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Abstract

Autonomous driving is a complex and highly dynamic process that ensures controlling the coupled longitudinal and lateral
vehicle dynamics. Model predictive control, distinguished by its predictive feature, optimal performance, and ability to handle
constraints, makes it one of the most promising tools for this type of control application. The content of this article handles the
problem of autonomous driving by proposing an adaptive linear parameter varying model predictive controller (LPV-MPC),
where the controller’s prediction model is adaptive by means of a recurrent neural network. The proposed LPV-MPC is further
optimized by a hybrid Genetic and Particle Swarm Optimization Algorithm (GA-PSO). The developed controller is tested
and evaluated on a challenging track under variable wind disturbance.
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1 INTRODUCTION

The ever-increasing number of vehicles is inducing
terrible traffic conditions and increasing air pollution
in today’s world. With most people having to spend
countless hours to commute between home and work,
driving has become a source of strain and stress,
increasing the possibility of road accidents. Therefore,
the research community has been striving to accelerate
the shift toward autonomous driving by replacing
human drivers with automatic control systems. This
shift will improve traffic safety and enhance mobility
while boosting human productivity since driving time
can be used to do productive tasks instead. The
considerable advances in artificial intelligence and
information processing technologies further accelerate
the shift to autonomous driving. The latter is a complex
multidisciplinary process, involving sensing, perception,
planning, and control. Control is the final and most
important step of the process, it can be divided into
longitudinal control, in charge of speed tracking, and
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lateral control, which handles the steering.

Research works can be divided into two main categories;
the first one addresses the longitudinal and lateral
controls separately, and the second one couples both
tasks together. For instance, Xu et al. [1] introduced
an optimized controller for speed regulation, where
road slope, speed profile, and vehicle dynamics are
integrated into the model. Paper [2] addressed the
longitudinal control by a self-adaptive PID controller,
whose optimization and adaptation were based on
neural networks and genetic algorithms. An adaptive
neural network PID controller was developed by Han et
al. [3] for the path-tracking task. The authors applied
it to a second-order vehicle model, and they used a
forgetting factor least square algorithm to estimate model
parameters. Guo et al. [4] dealt with path tracking. They
developed an MPC controller that takes into account the
changing road conditions and small-angle assumptions
as a form of measurable disturbance. The authors used
the differential evolution algorithm to solve the control
problem. Authors of [5] developed a model predictive
controller (MPC) for lateral control and optimized its
weighting matrices using fuzzy inference systems (FIS).
Corno et al. [6] developed an LPV H∞ lateral controller,
where they exploited the lateral error and look-ahead
distance of the vehicle to ensure better robustness and
account for actuator nonlinearities under low speeds.
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The authors tested their controller in high-speed driving
scenarios and evasive maneuvers. Authors of [7] worked
on adaptive MPC designed with Laguerre functions for
path tracking, they optimized the controller tuning with
an improved PSO algorithm. A lookup table approach
was used to achieve online controller adaptation.
However, the employed method cannot account for all
possible cases despite the good results that were achieved.
Additionally, the same authors enhanced their approach
in [8] and replaced the lookup table approach with neural
networks and adaptive neuro-fuzzy inference systems
so that the adaptions generalize beyond the lookup
table data. Although significant tracking improvements
were achieved, this approach still requires long offline
optimizations.

In [9], a coordinated lateral and longitudinal control
using LPV-MPC for lateral control with PSO-PID for
speed regulation was proposed. In other works, Yao et
al. [10] developed an (MPC) path tracking controller
that includes longitudinal speed compensation, their
approach aims to overcome the assumption of constant
longitudinal speed along the control horizon. This
technique seeks to minimize the control deviation caused
by fast speed and acceleration variations. In [11], Wang
et al. designed an improved (MPC) control strategy
that includes an adaptive fuzzy controller, the latter
aims to change the weights of the cost function to
tackle the problem of ride discomfort caused by fixed
weights in the standard MPC. Li et al. proposed in his
paper [12] an (NMPC) for trajectory tracking, their
controller was based on nonlinear vehicle dynamics, and
Pacejka tire model [13], and it tracks the yaw angle and
lateral position. Most of the above-mentioned studies
ensure autonomous driving using coordination between
lateral and longitudinal control. However, full autonomy
requires handling both lateral and longitudinal controls
simultaneously, especially during highly dynamic
maneuvers.

Kebbati et al. [14] addressed the coupled lateral
and longitudinal control, their solution was based
on an LPV-MPC approach with genetic algorithm
optimization. A Takagi-Sugeno-based MPC (TS-MPC)
for autonomous driving was proposed by Alcala et al.
[15]. This data-driven approach was merely used to
learn a Takagi-Sugeno representation of the vehicle
dynamics, which was used by the MPC controller with
a Moving Horizon Estimator (MHE) to achieve coupled
longitudinal and lateral control. Papers [16–18] used
the nonlinear model predictive control (NMPC) for
autonomous driving and parking applications. Kabzan
et al. [19] proposed an online learning MPC controller
for autonomous racing by learning the model errors
online using Gaussian process regression. Similarly,
paper [20] addressed autonomous racing using an online
learning NMPC with Gaussian process regression and
online moving horizon state estimation. Paper [21] dealt
with autonomous race driving, the authors introduced

an (NMPC) for the reduced F1/10 platform. The
authors interpolated the circuit boundaries using 3rd

order polynomials and implemented them as inequality
constraints on the lateral position to keep the vehicle
inside the track. Kloeser et al. [22] proposed an (NMPC)
to tackle autonomous racing for a 1:43 scale race car using
a singularity-free path parametric model. The authors
used partial spatial reformulation of the prediction
model to exclude singularities and implemented obstacle
avoidance in the optimization problem as a constraint
with the objective of maximizing progress on the path.
A review of the most widely used control strategies for
autonomous driving is provided in [23].

This paper contributes to the above-mentioned literature
by proposing an improved controller for coupled speed
and steering control. The main contributions are
threefold; First, to ensure real-time application with
minimal computing resources and to overcome the
heavy computations of NMPC, an adaptive LPV-MPC
is developed for autonomous driving. Second, a novel
hybrid GA-PSO algorithm is proposed for optimizing
the controller’s cost function to achieve optimal control
actions and automate the controller’s tuning process.
Third, a Jordan recurrent neural network is designed and
trained to learn the tire lateral dynamics by predicting
the cornering stiffness coefficients from measurable
parameters only, such as velocities and accelerations.

The article is divided as follows: Section 2 discusses the
model of the vehicle’s coupled lateral and longitudinal
dynamics. Section 3 explains the development of the
proposed controller, the adaptation approach using
recurrent neural networks, and the optimization of the
controller’s cost function through the proposed hybrid
GA-PSO algorithm. Evaluation results of the learning
approach, optimization, and control are presented
and analyzed in section 4. Finally, Section 5 provides
conclusions and gives perspectives for future work.

2 VEHICLE MODELING

The vehicle is modeled in this article using the common
bicycle dynamics model [24, 25], which is considered
accurate for control design and easy to implement for
real-time control applications as it does not require
long computations. Its simplicity is in lumping the front
wheels together as well as the rear wheels to form a
single-track or bicycle representation as illustrated in
Fig. 1. The tire lateral forces, being a function of the
slip angles, govern the vehicle’s lateral dynamics. As
expressed in equations (1), the model takes into account
the longitudinal, the lateral, and the yaw dynamics and
includes the heading and lateral position errors as well:
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v̇x = αx + ωvy − 1
m (Fyf sin δ + Fd)

v̇y = 1
m (Fyf cos δ + Fyr)− ωvx

ω̇ = 1
I (Fyf lf cos δ − Fyrlr)

ẏe = vx sin θe + vy cos θe

θ̇e = ω − vx cos θe−vy sin θe
1−yek

Fyf = Cfαf

Fyr = Crαr

Fd = µmg + 1
2ρCdAv

2
x

(1)

The linear longitudinal and lateral velocities and yaw
rate in the body frame are represented by vx, vy, and
ω, respectively. Fy(f,r) express the lateral forces of the
front and rear tires, respectively. The total drag force is
expressed by Fd, where Cd, ρ, and A represent the drag
coefficient, air density, and the vehicle cross-sectional
area, respectively. The parameters θe and ye represent
the heading and lateral position errors, where k is the
road curvature. The inertia and the mass of the vehicle
are represented by I and m, and l(f,r) are the distances
between the front/rear wheel axles and the vehicle’s
center of gravity, respectively. The terms αx and δ are the
acceleration and steering controls, and the parameters µ
and g represent the friction coefficient and the gravity.
Finally, the front/rear tire cornering stiffness coefficients
are given by C(f,r), and α(f,r) design the slip angles for
the front/rear wheels with ε being an additional term to
avoid singularities in the model, which are respectively
given by: {

αf = δ − tan−1 (
vy
vx+ε −

lfω
vx+ε )

αr = − tan−1 (
vy
vx+ε + lrω

vx+ε )
(2)

The full model can be considered as a non-linear function
that maps the state vector (x) with the input vector (u)
and the road curvature (k) as follows:

ẋ = f(x, u, k) (3)

where x = [vx vy ω ye θe]
T and u = [δ αx]T .

3 CONTROLLER DESIGN

The control strategy is based on the LPV approach
since it allows capturing model nonlinearities, and
ensures real-time application with minimal computing
resources, therefore, overcoming the heavy computations
of NMPC [24]. Furthermore, the LPV approach is
adaptive to varying parameters, thereby, increasing the
model’s accuracy. The model presented in Section 2 is
reformulated in an LPV form and transformed into a
state space representation. Thus, the state and control

Fig. 1. Bicycle dynamic model with tracking error.

matrices will depend on a scheduling vector of varying
parameters. Therefore, the nonlinearities of the model
are captured by embedding linear varying parameters
into the system matrices, which provides a simple but
accurate model for control design. LPV systems are
known as a class of linear systems with their parameters
being functions of scheduling signals that can be external
or internal. The LPV state space formulation of the
system is given by (4) based on the following scheduling
vector ψ = [δ vx vy θe ye k]T .

ẋ = A(ψ)x+B(ψ)u (4)

The state matrix A(ψ) and control matrix B(ψ) can then
be derived as the following:

A(ψ) =



A11 A12 A13 0 0

0 A22 A23 0 0

0 A32 A33 0 0

A41 A42 0 0 0

A51 A52 1 0 0


, (5)

B(ψ) =



B11 1

B21 0

B31 0

0 0

0 0


, (6)

where the terms are given by:

A11 = −µg
vx
− ρCdAvx

2m , A12 =
Cf sin δ
mvx

,

A13 =
Cf lf sin δ
mvx

+ vy, A22 = −Cr+Cf cos δ
mvx

,

A23 = −Cf lf cos δ−Crlr
mvx

− vx, A32 = −Cf lf cos δ+Crlr
Ivx

,

A33 = −Cf l
2
f cos δ+Crl

2
r

Ivx
, A41 = sin θe, A42 = cos θe,

A45 = vx, A51 = −k cos θe
1−yek , A52 = k cos θe

1−yek ,

B11 = −Cf sin δ
m , B21 = −Cf cos δ

m , B31 = −Cf lf cos δ
I .
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Generally speaking, the MPC approach exploits the
plant model to foresee its behavior over a prediction
horizon Np. Based on these predictions, it generates an
optimal control sequence by solving a constrained convex
optimization problem. The MPC approach is based on
the receding horizon principle, where only the first term
of the optimal control sequence is used. The LPV model,
discretized with Ts sampling time, is used to build the
MPC prediction model. This means that the scheduling
vector is used to instantiate the LPV model iteratively.
The parameters of the scheduling vector can be obtained
from sensors, planners, or previous MPC predictions.
In this regard, the MPC problem is formulated as the
following constrained quadratic optimization:

min
∆Uk

Jk =

Np−1∑
i=0

(
(rk+i − xk+i)

TQ(rk+i − xk+i)+

∆uk+iR∆uk+i

)
+ xTk+Np

Qxk+Np

s.t :

xk+i+1 = xk+i +A(ψk+i)xk+i +B(ψk+i)uk+idt

uk+i = uk+i−1 + ∆uk+i

∆umin ≤ ∆uk ≤ ∆umax
umin ≤ uk ≤ umax
xmin ≤ xk ≤ xmax

(7)

The terms x, u, and Np define the state vector, the
control vector, and the prediction horizon, respectively.
The weighting matrices Q ∈ R5×5 and R ∈ R2×2 are
semi-positive definite, and they penalize the states and
the control effort. The longitudinal speed profile is
given by the reference vector rk+i, and the upper and
lower bounds on the control actions, control increments,
and states are respectively expressed as [umin, umax],
[∆umin,∆umax] and [xmin, xmax]. The last term of the
cost function is added to increase stability, a terminal
cost and a terminal set are needed to ensure the
asymptotic stability of MPC with a quadratic stage
cost. Otherwise, a sufficiently long prediction horizon is
required to guarantee asymptotic stability as illustrated
by Franz et al. [26]. In addition, paper [27] states that
adding a terminal cost to the MPC formulation and
using a sufficiently long prediction horizon ensures MPC
stability without the need for terminal constraints.

3.1 Controller Adaptation with Jordan Network

In most cases, research works are based on linearized
tire models, where the tire lateral force depends linearly
on the slip angle through a constant known as the
cornering stiffness coefficient. However, this is only
valid for relatively small slip angles and not during
fast and challenging maneuvers, the so-called cornering
stiffness coefficient may be time-varying and changes
during different types of maneuvers. To deal with this

issue, we use machine learning tools to predict the
cornering stiffness coefficient online using information
from measurable parameters of the vehicle’s dynamics.
We assume that measurable parameters such as the
longitudinal (vx) and lateral (vy) velocities, the steering
angle (δ), the acceleration (αx), and the yaw rate (ω))
are enough to capture the tire dynamics. Hence, the
prediction model of the LPV-MPC controller is adapted
online using this approach (see Fig. 2), this strategy
improves the prediction capability and precision of the
LPV-MPC. In this article, we propose the use of a
modified deep Jordan network to learn tire dynamics.
Jordan networks are a simple type of recurrent neural
network where the delayed output signal from the output
layer is reinjected with the inputs to account for temporal
dependencies and improve network predictions, meaning
that the previous network predictions become inputs for
future predictions. Fig. 3 illustrates the simplest form of
a Jordan network where i represents the inputs, y is the
output, ω are the weights, and b is the bias. The network
consists of two inputs, one output, and one hidden layer
with n hidden neurons. It can be modeled as follows:

y(k) = f(u(k − 1), y(k − 1)) (8)

Considering ω
(n)
j,k as the weights of the nth layer between

neurons j and k of the previous and actual layers,
respectively, the output signal can be expressed as:

y(k) = ω
(2)
0 +

n∑
i=0

ω
(2)
i ζ(zi(k)) (9)

The term ζ is the activation function of the hidden layer,
and zi(k) represents the sum of ith hidden node, and it
is given by:

zi(k) = ω
(1)
0,i + ω

(1)
1,i u(k − 1) + ω

(1)
2,i y(k − 1) (10)

Fig. 2. Adaptive LPV-MPC approach.
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3.2 Controller Tuning with Hybrid GA-PSO

Tuning the MPC manually is a difficult task that requires
expertise and time, and eventually, it may not result in
optimal performance. Thus, to optimize the designed
LPV-MPC, we propose a hybrid Genetic Algorithm (GA)
and Particle Swarm Optimizer to tune the weighting
matrices of the quadratic cost function by minimizing
the MPC tracking root mean squared error (RMSE) as a
fitness function. GAs are a global optimization technique
based on Darwin’s biological evolution theory. They can
find the optimums of discontinuous and nondifferentiable
objective functions [28]. Generally speaking, the genetic
algorithm initializes a population set that contains
encoded solutions, which are called chromosomes in the
genetic jargon. These possible solutions are improved
iteratively and their optimality is assessed by a fitness
function. GA evolution operations include the selection,
the crossover, and the mutation processes, which control
the search capability and the quality of the solutions.
They consist of different functions that impact the
performance of the algorithm at different degrees [28].
For instance, the selection process selects the best
chromosomes to be enhanced by the crossover and
mutation operations. Alternatively, the crossover seeks
to produce high-quality solutions by mixing genetic data,
while mutation introduces new genes to complement
the crossover as illustrated in Fig. 4. The most common
selection operations in the literature, are the roulette
wheel (RWS) and tournament selection (TS) [28, 29]. For
the crossover operation, one finds single/multi-point,
uniform, and shuffle crossover. Similarly, mutation
operations include inversion and random resetting.
Researchers have essentially worked towards improving
these operations to further optimize genetic algorithms.

Fig. 3. Jordan network structure.

Fig. 4. Genetic operations

In this article, we propose a combination of RWS and
TS selection operations to improve the selection of
potential genes, a critical GA phase. Briefly speaking,
The RWS method provides a higher chance for good
genes to be selected, and this improves the exploitation
and accelerates the convergence of the algorithm.
However, since this approach is mainly based on the
fitness value, premature convergence by selecting the
same dominant genes is an open issue. On the other
hand, the TS approach allows controlling the selection
pressure, where smaller tournament sizes ensure more
chances for weak genes to be selected unlike RWS. This
feature retains the diversity of the search space, which
in turn increases the possibility of converging to a global
optimum at the expense of slower convergence. In this
paper, both methods are used with random percentages
at each iteration to increase both convergence speed
and optimality by combining the advantages of both
methods. Additionally, uniform crossover has been used
with mutation based on Gaussian distribution (see
Algorithm 1).

Algorithm 1 Proposed Genetic Algorithm

Require: Genmax, Np . Generations, Population size
Pop← Np Parents . Random population
while Generation < Genmax do

Child← emptyPop . Create child population
while Child ≤ full do

RWS ← %r . Generate RWS percentage
TS ← %t

if %r ≥ %t then
Parent1← RWS(Pop) . RWS Selection
Parent2← RWS(Pop)

else
Parent1← TS(Pop) . TS Selection
Parent2← TS(Pop)

end if
Child1, 2← UCrossover(Parent1, Parent2)

. Perform Uniform Crossover
Child1, 2← GMutation(Child1, Child2)

. Perform Mutation
Fitness← Evaluate(Child1, Child2)

. Evaluate new offsprings
Offspring ← Child1, Child2

end while
Pop← Offspring . Replace Population

end while
Solution← Best fitness . Save best solution

On the other hand, particle swarm optimization is a
well-known algorithm for meta-heuristic optimization
[30, 31], its classic algorithm is defined as follows:

vi(k + 1) = ωvi(k) + c1r1(Pbi(k)− xi(k))

+c2r2(Gb(k)− xi(k))

xi(k + 1) = xi(k) + vi(k + 1)

(11)
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The terms vi and xi define the velocity and the position
of particle (i), a particle is a solution to the optimization
problem. The terms ω, c1, and c2 are respectively known
as inertia weight, cognitive, and social accelerations,
while r1,2 ∈ [0, 1] are just random constants. Parameters
Pb and Gb are the best local and global positions,
respectively. In the classic algorithm, ω and c1,2 are
constants, but in the improved version of this work,
they are dynamic and change according to the following
equations [7]:

ω = ωmin +
exp (ωmax − λ1(ωmax + ωmin) gG )

λ2
(12)



c1(k + 1) = c1(k) + α

c2(k + 1) = c2(k) + β

α = −β = 0.05 for g
G ≤ 20%

α = −β = 0.02 for 20% ≤ g
G ≤ 35%

α = −β = −0.035 for 35% ≤ g
G ≤ 75%

α = −β = −0.0015 for g
G ≥ 75%

(13)

The terms ωmin and ωmax are the upper and lower
bounds of the inertia weight and λ1,2 are adjustable
parameters to control the decrease from ωmax to ωmin.
The terms g and G represent the actual and the last
generations. The advantage of this improved version
over the standard one is that it enhances the overall
search capabilities of the PSO algorithm [7]. When ω
decreases exponentially it accelerates the convergence
towards the global best solution. Furthermore, increasing
cognitive acceleration c1 enhances the exploration phase
where particles are pulled towards Pb, and increasing c2
enhances the exploitation phase where particles converge
towards Gb and vice versa. Compared to GA, PSO
algorithms are a bit more intelligent as they incorporate
memory by retaining knowledge of good solutions by all
the particles as they share information in the swarm. In
contrast, a GA would discard all the previous knowledge
of the problem once it changes populations.

The proposed hybrid algorithm (see Fig. 5) runs offline
and exploits the improved GA and the PSO algorithm
iteratively. Briefly speaking, at each iteration of the
algorithm, the solutions found by the GA and PSO
algorithms are compared, and only the best-found
solution is retained. At the next iteration stage, both
algorithms will run with the best previously found
solution. This strategy allows combining both search
efforts of the GA and PSO algorithms towards finding
the best solution to the problem. The interest in
hybridizing these algorithms lies in the fact that it allows
us to overcome the weak searching ability and slow
convergence of the GA. In fact, when individuals are
not selected in the GA algorithm, their information is
completely lost. This is not the case with PSO, since it
has memory. On the other hand, PSO algorithms do not

have selection operators, which means the algorithm will
likely run computations on unfit individuals. Simply put,
combining GA with PSO retains the advantages of both
algorithms, where the GA excels at reaching the global
solution region, and the group search feature of the PSO
algorithm boosts the search for exact optimal solutions.

Fig. 5. Proposed hybrid GA-PSO algorithm.

4 RESULTS AND DISCUSSION

The proposed control strategy is tested using a Renault
Zoe vehicle, whose behavior is simulated in Matlab using
a high fidelity nonlinear dynamic model [24] with the
Pacejka formula for the lateral tire forces [13]. Table 3
properly lists all model parameters.

4.1 Learning and Optimization Results

Since the cornering stiffness coefficients are learned from
data, multiple driving scenarios are performed in Carsim
[32] to collect data for training the neural network. The
Jordan recurrent neural network consists of an input
layer with 7 neurons, and two hidden layers with 8 and 5
hidden neurons, respectively. In addition to one output
layer with two neurons corresponding to the cornering
stiffness coefficients for front and rear wheels. All the
hidden layers are activated with the sigmoid function,
while the identity is used for the output layer. The model
is developed in Keras-Tensorflow [33] and trained for

6
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100 epochs with a batch size of 16. The data set contains
around 10000 data points, which were split into 75% for
training and 25% for validation. The adaptive movement
estimation algorithm was used as the optimizer with a
learning rate of 5e−4. Fig. 6 shows the training curve of
the neural network, which proves the ability of the model
to learn the data without over-fitting. The resulting
validation loss value is as low as 0.002, while the training
loss reached 0.005. The obtainedR2 scores on the training
and the test data sets are 99.8% and 99.7%, respectively.
Fig. 7 shows a comparison between the predicted values
and the expected ones over a few data points of the test
data set, which illustrates the accuracy of the model.

Fig. 6. Learning curve.

Fig. 7. Prediction model performance.

The different parameters of the proposed hybrid GA-PSO
algorithm are tuned intuitively and iteratively until
the desired performance is achieved, the algorithm is
evaluated on a 5D sphere function

(
f(x) =

∑5
i=1 x

2
i

)
as a benchmark test [34]. The resulting performance
of the proposed GA-PSO algorithm over 100 iterations
is compared to improved GA and improved PSO,
respectively. Fig. 8 shows that the hybrid GA-PSO is
indeed faster and able to further optimize the solutions.
It managed to reach a minimum cost value of 4.24e−8

compared to 4.82e−6 and 2.95e−5 for the improved
PSO and GA algorithms, respectively. Tables 1 and
2 list the parameters used in the GA-PSO algorithm
for the optimization of the LPV-MPC controller. The
fitness function, in this case, was selected as RMSE
for longitudinal velocity, lateral position, and heading
tracking. The GA-PSO optimization managed to achieve
a minimum RMSE score of 0.0069, 0.0191, and 0.0212 for
the position, heading, and velocity tracking, respectively.
The optimized weighting matrices are as follows:
Q = diag(50, 1e−5, 0.01, 47.43, 1e−3)T ,
R = diag(0.003, 1e−4)T .

Fig. 8. Performance of the improved hybrid GA-PSO.

Table 1
GA parameters

Parameter Name Value

Gen Generation 15

NP Size of population 25

Op Percentage of offsprings 0.8

β Selection pressure 0.75

µr Mutation rate 0.3

σ Mutation variance 0.15

4.2 Control Results

The proposed controller is coded in Yalmip platform and
solved using Gurobi solver. The algorithm runs at 95Hz

7
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Table 2
PSO hyper-parameters.

Parameter Interpretation Value

N Generation 15

NPop Swarm particles 25

ωmax Maximum inertia weight 0.99

ωmin Minimum inertia weight 0.1

c1i Initial cognitive acceleration 2

c2i Initial social acceleration 2

λ1 Constant 30

λ2 Constant 3

on a Ryzen7 laptop with 32gb of RAM. The LPV-MPC
is implemented and evaluated in Matlab simulations
using the high fidelity nonlinear dynamic model [24]
with the Pacejka formula for the lateral tire forces [13].
Table 3 presents the MPC parameters. The evaluation is
performed for a double lane change trajectory and speed
profile (see Fig. 9,10). Overall, the proposed controller
performs the double lane change maneuver very well
with minimal tracking errors. Similarly, the controller is
further tested on a more challenging general trajectory
and speed profile under wind disturbances varying
between 20 and 50 m/s, (see Fig. 11,12). Furthermore,
it is compared to another MPC based on the linear
bicycle model as introduced in [9], which is used in
coordination with an optimized PSO-PID to address
the combined longitudinal and lateral dynamics. We
denote this controller LMPC for linear MPC. Such a
comparison shows that the proposed controller handles
both lateral and longitudinal dynamics and outperforms
the decoupled control strategy of [9], which dedicates
two optimized controllers for the same task. The LMPC
was tested on the same trajectory with the same speed
profile and wind disturbance. Fig. 11 shows the velocity
profile variying between 5 and 25 m/s. It can be seen
that the LPV-MPC is slightly more accurate in speed
tracking. The MSE was evaluated at 0.02 compared to
0.19 for the PSO-PID, whose parameters were already
optimized. In addition, PSO-PID was found to be more
aggressive as it cannot handle constraints.

The results in Fig. 12 show that the proposed LPV-MPC
performed much better than LMPC in terms of tracking
accuracy. The obtained MSE score was as low as 0.007
compared to 0.32 for LMPC, this means the LPV-MPC
tracking is almost ideal compared to its rival. The
zoomed regions of the figure further illustrate the big
difference in tracking accuracy, this is partly due to the
different models used to develop the MPC controller.
The corresponding steering and acceleration controls

and the lateral velocity of the vehicle are shown in Fig.
13. The predicted cornering stiffness coefficients for the

Fig. 9. Wind velocity and speed tracking for double lane
change.

Fig. 10. Trajectory tracking for double lane change.

Table 3
MPC and model parameters

Parameter Value Parameter Value

m 1575 (kg) Cd 0.29

Iz 2875 (kg.m2) A 1.6 (m2)

lf 1.2 (m) yemax/min 0.3 (m)

lr 1.6 (m) umax/min ±π
6

(rad)

ρ 1.225 (kgm3) ∆umax/min ± π
12

(rad)

µ 0.82 Np 10

g 9.81 (m/s2) Ts 0.033 s

tested trajectory are reported in Fig. 14, and Fig. 15
shows the corresponding tracking errors for longitudinal
velocity, heading, and lateral position, respectively.
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Fig. 11. Wind velocity and speed tracking performance.

Fig. 12. Trajectory tracking.

As seen in the figure, the velocity tracking error does
not exceed 0.095 m/s, and the maximum heading
and position tracking errors are kept below 4.5◦ and
2.3 cm, respectively. Moreover, the execution time of the
LPV-MPC is very suitable for real-time applications as
observed in Fig. 16 with a mean computation time of
(0.011 s).

5 CONCLUSIONS

This article addressed the coupled control task in
autonomous driving with an LPV-MPC controller.
The developed controller is capable of simultaneously
controlling the lateral and longitudinal dynamics. A
machine learning approach has been introduced to
predict the model’s tire cornering stiffness coefficients
online, using only measurable parameters. This approach
adapts the LPV-MPC prediction model for more
accurate predictions. For tuning and optimizing the

Fig. 13. Steering, acceleration, and lateral velocity signals.

Fig. 14. Cornering stiffness coefficients.

Fig. 15. Tracking performance.

proposed controller, an improved hybrid GA-PSO
algorithm has been proposed. The developed controller
has been evaluated on a challenging track and compared
to another variant of LPV-MPC. The obtained results
showed superior performance of the proposed controller,
which ensures high speed and trajectory tracking
accuracy. Future works shall target online learning for
more advanced autonomous driving applications.
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Fig. 16. MPC computation time.
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and J. Rodriguez, “Fuzzy mamdani-based model predictive
load frequency control,” in 2020 IEEE 11th International
Symposium on Power Electronics for Distributed Generation
Systems (PEDG), pp. 7–12, IEEE, 2020.

[6] M. Corno, G. Panzani, F. Roselli, M. Giorelli, D. Azzolini,
and S. M. Savaresi, “An LPV Approach to Autonomous
Vehicle Path Tracking in the Presence of Steering Actuation
Nonlinearities,” IEEE Transactions on Control Systems
Technology, vol. 29, no. 4, pp. 1766–1774, 2020.

[7] Y. Kebbati, V. Puig, N. Ait-Oufroukh, V. Vigneron, and
D. Ichalal, “Optimized adaptive mpc for lateral control of
autonomous vehicles,” in 2021 9th International Conference
on Control, Mechatronics and Automation (ICCMA),
pp. 95–103, IEEE, 2021.

[8] Y. Kebbati, N. Ait-Oufroukh, V. Vigneron, and D. Ichalal,
“Neural network and anfis based auto-adaptive mpc for path
tracking in autonomous vehicles,” in 2021 IEEE International
Conference on Networking, Sensing and Control (ICNSC),
vol. 1, pp. 1–6, IEEE, 2021.

[9] Y. Kebbati, N. Ait-Oufroukh, V. Vigneron, and D. Ichalal,
“Coordinated pso-pid based longitudinal control with lpv-mpc
based lateral control for autonomous vehicles,” in 2022
European Control Conference (ECC), pp. 518–523, IEEE,
2022.

[10] Q. Yao and Y. Tian, “A model predictive controller with
longitudinal speed compensation for autonomous vehicle path
tracking,” Applied Sciences (Switzerland), vol. 9, no. 22, 2019.

[11] H. Wang, B. Liu, X. Ping, and Q. An, “Path Tracking Control
for Autonomous Vehicles Based on an Improved MPC,” IEEE
Access, vol. 7, pp. 161064–161073, 2019.

[12] S. Li, Z. Li, B. Zhang, S. Zheng, X. Lu, and Z. Yu,
“Path tracking for autonomous vehicles based on nonlinear
model: Predictive control method,” SAE Technical Papers,
vol. 2019-April, no. April, pp. 1–7, 2019.

[13] H. B. Pacejka, “Vehicle System Dynamics : International
Journal of Vehicle Mechanics and Mobility,” International
Journal of Vehicle Mechanics and Mobility, no. August 2012,
pp. 37–41, 2008.

[14] Y. Kebbati, N. Ait-Oufroukh, V. Puig, D. Ichalal, and
V. Vigneron, “Autonomous driving using ga-optimized neural
network based adaptive lpv-mpc controller,” in 2022 IEEE
International Conference on Networking, Sensing and Control
(ICNSC), pp. 1–6, IEEE, 2022.

[15] E. Alcala, O. Sename, V. Puig, and J. Quevedo,
“Ts-mpc for autonomous vehicle using a learning approach,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 15110–15115, 2020.

[16] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager,
F. Borrelli, and M. Diehl, “An auto-generated nonlinear mpc
algorithm for real-time obstacle avoidance of ground vehicles,”
in 2013 European Control Conference (ECC), pp. 4136–4141,
2013.

[17] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat,
“Predictive active steering control for autonomous vehicle
systems,” IEEE Transactions on Control Systems Technology,
vol. 15, no. 3, pp. 566–580, 2007.

[18] M. Rick, J. Clemens, L. Sommer, A. Folkers, K. Schill,
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