MW maximum installed wind power capacity. Each day, wind power production recordings are available every

ten minutes. In this work, we also considered data from three different forecast providers, available each day starting

at 1 pm.
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Figure 2 shows the wind power real production during two segments 24 hours selected from the observation

period together with their corresponding hourly short-term forecast, computed by a forecast provider. For the sake

of visualization clarity, this section relies only on forecasts from one provider, called “provider A” from now on,

ranked as the most accurate forecast provider, as it emerged from our posterior analysis.
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Figure 2: Two 24-hour segments with the normalized wind power real production in Uruguay (blue line) recorded every ten minutes, and

the hourly wind power production forecasted by provider A (black line).

A view of the global discrepancy between the real production and the forecasted production, during the nine

months observation period, is summarized through the forecast error histograms in the next Figure 3, where we

also partitioned the forecast errors according to three contiguous categories of normalized generated power. Low

normalized generated power corresponds to the range [0, 0.3], mid-power refers to the range ]0.3, 0.6], and high-power

to the range ]0.6, 1].

We may observe that all the histograms in Figure 3 exhibit skewed patterns, to a different extent, as well as extreme

observations. The presence of these features can be partly explained. The data analysis highlighted that, during

several 24-hour segments, the system operators decided to reduce or even cease the wind power production. Indeed, as

recalled in (IRENA (2018), p.8), “Uruguay experiences high curtailment levels because generation exceeds demand.”

Despite the large country’s interconnection capacity with Argentina and Brazil, there is no active cross-border market;

the energy is traded via ad hoc short-term agreements. (IRENA (2018), p.3) “Even with interconnection capacity

exceeding peak demand, the power system experiences high VRE curtailment, mostly at night when wind generation

exceeds demand.”

The curtailment of the wind power production imposed by the system operators has a strong influence on the

forecast error. To build a model that, driven by the available forecast, allows the inclusion of true power production

with a prescribed degree of uncertainty, it is necessary to remove the data segments affected by wind curtailment.

Once we removed all the 24-hour segments showing wind curtailment, we set up a dataset containing 147 daily

13



Figure 3: Wind production forecast error histograms during the period April-December 2019: low-power (upper-left plot), mid-power

(upper-right plot), high-power (lower-left plot), and the global range of power (lower-right plot).
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Figure 4: Wind production forecast error histograms during the period April-December 2019 after removing 24-hour segments with

artificial wind curtailment: low-power (upper-left plot), mid-power (upper-right plot), high-power (lower-left plot), and the global range

of power (lower-right plot).

segments. In the absence of the curtailment intervention, the forecast error histograms shown below in Figure 4, can

appreciate skewness reduction, except for low power forecast error histogram.

In this stage of data preprocessing, we obtain another useful result by applying the first-order difference operator

to the forecast errors. The forecast error transition histograms, displayed in the next Figure 5, will later constitute

a reference for the visual assessment of the global fit of the proposed models.

The histograms in Figure 5 feature a non-Gaussianity trait and provide initial input for the model-building stage.

Guided from inferring the unknown model parameters, we also propose transforming data as a strategy that

naturally leads to an alternative model.

In this case, the Lamperti transform has been applied using the optimal estimates of the parameters in the SDE

model (8), obtained applying our numerical procedure detailed in Subsection 4.4. See the histograms in Figure 6.
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Figure 5: Forecast error transition histograms during the period April-December 2019 without wind power production curtailment:

low-power (upper-left plot), mid-power (upper-right plot), high-power (lower-left plot), and the global range of power (lower-right plot).
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Figure 6: Lamperti transformed forecast error transition histograms between April and December 2019 without wind power production

curtailment: low-power (upper-left plot), mid-power (upper-right plot), high-power (lower-left plot), and the global range of power

(lower-right plot).
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5.1. Calibration of the approximate negative log-likelihood in V -space and Z-space

To implement the models’ calibration procedure, we select 73 non-contiguous segments of normalized wind power

production out of the 147 segments, each 24-hours long, assigning them to the training set. The other 74 non-

contiguous segments compose the test set. Such an allocation mechanism guarantees independence among the

segments, matching the assumption we did in Section 4 to formulate the statistical models. Additional cross-

correlation tests were performed to ensure this assumption.

All the following results involving a single provider refer to provider A. Furthermore, all calibrations involve the

training sets and all simulations, the test sets. Following the instruction for the initial guesses from Subsection 4.4

and assuming that

θt = max

(
θ0,

αθ0 + |ṗt|
min(pt, 1− pt)

)
, (26)

we obtain the initial guess (θ∗0 , α
∗, δ∗) ≈ (1.54, 0.072, 073).

As an auxiliary verification, we plot the negative log-likelihood (negative version of (17)) as a function of the pa-

rameters, and we use additional minimization functions from MATLAB R2019b. Moreover, we realized an additional

inference utilizing the test sets to guarantee the robustness of our numerical methods.
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Figure 7: Negative log-likelihood’s level sets for the training sets (plot on the left), and for the test sets (plot on the right). All optimal

values are located over the curve θ0α = 0.097 and θ0α = 0.089 for the training and test sets, respectively.

On Figure (7), we can see the level sets for the negative log-likelihood for both training and test sets. The

numerical values of each relevant point can be seen in Table (1). We set the optimal parameters in the V -space

(θV0 , α
V ) = (1.93, 0.050), as it is where the negative log-likelihood for the training sets reaches its minimum value.

We observe that all the local (possibly global) minimizers are located over the curves θ0α = 0.097 and θ0α = 0.089

for the training and test sets, respectively. This effect shows that the optimization is more sensitive to the diffusion

than to the drift.

In the Z-space, we obtain the optimal parameters (θZ0 , α
Z) = (1.87, 0.043).
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Table 1: Coordinates of the initial guess points and optimum points in Figure 7.

Training sets Test sets

θ0 α θ0α θ0 α θ0α

Initial guess 1.54 0.072 0.111 1.96 0.053 0.104

fminsearch 1.14 0.076 0.097 1.64 0.054 0.089

fmincon 1.58 0.062 0.097 1.63 0.055 0.089

fminunc 1.54 0.063 0.097 1.96 0.045 0.089

Evaluations 1.93 0.050 0.097 1.59 0.056 0.089

Algorithm 1 Fixed-point likelihood optimization approach in the Z−space

1: load the training set with normalized wind power production and forecast data

2: compute θt as in (26) for any given point θ?

3: compute the Lamperti transform {h(vj,i, tj,i;θ
?)}M,N

j=1,i=0 as in (9)

4: apply the moment-matching technique by solving numerically the initial-value problem (18)

5: compute the approximate Lamperti log-likelihood (19)

6: compute arg maxθ
˜̀
Z

(
θ; {h(vj,i, tj,i;θ

?)}M,N
j=1,i=0

)
.

7: repeat steps (2 to 6) until the numerical approximation to the solution of the fixed-point problem (23) is found.

To verify and compare these two vector of parameters, (i.e., (θV0 , α
V ) and (θZ0 , α

Z)), we simulate error paths in

the V−space. We simulate five error paths for each day in the test set and construct histograms with the transitions.

The histograms can be seen in Figure (8). We observe a slightly better approximation using (θZ0 , α
Z).

Figure 8: Density histograms for error transitions. Using provider A, we overlap the real transitions from the test set with the simulated

ones from the V−space SDE. On the left, simulations use (θV0 , α
V ). On the right, simulations use (θZ0 , α

Z).
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5.2. Model comparison and assessment of the forecast providers

We compare two candidate models to find the best-fit that maximizes the retained information, the Model 1,

introduced in (Elkantassi et al. (2017), p.383), and our proposed model (6), from hereafter called Model 2.

• Model 1: This model does not feature derivative tracking:dXt = −θ0(Xt − pt)dt+
√

2αθ0Xt(1−Xt)dWt, t ∈ [0, T ]

X0 = x0 ∈ [0, 1],
(27)

with θ0 > 0, α > 0.

• Model 2: This model features derivative tracking and time-varying mean-reversion parameter:dXt =
(
ṗt − θt(Xt − pt)

)
dt+

√
2αθ0Xt(1−Xt)dWt, t ∈ [0, T ]

X0 = x0 ∈ [0, 1],
(28)

with θ0 > 0, α > 0 and θt satisfying condition (B) .

To show the better performance of Model 2, we have computed the Akaike information criterion (AIC) and the

Bayesian information criterion (BIC) for the two considered models, and any combination of the three different

forecast providers with three approximate likelihood methods, the one based on the Beta surrogate density in the

V -space (Subsection 4.2), the one based on the Gaussian surrogate density in the Z-space (Subsection 4.3), and the

Shoji-Ozaki local linearization method (Shoji and Ozaki (1998)). Table (2) summarizes these results, also reporting

the estimate of the variability diffusion coefficient αθ0. It is worth observing that the best fitting is achieved with

Model 2 and adopting Beta distributions as proxies of the transition densities.

Table 2: Model comparison based on Akaike and Bayesian information criteria.

Model
Forecast

Provider
Method

Product

θ0α
AIC BIC

Model 1 Provider A Gaussian Proxy 0.105 -58226 -58211

Shoji-Ozaki 0.104 -58226 -58211

Beta Proxy 0.104 -58286 -58271

Provider B Gaussian Proxy 0.105 -58226 -58211

Shoji-Ozaki 0.104 -58226 -58211

Beta Proxy 0.104 -58288 -58273

Provider C Gaussian Proxy 0.105 -58226 -58211

Shoji-Ozaki 0.104 -58226 -58211

Beta Proxy 0.104 -58286 -58271

Model 2 Provider A Beta Proxy 0.097 -73700 -73685

Provider B Beta Proxy 0.098 -73502 -73487

Provider C Beta Proxy 0.108 -72518 -72503

The optimal estimates of the parameters of Model 2, for the three forecast providers, when using Beta surrogates

for the transition density are presented next:
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Table 3: Optimal parameters for the three different forecast providers using Model 2 with Beta proxies.

Forecast Provider Parameters (θ0, α) Product θ0α

Provider A (1.93, 0.050) 0.097

Provider B (1.42, 0.069) 0.098

Provider C (1.38, 0.078) 0.108

5.3. Calibration of Model 2 with additional parameter δ

After calibrating Model 2 on the training set using the complete likelihood (25), we can generate simulations of

the wind power production for the time horizon of interest. Figure (9) shows five simulated paths of wind power

production for each day of interest.
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Figure 9: Two arbitrary days with five simulated wind power production paths each.

Once derived optimal estimates of the parameters of the complete likelihood for Model 2, we obtain empirical

pointwise confidence bands for wind power production. Figure (10) shows the empirical pointwise confidence bands

for wind power production for each day of interest, assuming Model 2 specification, a given forecaster, and 5000

simulations per day.
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Figure 10: Empirical pointwise confidence bands for the wind power production using the approximate MLEs for Model 2 (θ0, α, δ) =

(2.22, 0.044, 0.054). Blue line: real production.

5.3.1. Value of δ

As a final verification, we study the behavior of δ as a function of the vector θ. Given a parameter vector, we

calculate an initial guess for δ solving problem (24). Even when it is a guess, it helps us understand the meaning of

this additional parameter qualitatively.

We choose as domain the most significant values of θ0 and θ0α, regarding the previous numerical results. In

Figure (11) we can observe that:

• The initial time δ decreases as θ0α increases. This is a consequence of the increment in the diffusion as θ0α

increases. As there is more diffusion, less time is needed for the initial transition density to cover the initial

error observations.

• The initial time δ increases as θ0 increases. As we increment θ0, the mean reversion becomes larger and reduces

the variance for the initial transition density. Then, more time is needed for the initial transition density to

cover the initial error observations.
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Figure 11: Initial value for δ as a function of the elements of the parameter vector θ.

6. Conclusions

We have developed a methodology for assessing forecast uncertainty, which is agnostic of the forecasting technology

and applicable to real-world problems where historical observations and their forecasts are available.

To this purpose, we built a data-driven stochastic differential equation model for the normalized forecast er-

ror, with time-varying mean-reversion parameter in the linear drift coefficient, and state-dependent and time non-

homogenous diffusion coefficient. We also used the Lamperti transform with unknown parameters to provide a

version of the proposed model with a unit diffusion coefficient, increasing its stability properties.

We used approximate likelihood-based methods for the models’ calibration, both in the original forecast and

the Lamperti space, relying on moment-matching techniques that require solving systems of ordinary differential

equations. For the Lamperti space, we derived optimal estimates of the unknown parameters using a novel fixed-

point optimization procedure.

The likelihood approach allowed for the extending of the SDE models in a very effective way, incorporating an

early transition with an additional parameter that accounts for the forecast’s uncertainty at the beginning of each

future period. As a result, we obtained a robust procedure for synthetic data generation that, using the available

forecast input, embraces future sample paths through empirical pointwise bands with prescribed confidence.

On the basis of historical data of wind power production and forecast from different sources, our method came up

with an objective tool for forecast assessment and comparison by performing the model selection stage. The applica-

tion of the modeling procedure, inference through numerical optimization, and model selection through information

criteria, to the wind power production dataset in Uruguay between April and December 2019, with three different
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providers, shows the excellent performance of our proposed model, which preserves the asymmetry of wind power

forecast errors and their correlation structure.

We conclude that our SDE model, featuring a time-derivative tracking of the forecast, a time-dependent mean-

reversion parameter, and a state-dependent diffusion term that suitably adjusts to the problem under study, con-

tributes efficiently toward the management of several types of data, such as renewable energies. Future work will

address solar power forecast pathwise uncertainty quantification, where is required the estimation of the daily maxi-

mum solar power production to get a realistic time-varying upper bound for the path variability. This methodology

paves the way for stochastic optimal control methods enabling principled decision making under uncertainty in the

presence of complex data matrices.

7. Appendix

For a time horizon T > 0, a parameter α > 0, and (θt)t∈[0,T ] a positive deterministic function, let us consider the

model given by dXt =
(
ṗt − θt(Xt − pt)

)
dt+

√
2αθ0Xt(1−Xt)dWt, t ∈ [0, T ]

X0 = x0 ∈ [0, 1],
(29)

where (pt)t∈[0,T ] denotes the prediction function that satisfies 0 ≤ pt ≤ 1 for all t ∈ [0, T ]. This prediction function

is assumed to be a smooth function of the time so that

sup
t∈[0,T ]

(
|ps|+ |ṗs|

)
< +∞.

The following proofs are based on standard arguments for stochastic processes that can be found e.g. in Alfonsi

(2015) and Karatzas and Shreve (1998) that we adapted to the setting of our model (29).

Theorem 1. Assume that

∀t ∈ [0, T ], 0 ≤ ṗt + θtpt ≤ θt, and sup
t∈[0,T ]

|θt| < +∞. (A)

Then, there is a unique strong solution to (29) s.t. for all t ∈ [0, T ], Xt ∈ [0, 1] a.s.

Proof. Let us first consider the following SDE for t ∈ [0, T ]

Xt = x0 +

∫ t

0

(
ṗs − θs(Xs − ps)

)
ds

+

∫ t

0

√
2αθ0|Xs(1−Xs)|dWs, 0 ≤ x0 ≤ 1. (30)

According to Proposition 2.13, p.291 of Karatzas and Shreve (1998), under assumption (A) there is a unique strong

solution Xt to (30). Moreover, as the diffusion coefficient is of linear growth, we have for all p > 0

E

[
sup
t∈[0,T ]

|Xt|p
]
<∞. (31)
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Then, it remains to show that for all t ∈ [0, T ], Xt ∈ [0, 1] a.s. For this aim, we need to use the so-called Yamada

function ψn that is a C2 function that satisfies a bunch of useful properties:

|ψn(x)| →
n→+∞

|x|, xψ′n(x) →
n→+∞

|x|,

|ψn(x)| ∧ |xψ′n(x)| ≤ |x|, ψ′n(x) ≤ 1,

and ψ′′n(x) = gn(|x|) ≥ 0 with gn(x)x ≤ 2

n
for all x ∈ R.

See the proof of Proposition 2.13, p. 291 of Karatzas and Shreve (1998) for the construction of such function.

Applying Itô’s formula we get

ψn(Xt) = ψn(x0) +

∫ t

0

ψ′n(Xs)(ṗs + θsps − θsXs

)
ds

+

∫ t

0

ψ′n(Xs)
√

2αθ0|Xs(1−Xs)|dWs

+ αθ0

∫ t

0

gn(|Xs|)|Xs(1−Xs)|ds.

Now, thanks to (A), (31), and to the above properties of ψn and gn, we get

E [ψn(Xt)] ≤ ψn(x0) +

∫ t

0

(ṗs + θsps − θsE[ψ′n(Xs)Xs]) ds

+
2αθ0

n

∫ t

0

E [|1−Xs|] ds.

Therefore, letting n tends to infinity, we use Lebesgue’s theorem to get

E [|Xt|] ≤ x0 +

∫ t

0

(ṗs + θsps − θsE [|Xs|]) ds.

Besides, taking the expectation of (30), we get

E [Xt] = x0 +

∫ t

0

(
ṗs + θsps − θsE [Xs]

)
ds,

and thus we have

E [|Xt| −Xt] ≤
∫ t

0

θsE [Xs − |Xs|] ds.

Then, Gronwall’s lemma gives us E [|Xt|] = E [Xt] and thus for any t ∈ [0, T ] Xt ≥ 0 a.s. The same arguments work

to prove that for any t ∈ [0, T ] Yt := 1−Xt ≥ 0 a.s. since the process (Yt)t∈[0,T ] is solution to

dYt =
(
θt(1− pt)− ṗt − θtYt

)
dt−

√
2αθ0Yt(1− Yt)dWt .

Then similarly, we need to assume that ṗt + θtpt ≥ 0. This completes the proof.

Theorem 2. Assume that assumptions of Theorem 1 hold with x0 ∈]0, 1[. Let τ0 := inf{t ∈ [0, T ], Xt = 0} and

τ1 := inf{t ∈ [0, T ], Xt = 1} with the convention that inf ∅ = +∞. Assume in addition that for all t ∈ [0, T ],

pt ∈]0, 1[ and that

θt ≥ max

(
αθ0 + ṗt
1− pt

,
αθ0 − ṗt

pt

)
. (B)

Then, τ0 = τ1 = +∞ a.s.
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Proof. For t ∈ [0, τ0[, we have

dXt

Xt
=

(
ṗt + θtpt
Xt

− θt
)
dt+

√
2αθ0(1−Xt)

Xt
dWt

so that

Xt = x0 exp

(∫ t

0

ṗs + θsps − θ0α

Xs
ds+ αθ0t−

∫ t

0

θsds+Mt

)
,

where Mt =
∫ t

0

√
2αθ0(1−Xs)

Xs
dWs is a continuous martingale. Then, as for all t ∈ [0, T ] we have ṗt + θtpt − θ0α ≥ 0,

we deduce that

Xt ≥ x0 exp

(
αθ0t−

∫ t

0

θsds+Mt

)
.

By way of contradiction let us assume that {τ0 <∞}, then letting t→ τ0 we deduce that

lim
t→∞

1{τ0<∞}Mt∧τ0 = −1{τ0<∞}∞ a.s.

This leads to a contradiction since we know that continuous martingales likewise the Brownian motion cannot

converge almost surely to +∞ or −∞. It follows that τ0 =∞ almost surely. Next, recalling that the process (Yt)t≥0

given by Yt = 1−Xt is solution to

dYt =
(
θt(1− pt)− ṗt − θtYt

)
dt−

√
2αθ0Yt(1− Yt)dWt,

we deduce using similar arguments as above τ1 =∞ a.s. provided that θt(1− pt)− ṗt − αθ0 ≥ 0.

Remark 6. As the diffusion coefficient of Xt given by x 7→
√

2αθ0x(1− x) is strictly positive for all x ∈]0, 1[, the

condition (B) ensures that the transformation between Zt and Xt is bijective, so that we deduce the properties of

existence and uniqueness of Zt from those of Xt. The application of Itô’s formula in Section 4 is subjected to the

condition (B) that avoids the process Xt hits the boundaries of the interval ]0, 1[, otherwise the Lamperti transform

is not applicable.
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