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Abstract. This paper presents a generative modeling approach called
Gmda designed for tabular data, adapted to its arbitrary feature corre-
lation structure. The generative model is trained so that sampled regions
in the feature space contain the same fraction of true and synthetic sam-
ples, allowing true and synthetic data distributions to be aligned using
a frugal and sound learning criterion. The merits of Gmda in terms of
the usual performance indicators (pairwise correlation errors, precision,
recall, predictive performance) are on par with or better than the state-
of-the-art approaches for tabular data based on VAEs, GANs, or diffusion
models. The key point is that it provides generative models with one or
more orders of magnitude that are more frugal than baseline approaches.

Keywords: Generative modeling · Tabular data · Frugality

1 Introduction

The domain of generative modeling has been established for over a decade [15,8].
Its impressive results in language modeling [3] and image generation [23] rely on
sophisticated embeddings, trained from massive data amounts and exploiting
the specifics of image and text data [5,23].

This paper deals with the generative modeling of tabular data in response to
the fact that tabular data is essential in most application areas, from healthcare
to e-commerce or manufacturing. Generative modeling aims to address several
problems. Firstly, data augmentation is required to train deep models when the
original dataset is too restricted; for instance, manufacturing data are usually
limited in size compared to the datasets commonly used to train deep neural
nets. Secondly, synthetic data might be needed to accommodate privacy policy
regimes [31,2]. Lastly, the synthetic data can populate hardly visited regions of
the data space [6,20,25].

The challenge of generative modeling for tabular data is twofold. Firstly, tab-
ular data is heterogeneous and contains features of mixed type (numerical and
categorical); secondly, the relationships between the different features, i.e., the
joint distribution of the data, can be arbitrarily complex, unlike text and image
data. Except for a few approaches aimed to estimate the sought joint distribution
through knowledge graphs [13] or Bayesian networks [7], most generative mod-
eling approaches assume the independence of the features. After appropriately
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preprocessing the features depending on their type (float, integer, or categori-
cal), the generative model architecture comprises plain, fully connected layers
[9]. The size of such models tends to increase rapidly with the number of fea-
tures. This large model size, in turn, increases the risk of overfitting, especially
since tabular datasets are typically an order of magnitude smaller than text or
image datasets. Another challenge is that synthetic tabular data is difficult for
domain experts to visually assess, unlike text and image data. Various ad hoc
quality criteria, ranging from correlations to predictive performance (e.g., using
Catboost [22]), have been developed to measure the fidelity of synthetic data to
the true data. However, as noted by [1], outliers can easily mislead these criteria.

The main generative modeling approaches, namely variational autoencoders
(VAEs) [15], generative adversarial networks (GANs) [8], and diffusion models
[11] have been adapted to tabular data [30,32] (Section 2). These approaches
typically involve large, fully connected architectures and require careful tuning
of hyperparameters. The learning process faces optimization challenges when the
size of the true dataset is limited, particularly in the case of adversarial training.

The contribution presented in this paper is a frugal approach to deep gener-
ative modeling for tabular data called Generative Modeling with Density Align-
ment (Gmda) (Section 3). Similar to [28], Gmda aims to align the true and syn-
thetic data distributions. The difference lies in the learning criterion: whereas [28]
minimizes an f -divergence between the two distributions, Gmda operates by i)
sampling hyper-rectangles in the feature space; ii) minimizing the difference be-
tween the fraction of true and synthetic samples falling in these hyper-rectangles.
Informally speaking, if these fractions are equal for all hyper-rectangles, both dis-
tributions are equal. The challenge is to sample the hyper-rectangles in a man-
ner that provides sufficient coverage of the true data distribution while keeping
the computational cost (which depends on the number of the hyper-rectangles)
within acceptable limits.

After detailing the experimental setting (Section 4), we report on the exten-
sive experimental validation of the approach on both artificial and real-world
datasets, compared to baselines TVAE, CTGAN, and TabDDPM [30,16] (Sec-
tion 5). Overall, Gmda produces generative models that perform on par with or
better than the state of the art while being an order of magnitude more frugal in
size. The scalability of Gmda w.r.t. high dimensionality settings is experimen-
tally investigated using the TCGA and GTEX datasets with dimensions up to
1,000 [29,18]. The paper concludes with some perspectives for further research
(Section 6).

2 Related Work

As mentioned, generative modeling has been less studied for tabular data than
image and text data because of the diversity of the underlying joint distribution
structure of the data and the difficulty in assessing the quality of a generative
model.



Frugal Generative Modeling for Tabular Data 3

In the last decade, the primary approaches have been based on oversampling
techniques [4,19], exemplified by methods like SMOTE. These approaches use
local heuristics (e.g., nearest neighbor interpolations) to create synthetic sam-
ples and overcome data gaps or class imbalances. Although these are the most
commonly used techniques, they are unsuitable for high-dimensional problems,
as nearest neighbor search suffers from the curse of dimensionality.

Another strategy is to estimate and exploit the joint distribution of data
using probabilistic graphical models such as Bayesian networks (BNs) [27,7].
[33] also proposes an approximation of a set of low-dimensional marginals with
PrivBayes, aiming at generating synthetic data in privacy-sensitive domains.
The main challenge is to determine the Bayesian graph’s structure to reflect
the independencies and conditional dependencies between variables. These ap-
proaches face two main limitations: identifying a graph structure is known to
be NP-hard, and the number of statistical tests required to determine depen-
dency relationships is cubic in the number of variables, which raises the issue of
multiple hypothesis testing.

Adaptations of the celebrated VAE [15] and GAN [8] approaches have been
designed for tabular data. [30] presents two generative models for tabular data,
respectively called TVAE and CTGAN, each employing specific type-dependent
normalization for each feature. These models are shown to outperform BN-based
approaches while being less prone to mode collapse than older GAN-based gen-
erative models for tabular data, e.g., TableGAN [21] and PATE-GAN [31].

Diffusion models have also been adapted to the tabular data setting, including
TabDDPM [16] and TabSYN [32], both of which outperform TVAE and CTGAN.
The performance of TabSYN is enhanced by combining the embedding of the
continuous and categorical features into a latent continuous space and using a
VAE in this latent space to seed the diffusion process.

The limitations of advanced generative models for tabular data are twofold.
On the one hand, as noted by [16], they hardly outperform SMOTE in various
contexts. On the other hand, these large-scale models are challenging to train on
datasets of limited size, and their hyper-parameters must be carefully optimized
to avoid overfitting or mode collapse.

Unsupervised sample-based indicators, such as precision and recall measures,
have been proposed to address the challenging task of assessing data quality.
These indicators respectively reflect the realism and diversity of the synthetic
samples [17,1]. Among these metrics, some compare the local density of true and
synthetic samples. However, since some widely adopted metrics have been shown
to be biased in favor of simple memorization (duplication) of the real distribu-
tion, [12] proposed the FLD indicator to evaluate the overfitting of generative
models. This indicator is based on approximating the synthetic distribution as
a mixture of Gaussians and then measuring the likelihood of the true samples
according to this estimated density.

The approach most related to ours is proposed by [28]. Within the GAN
or Normalizing Flow frameworks, the generative model is trained by optimizing
the f -divergence between the true and synthetic distributions, thereby tackling
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a differentiable learning criterion. The choice of hyperparameters allows control
over the precision-recall trade-off. A key difference from mainstream GANs is
that the f functions involved in the f -divergence differ for the generator and the
discriminator.

Discussion. A primary motivation for the proposed generative modeling ap-
proach is to comply with the AI frugality requirements [26,14]. More precisely,
our goal is to develop generative models that perform comparably to the state of
the art but are based on simpler architectures and require less computing power
and data for learning.

For this purpose, the Generative Modeling with Density Alignment (Gmda)
method is based on a stochastic loss, which estimates the alignment between the
true and synthetic distributions. We found that a carefully designed stochastic
sampler of hyper-rectangles in the feature space can effectively guide the gener-
ative model while being less computationally expensive and more robust than
an adversarial module.

3 Overview of Gmda

This section introduces the proposed Gmda approach. It begins by outlining the
fundamental principle of the approach, followed by a detailed description of its
modules and the pseudo-code of the algorithm.3

Notations. In the following, the true distribution is the discrete distribution
D = {x1, . . .xn} defined on the d-dimensional instance space X ⊂ Rd. Similarly,
the generated or synthetic distribution G is defined on X ; for simplicity and
convenience, a finite-sized sample generated from G is also denoted as G.

Principle. As mentioned, performance metrics utilized to evaluate a generative
modeling approach, such as precision and recall, reflect how closely the synthetic
samples align with the true samples on average (realism) and how closely the true
samples align with the synthetic samples on average (diversity). Consequently,
optimizing these indicators entails a multi-objective optimization challenge: en-
suring that most generated samples are situated in the high-density regions of
the true distribution while adequately exploring the low-density regions to miti-
gate the risk of mode collapse. As pointed out by [28], this multi-objective issue
can be reformulated as a single objective problem by minimizing an f -divergence
between the true and synthetic distributions. Gmda minimizes a much simpler
distance between both distributions based on density probes:

Definition 1. Let H ⊂ Rd be a region in the instance space. The density probe
related to H is defined as the difference between the percentage of true and syn-
thetic samples falling within H, denoted as d(D,G, H):

d(D,G, H) = |Pr(x ∈ D,x ∈ H)− Pr(x′ ∈ G,x′ ∈ H)| (1)
3 The code and the supplementary material (SM) are publicly available at

github.com/ablacan/gmda.

https://github.com/ablacan/gmda
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Given two distributions A and B on X , it is straightforward to show that the
expectation on H ⊂ X of d(A,B, H) defines a distance among A and B:

d(A,B) = IEH⊂X d(A,B, H) (2)

Based on this definition, one might consider devising an adversarial generative
modeling framework comprising a generator and an adversary [8]. Here, the gen-
erator aims to formulate G while the adversary aims to identify regions H to
maximize the corresponding density probes. Nevertheless, this adversarial strat-
egy comes up against a fundamental drawback: optimizing Eq. 2 would result
in memorizing D, leading to an uninformative generative model. Gmda thus ex-
plores a non-adversarial approach, using a stochastic probe sampler instead of
an adversary. Specifically, at each epoch, K regions H1, . . . ,HK are randomly
sampled, and Gmda works toward learning the generative model G that mini-
mizes the pseudo-distance between D and G, defined as the sum of the density
probes d(D,G, Hi) for i = 1 . . .K.

Gmda primarily relies on two algorithmic components. The first aspect in-
volves defining probe H in a manner that makes d(D,G, H) differentiable and
conducive to optimization through back-propagation. The second aspect entails
establishing an effective sampling mechanism that selects informative probes
H1 . . . HK aligning with the generative modeling objective.

3.1 Designing Differentiable Density Probes

For computational efficiency, the probes under consideration are hyper-rectangles,
characterized as the Cartesian product of intervals [ai, bi] for i = 1 . . . d. The
definition of the density probe d(D,G, H) is based on the design of a smooth
indicator function I(x, [a, b]) that approximates whether a scalar x ∈ R belongs
to the interval [a, b] while being differentiable (unlike the standard binary indi-
cator). The proposed approach, illustrated in Fig. 1, defines I(x, [a, b]) as the
product of two sigmoid functions:

Definition 2. Let x ∈ R denote a real value, and [a, b] be an interval in R. The
smooth indicator function I(x, [a, b]) is defined as:

I(x, [a, b]) =

(
1

1 + e−λ(x−a)

)
×

(
1

1 + e−λ(b−x)

)
The slope λ > 0 of the sigmoid function governs the trade-off between

I(x, [a, b]) closely approximating the binary indicator function (where a higher λ
results in a more accurate approximation) and maintaining a bounded derivative
range. In the experiments, the parameter λ is set to 5.

The smooth indicator function associated with a hyper-rectangle follows in
a straightforward manner:
Definition 3. Let H ⊂ Rd be defined as the Cartesian product of intervals
[ai, bi] for i in 1, . . . d. The smooth indicator function I(x, H) is defined as:

∀x = (x1, . . . xd) ∈ Rd, I(x, H) =

d∏
i=1

I(xi, [ai, bi])
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Fig. 1: Toy 2-circles 2d dataset: Indicator function I(x, H) linked to rectangles.
Left: the value of I(x, H) for the depicted rectangle, with sigmoid slope λ = 10,
and its marginals in the two dimensions. Right: a random sampling of 50 probes
with a density of δ = 5% (see text) showcasing densely visited areas (pink and
orange) alongside vacant regions (black).

The effectiveness of a probe is assured by: i) setting [ai, bi] to [−∞,∞] for all
coordinates except for a limited number identified as active coordinates (in the
experiments, the number of active coordinates is fixed at 3); ii) appropriately
sampling the probes. The selection of hyper-rectangles as probes (rather than,
for instance, hyper-spheres) is rationalized by the ability to pre-calculate the
cumulative density functions along each space coordinate. This facilitates an
efficient probe sampling technique, as detailed below.

3.2 Designing a Probe Sampler

Each probe H is centered on a real sample x ∈ D, referred to as seed. The seed
selection process aims to cover the true distribution support effectively (below).
For a given seed x, the hyper-rectangle H(x) is determined by i) uniformly
sampling the active coordinates in {1, . . . , d} without replacement; ii) defining
the interval [ai, bi] related to each active coordinate i.

The interval width is determined based on the density rate δ. This hyper-
parameter controls the number 2m+1 of true samples falling within the interval
(where m = δn−1

2 , with n the number of true samples). The lower δ, the higher
the number K of probes needed to cover the true distribution, and the better
the training loss (defined below) estimates the distance between both true and
synthetic distributions. It is important to note that this control of the interval
width permits the size of the hyper-rectangle H to encompass, to some extent,
the density of the real distribution. Across a specific coordinate, the intervals
are narrower in dense areas and wider in sparser regions. The limitation is that
the computation of interval [ai, bi] considers each feature independently as if the
joint distribution were the product of the marginals.
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Algorithmically, given the (pre-computed) ordered list of the i-th coordinate
values of the true samples, let ri(x) denote the rank of the i-th coordinate value
for seed x, with πi(k) the i-th coordinate value with a rank k. Subsequently, ai
and bi are determined as follows:

ai =

{
πi(ri(x)−m) if ri(x) > m
πi(1)− ϵ otherwise

bi =

{
πi(ri(x) +m) if ri(x) < n−m
πi(n) + ϵ otherwise

with ϵ > 0 a margin and n the number of true samples.

As could be expected, the regions of the instance space are neither equally
dense nor equally easy to cover in general. The probe sampler thus aims to
achieve a trade-off between uniformly sampling the seeds (exploration) and giv-
ing more consideration to challenging-to-cover regions (exploitation). At the ini-
tialization, the K probes are defined from K uniformly selected seeds in D. In
further epochs, a proportion η of the hyper-rectangles exhibiting the highest loss
at iteration t are retained for iteration t + 1, where the probe persistence η is
a hyperparameter of Gmda; other hyper-rectangles are defined from uniformly
selected seeds. Note that this persistence mitigates the stochastic nature of the
overall training loss. For η = 0, the loss boils down to a stochastic estimate of
the distance among the true and synthetic distributions (Eq. 2).

3.3 Learning criterion

A local loss L(H) is associated with each probe H, reflecting the disparity be-
tween the numbers of true and synthetic samples falling within H. These num-
bers are respectively approximated by the sum of I(x, H) for x ∈ D and the sum
of I(x, H) for x ∈ G. However, the absolute difference between the two numbers
does not adequately reflect local density alignment: the same absolute difference
should have a more significant impact in a low-density than in a high-density
region. The absolute difference is consequently divided by a monotonic function
of the density to address this observation. Following preliminary experiments,
the loss associated with probe H is defined as:

L(H) =

∣∣∑
x∈D I(x, H)−

∑
x′∈G I(x′, H)

∣∣
log

(
1 + max

(∑
x∈D I(x, H),

∑
x′∈G I(x′, H)

)) (3)

To enforce the precision of the generative model and prevent synthetic sam-
ples from wandering in vacant regions, the learning criterion is augmented with
an additional loss term called dark probe term, set to wDHL(DH), with wDH ≥ 0
a hyperparameter of the approach, where DH is the complement of the union
of probes H1, . . . ,HK , with I(x, DH) set to

∏K
i=1(1− I(x, Hi)).4

4 A small quantity is added to the denominator of L(DH) to prevent numerical in-
stabilities.
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Overall, the learning criterion of the generative model is the aggregate of the
losses L(H) for H spanning the current probes H1, . . . ,HK , and the dark probe
DH:

L =

K∑
i=1

L(Hi) + wDHL(DH) (4)

Practically, Gmda takes a p-dimensional Gaussian noise vector noted z as
input. The generative model is a neural net that produces a synthetic sample
from z, trained to minimize the loss (Eq. 4). Similarly to CTGAN [30], Gmda
can produce conditional generative models, taking the concatenation of z and
the encoding of a class variable as input and concatenating the class variable
again to the latent vector in each layer; a class-dependent loss is considered
(only focusing on the true samples within the given class), and the overall loss
averages the class-dependent losses.

Algorithm 1 Gmda
Require: Data distribution D, number of iterations T , number K of hyper-rectangles,

hyperparameters: persistence η; density δ; dark probe weight wDH

Initialization
Initialize θ, vector of the generator parameters
Select uniformly K distinct seeds x1 . . .xK in D
for k = 1, . . . ,K do

Build Hk = H(xk, δ)
Compute L(Hk) ▷ Compute loss on Hk (Eq. 3)

end for
θ ← BP (L =

∑K
k=1 L(Hk) + wDHL(DH)) ▷ Update θ by back propagation

for t = 2, . . . , T do
Exploitation

Retain seeds associated with top ηK probes with highest loss
Exploration

Sample (1− η)K new seeds uniformly
for k = 1, . . . ,K do

Build Hk = H(xk, δ)
Compute L(Hk) ▷ Compute loss on H(xk)

end for
θ ← BP (L =

∑K
k=1 L(Hk) + wDHL(DH)) ▷ Update θ by back-propagation

end for

3.4 Discussion

The Gmda learning criterion is, by design, a stochastic approximation of the
distance between the true and the synthetic distribution (Eq. 2); the tightness
of this approximation depends on the number K of probes and the density
rate δ. For arbitrarily large values of n and K, and arbitrarily small δ, the
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optimal generative model can thus yield optimal precision and accuracy (putting
a synthetic sample in each true sample’s neighborhood and no synthetic samples
outside of these neighborhoods). The quality of the generative model is then
bounded by the computational resources. Note that the loss can provide some
direct and local assessment of the generative model, indicating the ill-covered
regions:

Proposition 1. Let H(x) be the probe defined from seed x and density rate δ.
If H(x) does not contain any synthetic sample, then

L(H(x)) ≥ 3

Proof: follows from Eq. 3.

4 Experimental setting

The primary goal of the experiments is to comparatively assess the performance
of Gmda compared with the state of the art and to particularly investigate its
scalability w.r.t. the dimension d of the problem. Our second goal is to assess its
sensitivity w.r.t. the four hyper-parameters of the approach: the number K of
probes, the density rate δ, the persistence rate η, and the weight wDH of the dark
probe. Lastly, the compliance of the approach with the Green AI requirements
is assessed in terms of model size and computational cost.

Performance indicators. Both unsupervised and supervised indicators are
considered. Unsupervised indicators include the pair-wise correlations error (eval-
uating the faithfulness of the synthetic data structure), the precision and recall
indicators [17] measuring the realism and diversity of the synthetic distribution
w.r.t. the true one, and the harmonic mean of these indicators (F1) [24].5 Follow-
ing [17], they are computed on the full dataset D, and a synthetic G of same size
n for the sake of stability, using a number k = 5 of nearest neighbors (k = 10 for
high dimensional datasets). The supervised performance indicator, referred to as
Machine Learning Efficiency (MLE), is the predictive accuracy on D (test set)
of a classifier learned from G, where G is learned from the training set of D; the
predictive accuracy (F1 score) is averaged over 20 runs following [16] (settings
of the classifiers in SM G).

Benchmarks (Table 1). Besides 2d toy datasets used for illustration purposes,
the experimental validation considers four well-studied datasets for the sake of
comparison with the state-of-the-art, with a small or medium number of samples
and features [16,32]. Two further gene expression datasets with a high number of
features, originating from the Genotype-Tissue Expression (GTEx) project [18]

5 Although such metrics are sensitive to outliers, we argue that they remain empirically
more stable and interpretable than further formulations suggested by [1].
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Table 1: The benchmark datasets (links to open source data in SM A).

Dataset #Train #Validation #Test Dim. Classification

Diabetes 442 49 277 8 Binary
Gesture 5,687 632 1,724 32 Multiclass
Magic 15,406 1712 1,902 10 Binary
Wilt 2,786 310 1,743 5 Binary
GTEx 9,796 2,448 5,000 974 Multiclass
TCGA 6,499 1,625 1,625 978 Multiclass

and the Cancer Genome Atlas (TCGA) [29], are also considered. Following the
common practice, the datasets are preprocessed (standardized to zero mean and
unit variance for the first four datasets, using a quantile transformation for the
last two). More details can be found in SM A.

Baselines. For the first four datasets, the baselines are TVAE and CTGAN
[30], and TabDDPM [16], using their hyperparameters as reported in the cited
papers. For the last two datasets, the baselines are VAE [15] and WGAN-GP
[10] (best settings in SM B).

Gmda hyper-parameter setting. Gmda is implemented as a three hidden
layers neural net, with Leaky ReLU activations and batch normalization. All
hyper-parameters of Gmda are adjusted using Bayesian optimization over 100
trials, maximizing the precision-recall trade-off (F1) between the generated dis-
tribution and the training set (details in SM B3).

5 Experiments

This section reports on the empirical results of Gmda compared with the state
of the art (more results are presented in SM). All reported results are averaged
on five runs.

5.1 Performance

The visual inspection of the 2D datasets (Fig. 2) reveals the main strengths
and weaknesses of the approaches: TVAE tends to generate samples outside the
true distribution of the moons, and the swiss roll; CTGAN fails to reproduce
the shape for all 2D datasets. These observations confirm that VAEs tend to
increase diversity at the cost of realism, while GANs might be prone to mode
collapse issues. TabDDPM generates the most faithful data; Gmda-generated
data is the most similar to that of TabDDPM.

The quality of the synthetic data structure is first assessed from the abso-
lute difference between the true and the synthetic covariance matrices for the
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(a)

(b)

(c)

Fig. 2: The 2d datasets: Visual inspection of the generative models. From top to
bottom: (a) moons, (b) circles, (c) swiss roll. From left to right: TVAE, CTGAN,
TabDDPM, Gmda.

Table 2: Quality of the synthetic data structure (absolute difference of synthetic
vs. true data correlations). Statistically significantly best results in bold.

Model Diabetes Gesture Magic Wilt Avg. Rank

TVAE 2.3±0.18 3.12±0.17 1.68±0.12 2.41±0.48 2.38% 2
CTGAN 22.06±1.16 5.97±0.16 12.49±0.15 10.34±0.33 12.72% 4
TabDDPM 19.82±2.88 1.94±0.13 1.32±0.06 22.11±6.38 11.3% 3
Gmda 2.±0.37 2.58±0.03 1.22±0.13 1.9±0.28 1.92% 1

four medium-size datasets (visually represented in Fig. 3, and quantitatively in
Table 2). Gmda ranks first (except on the Gesture dataset, where TabDDPM
outperforms it) with an error rate of circa 2%. Interestingly, TabDDPM shows
a high error rate variance and underperforms on Diabetes and Wilt. All other
approaches dominate CTGAN, and TVAE ranks second overall.
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Fig. 3: Quality of the synthetic data structure (absolute difference of synthetic vs.
true data correlations; the paler, the better). From top to bottom: Diabetes, Ges-
ture, Magic and Wilt. From left to right: TVAE, CTGAN, TabDDPM, Gmda.
The colors are normalized by dataset, i.e., darker red corresponds to higher ab-
solute errors relative to the other feature pairs and generative models.

Table 3: Precision / Recall performance (F1 score (%); the higher, the better).
Statistically significantly best results in bold.

Model Diabetes Gesture Magic Wilt Avg. Rank

TVAE 95.37±1.21 38.31±0.94 91.83±0.13 96.2±0.42 80.43% 3
CTGAN 1.45±0.78 0.13±0.12 33.39±0.33 18.8±1. 13.44% 4
TabDDPM 78.31±0.74 84.61±0.32 96.75±0.09 98.36±0.1 89.51% 1
Gmda 92.74±0.63 71.51±0.49 90.99±0.15 97.1±0.12 88.09% 2
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Table 4: Machine learning efficiency: F1 score (%) of Catboost classifier on test
data (the higher, the better). Statistically significantly best results in bold.

Model Diabetes Gesture Magic Wilt Avg. Rank

Baseline 69.13±1.08 58.05±0.62 88.32±0.28 91.47±0.72 - -
TVAE 64.87±1.12 35.6±1.22 82.89±0.32 86.42±1.59 67.45% 3
CTGAN 47.49±7.33 16.49±3.07 52.74±0.58 47.35±1.17 41.02% 4
TabDDPM 75.26±0.89 50.36±0.76 86.85±0.24 88.83±0.96 75.32% 1
Gmda 67.69±1.04 43.58±0.41 85.58±0.4 92.84±0.57 72.42% 2

Table 5: High-dimensional datasets: Machine learning efficiency and Precision-
Recall F1 score (the higher, the better). Statistically significantly best results in
bold.

Model GTEx TCGA Rank

MLE F1 (PR) MLE F1 (PR)

MLP Class. 99.32±0.04 - 93.59±0.6 - -
VAE 98.98±0.05 74.28±0.1 88.36±0.97 82.36±0.06 3
WGAN-GP 98.76±0.09 94.66±0.1 92.04±0.46 93.17±0.17 1
Gmda 98.4±0.6 79.86±0.25 89.68±0.4 83.27±0.34 2

The quality of the synthetic data is assessed from its realism-diversity trade-
off, from the harmonic mean between precision and recall (Table 3). Gmda ranks
second, being slightly but statistically significantly outperformed by TabDDPM.
Detailed results (in SM C) show that Gmda is consistently the best approach in
terms of precision (93% on average) on all datasets, while TabDDPM performs
poorly on Diabetes, and both TVAE and CTGAN collapse on Gesture. The
detailed PCA analysis of the true and synthetic data (in SM D) suggests that
TVAE and TabDDPM gain diversity by generating data outside the true data
manifold, i.e., with synthetic samples spread in empty regions for Gesture and
Wilt. In contrast, the Gmda-generated data is similarly structured on the four
datasets.

The quality of the synthetic data is last assessed in the supervised perspec-
tive, considering the Machine Learning Efficiency indicator (Table 4), reporting
the predictive performance of the Catboost classifier trained from the synthetic
data (results with XGBoost are presented in SM C). Likewise, Gmda ranks
second, slightly outperformed by TabDDPM.

5.2 Scalability w.r.t. the dimension d

First results showing the comparative performance (in MLE and Precision-Recall
F1 score) of Gmda on the two high-dimensional GTEx and TCGA datasets are
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displayed in Table 5, compared to the oracle baseline (standard MLP classifier
trained on the true data, more in SM F), VAE [15] and WGAN-GP [10]. On
both GTEx and TCGA, Gmda ranks second in precision-recall; it is dominated
by other approaches in MLE.

These results first establish the feasibility of learning generative models in
high dimension (d circa 1,000) based on density alignment with hyper-rectangular
probes by significantly increasing the number of probes (circa 800 vs 100 for
medium-size problems). On the other hand, Gmda shows a significantly higher
variance than VAE and WGAN-GP. We shall return to this in Section 6.

5.3 Sensitivity study

As said, the optimal configuration for Gmda is determined by Bayesian optimiza-
tion of the Precision-Recall F1 score. Around this configuration, the sensitivity
of the MLE performance is analyzed by varying a single hyper-parameter (more
results in SM E).

The sensitivity w.r.t. the number K of probes, ranging in {10, 100, 250, 500},
is depicted in Fig. 4. As expected, the performance increases when increasing
K, yielding a more precise training loss. For all datasets but Diabetes, however,
the performance reaches a plateau for a sufficiently high number of probes (K ≥
100).
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Fig. 4: Gmda: Sensitivity analysis of MLE w.r.t. the number K of probes (Cat-
boost F1 score, quantiles on 5 runs).

The sensitivity w.r.t. the density rate δ, ranging in {.05, .1, .25, .35}, is de-
picted in Fig. 5. For Magic and Wilt, the performance is best for small values
of δ, decreasing as δ increases. For Gesture, the performance is best for medium
values of δ (δ in [.10, .25]) and degraded for lower or higher values. These re-
sults are interpreted in relation to the higher dimension of the Gesture dataset,
suggesting that higher values of K should be considered in combination with
smaller values for δ. The erratic sensitivity pattern on Diabetes is attributed to
its low number of samples.

The sensitivity w.r.t. the other two parameters of Gmda, the persistence
parameter η (ranging in {.0, .2, .5., .8}) and the dark probe weight wDH (ranging
in {0, 1}) is analyzed in SM D. In brief, the sensitivity is low w.r.t. η. In contrast,
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Fig. 5: Gmda: Sensitivity analysis of MLE w.r.t. the density rate δ parameter
(Catboost F1 score, quantiles on 5 runs).

the dark probe weight significantly impacts the performance: its presence has a
positive impact on Gesture (and Diabetes) and a negative impact on Wilt (and
to a lesser extent on Magic).

Overall, the most sensitive parameters for Gmda are the number K of probes
(that must be sufficiently high) and the density rate δ, controlling the precision
of the coverage of the true distribution. The persistence parameter η shows a
low sensitivity: the approach performs as well in pure stochastic mode (η = 0).6

5.4 Frugality analysis

All reported results are measured on an NVIDIA A40 GPU with 48 GB of
RAM. The load of the generative modeling approaches (model size in number
of parameters and computational training cost) is displayed in Fig. 6. In terms
of computational time, TabDDPM ranks first, with Gmda coming in second;
this performance is partly due to the use of pre-computation of the cumulative
density functions used to define the probes (Section 3.2). Regarding model size,
Gmda achieves a gain of one or more orders of magnitude compared to all other
approaches. This improvement is due to the fact that Gmda does not incorporate
an adversary module.

The frugality of Gmda in terms of model size is confirmed on the high-
dimensional GTEx and TCGA datasets, showing a gain of one order of magni-
tude. For GTEx, the model size is 36×106 for VAE and 19×106 for WGAN-GP,
compared to 3.2×106 for Gmda. For TCGA, the model size is 46×106 for VAE
and 22× 106 for WGAN-GP, compared to 2.6× 106 for Gmda.

In terms of training time, the current implementation of Gmda is not as
optimized as VAE or WGAN-GP, leading to a higher computational load. For
GTEx, Gmda currently requires 3 hours (compared to 1 hour for VAE and 13
mn for WGAN-GP, due to a batch size of 1024); for TCGA, Gmda requires 2
hours (compared to 22 minutes for VAE and 1hour and 40mn for WGAN-GP).

6 Along the same line, the use of refined heuristics for the selection of the seeds,
accounting for how often these have been selected in the former epochs, did not
improve the performance.
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Fig. 6: Computational Training Load and Model Size (number of parameters)
for TVAE, CTGAN, TabDDPM, and Gmda (in orange), over datasets Diabetes,
Gesture, Magic and Wilt.

6 Conclusion

The primary motivation behind the presented Gmda was to design a generative
modeling approach for tabular data that aligns more closely with the frugality
requirements increasingly advocated for AI.

The contributions of the Gmda approach include: i) a sound learning crite-
rion, based on the distance between the true and the learned distributions, pre-
cisely measured by the precision and recall performance indicators; ii) a stochas-
tic approximation of this learning criterion, utilizing density probes and suitable
for continuous optimization; iii) algorithmic pre-computations designed to facil-
itate the probe sampling task during the learning process.

The first two issues are closely related: employing a trained adversary for
this pristine learning criterion would result in merely duplicating the target
distribution, which is ineffective. The stochastic approximation of the probe,
operating with bounded resources, is essential to prevent this duplication. In
counterpart, the number and size of probes must match the dimension of the
problem and the complexity of the target joint distribution.

The approach produces frugal generative models, significantly smaller in size
compared to the state-of-the-art, with moderate or low sensitivity to its four
hyperparameters. The Gmda performance on medium-sized tabular datasets is
comparable to the state of the art, while on high-dimensional datasets, the results
are currently promising, indicating potential for further research.

A first and short-term perspective involves extending Gmda to other (cate-
gorical and integer) data types.

A longer-term perspective is to address the challenge of high-dimensional gen-
erative modeling by exploiting the fact that the intrinsic dimension of the current
datasets is usually significantly lower than the number of features. Drawing inspi-
ration from [32], a potential approach could be integrating an auto-encoder with
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Gmda, where Gmda operates in the latent space. The novelty of this approach
would be replacing the conventional adversarial framework with a cooperative
one, where the generative model collaborates with the auto-encoder to optimize
a learning criterion defined in latent and feature spaces.

A medium-term perspective involves delving deeper into understanding the
reasons behind the high variance of the Gmda results. Future work will explore
the utilization of dynamic schemes to regulate the density rate δ and the number
of probes throughout the learning process.
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