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A B S T R A C T

Motor impairments caused by neurological diseases have an important impact on gait, particularly on the
coordination between left and right lower limbs. Deviation from normal gait is often measured to assess this
impact on gross motor functions, and to monitor the progress of patients during rehabilitation. The concept of
gait dissimilarity map is introduced to represent bilateral raw gait signals, while accounting for their respective
spatiotemporal dynamics. A model of gait for the healthy population is constructed through Singular Value
Decomposition, considering both lower limbs. The obtained eigenvectors synthesize the symmetry present
in gait. Then, by projecting the dissimilarity maps of patients with gait disorders on the space formed by
such eigenvectors, we compute their associated Eigen-Gait Asymmetry Index (EGAI) relatively to an average
normal gait reference vector. For the knee joint in the sagittal plane, EGAI values of patients are higher (9.73
±2.16) than those of healthy controls (3.86 ±0.9), reflecting the asymmetry induced by neurological diseases.
Patients with hemiparesis show the highest EGAI (10.4 ±1.8), followed by patients with paraparesis (9.9 ±1.8)
and patients with tetraparesis (8.6 ±2.5). Indeed, patients with hemiparesis show a more asymmetrical gait
since only one side of the body is affected. EGAI for hip, ankle and pelvis joints in the sagittal plane show
similar trends. Our innovative method characterizes bilateral gait, enriching traditional unilateral assessments.
Our method yields a comprehensive score reflecting both asymmetry and gait deviations, aiming to provide
clinicians with an effective and precise monitoring tool.
1. Introduction

Human gait is a complex spatiotemporal activity driven by cyclical
movements. It requires the interaction and the coordination between
body segments and a coupling of adjacent joints for an effective exe-
cution of body displacement. The symmetrical execution of movements
between the left and right sides of the body is a functional normative
marker [1].

In the healthy population, periodic and symmetric movements of
limbs during gait are controlled by the Central Nervous System (CNS).
Neurological diseases, such as cerebral palsy, multiple sclerosis, or
stroke, relate to a dysfunction of CNS leading to degraded gait quality,
impacting gait symmetry [1,2]. This impact is highly variable, accord-
ing to the pathology and the individual. In hemiparesis, only one side
of the body is affected; in paraparesis and tetraparesis, upper and/or
lower limbs can be impacted.
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Gait quality assessment has considerably evolved in recent years.
Advances in acquisition technology as inertial measurement units [3–
7] and motion capture systems [8,9] allow recording precise kinematic
joint angles for Clinical Gait Analysis (CGA) [3,10–13]. Such joint
angles are exploited in CGA to assist clinicians in patients’ follow-up
by means of quantitative indices [14,15]. Different measures have been
introduced to quantify the asymmetry present in pathological gait [16],
particularly the Ratio Index (RI) [17] and the Symmetry Index (SI) [18].
The RI quantifies gait symmetry by computing a ratio between global
descriptors (e.g. step width or step length [19–25]) of the affected
and non-affected limbs. The SI is based on the difference between the
descriptors of the affected and non-affected limbs, normalized by a
reference value of the given descriptor. The choice of the reference
value is not obvious; for this reason, such value is estimated as the
average of the descriptor of the left and right sides [16,26]. For both
indices, a zero value indicates perfect symmetry. SI and RI indices show
https://doi.org/10.1016/j.compbiomed.2024.109390
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Table 1
Descriptive statistics (mean ± standard deviation) for healthy and pathological populations.

HC All patients HP PP TP

Number of individuals 52 45 21 11 13
Number of bilateral cycles 263 212 100 49 63
Female 34 (65%) 14 (31%) 7 (33%) 4 (36%) 3 (23%)
Age (years old) 22.61 ± 3.88 46.64 ± 12.7 48.52 ± 13.1 45.36 ± 10.8 44.69 ± 14.0
Height (m) 1.71 ± 0.09 1.70 ± 0.1 1.72 ± 0.1 1.69 ± 0.1 1.72 ± 0.08
Weight (kg) 65.28 ± 10.77 70.84 ± 13.3 73.92 ± 12.4 64.05 ± 12.0 71.64 ± 14.6
Left cycle length (nb. points) 107.4 ± 6.7 220.5 ± 125.0 229.3 ± 142.5 209.2 ± 132.3 215.8 ± 92.6
Right cycle length (nb. points) 107.3 ± 6.6 222.8 ± 131.9 234.0 ± 157.3 209.7 ± 128.2 215.8 ± 91.8
a common limitation: they quantify the asymmetry based on global
descriptors of gait, and thus do not exploit all the dynamic information
available in the recorded kinematic joint signals [3–9].

On the other hand, Crenshaw and Richards [27] proposed to char-
acterize gait asymmetry through personalized Singular Value Decom-
position (SVD), to compare time-normalized left and right gait cycles,
combined to linear regression. If the regression line is aligned with the
first eigenvector, then gait is considered symmetrical, otherwise, there
is an asymmetry. This measure thus quantifies globally the deviation
from the regression line.

All these measures of asymmetry exploit normalized gait cycles
or rely on the extraction of global features, thereby losing temporal
information conveyed in gait waveforms [1,28]. By contrast, our work
introduces a novel measure of gait asymmetry accounting for the rela-
tive spatiotemporal dynamics of both lower limbs. Also, we evaluate it
across different motor impairments due to neurological diseases. In this
respect, in the literature, studies are often focused on specific groups or
diseases, such as healthy subjects [24], patients with hemiplegia [19]
or with stroke [20,21,23].

More precisely, we propose to assess gait symmetry in a novel
framework, by switching from gait signal analysis to image analysis.
Our goal is to represent the matching between gait signals of both
lower limbs through an image that summarizes the mutual gait cycle
dynamics and the coordination between both sides. Such image, called
Bilateral Dissimilarity Map, represents a compact cartography of the
spatiotemporal relation between left and right gait cycles. Indeed, it
conveys precious information on time shifts between left and right gait
signals, as well as differences in their amplitudes.

Then, methodologically, we construct a model of normal gait using
SVD on Bilateral Dissimilarity Maps of healthy controls. The SVD pro-
vides a compressed view of normal gait, through different eigenvector
components that we exploit to compute an asymmetry index, referred
as Eigen-Gait Asymmetry Index. We demonstrate that this index allows
a fine assessment of gait asymmetry in patients with hemiparesis,
tetraparesis and paraparesis.

The paper is structured as follows. Section 2 describes the Coubert
Rehabilitation Center database and the acquisition protocol, as well
as the method proposed in this work. The results are presented in
Section 3 and discussed in Section 4. Conclusion and future work are
finally stated in Section 5.

2. Materials and methods

2.1. Participants and acquisition protocol

We exploited angular kinematic data of 52 healthy subjects and
45 patients suffering from neurological diseases. Data was collected at
the Movement Analysis Laboratory of Coubert Rehabilitation Center,
at UGECAM Ile-de-France. Each participant was informed that his/her
data might be used for research purposes, and no participant objected
to the use of his/her data. This retrospective study was approved
on April 10th, 2019 by the internal ethics committee of UGECAM
Ile-de-France.

The acquisition was carried out during a spontaneous gait task using
a Codamotion optoelectronic system, integrating four CX1 cameras. The
2 
Fig. 1. BiDM construction: (a) a dissimilarity image matching two raw cycles of a
healthy subject: the left cycle of length 94 and the right one of length 96; (b) the
corresponding 64 × 64 BiDM image after bi-cubic interpolation. Each pixel in the
image represents the Euclidean distance value between an observation from the left
cycle and an observation from the right cycle.

system recovers 3D angular kinematics of pelvis, hip, foot, ankle, and
knee in the sagittal, frontal and transversal planes, considering a sam-
pling rate of 100 Hz. Participants were asked to walk naturally for 10
meters in a straight line and on flat ground with a spontaneous speed.
This process was repeated five times in average, each corresponding to
one gait trial.

The recruited healthy subjects (Healthy Controls, HC) were young
adults (students or laboratory staff) ranging from 18 to 41 years old.
They had no disease affecting motor function. Patients were adults
ranging from 21 to 75 years old. Table 1 reports more details on
the population under study. Among the 45 patients, 21 patients have
hemiparesis (HP), 13 patients have incomplete tetraparesis (TP), and
11 patients have paraparesis (PP).

2.2. Data preprocessing and dissimilarity map construction

Joint angular kinematic signals were segmented into gait cycles
from consecutive initial contacts events. Events were automatically
detected using the High-Pass algorithm [29] and manually verified by a
clinician specialized in movement analysis. The number of cycles differs
for each trial and patient.

For symmetry assessment, we select for both HC and patients con-
secutive left and right gait cycles of the same individual and associate
them as being a pair of bilateral gait cycles. This pair is then used
to construct a dissimilarity matrix containing the Euclidean distance
values computed between every observation in the left cycle and every
observation in the right cycle (see Fig. 1a).

Note that by contrast to previous works [15–27,30–32], in this
study we consider raw gait cycles without time normalization. Indeed,
we have shown in [33,34] that normalizing cycles leads to significant
spatiotemporal information loss. For this reason, we construct the
dissimilarity matrix on raw cycles, and thus consider all spatiotemporal
relations between left and right cycles. Consequently, the dissimilarity
matrix is constructed based on the matching of two raw signals with
different lengths. Then, we transform it into a 64 × 64 grey-scale image
using bi-cubic interpolation (see Fig. 1b). This interpolation step was
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studied in terms of image resolution and the method used. Experiments
showed that bi-cubic interpolation at a resolution of 64 × 64 preserves
the spatiotemporal pattern that emerged in the dissimilarity image,
while reducing the risk of local distortions as well as computational
cost. The resulting normalized grey-scale image is denoted in the fol-
lowing as ‘‘Bilateral Dissimilarity Map’’ (BiDM): it consists in a compact
cartography of local matchings between left and right gait cycles (see
Fig. 1b).

In order to enrich the dataset, we construct both ‘‘left vs. right’’ and
‘‘right vs. left’’ dissimilarity maps for each participant. The resulting
‘‘left vs. right’’ and ‘‘right vs. left’’ maps may convey different patterns
for patients. Thereby, a total of 526 BiDMs result for HC, 200 for HP,
98 for PP, and 126 for the incomplete TP patients (424 BiDMs in total
for patients).

2.3. Eigen-Gait asymmetry index

To characterize the asymmetry in patients, we adopt the following
methodology in three steps:

1. Apply SVD on the BiDMs of the HC to retrieve eigenvectors
synthesizing the symmetry patterns present in gait. Such eigen-
vectors define the principal directions of symmetric normal gait,
namely the Eigen-Gait components;

2. Compute an average normal gait reference vector in the new
space defined by Eigen-Gait components;

3. Project the BiDMs of HC and pathological individuals on this
new space, and compute the distance to the average normal gait
reference above-mentioned (in step 2), resulting in an Eigen-Gait
Asymmetry Index (EGAI).

More precisely, we train the SVD on 80% of BiDMs of HC (i.e. 420
among 526 images) to extract the 𝑚 Eigen-Gait components denoted
𝐹𝑘, (𝑘 = 1,… , 𝑚).

The projected BiDM 𝐺𝑚 of the original one 𝐺 is obtained as follows
:

𝐺𝑚 =
𝑚
∑

𝑘=1
𝑐𝑘𝐺 .𝐹𝑘 with 𝑐𝑘𝐺 = ⟨𝐺;𝐹𝑘⟩ (1)

where 𝑐𝑘𝐺 is the contribution of 𝐺 on the 𝑘th Eigen-Gait component, i.e.
its associated coordinate on the 𝑘th principal direction.

The number of Eigen-Gait components 𝑚 is chosen for each image
so that 𝐺𝑚 is the reconstructed image of 𝐺 with at least 98%:

𝛷 =
⟨𝐺;𝐺𝑚

⟩

‖𝐺‖

2
> 98% (2)

Finally, for the remaining 20% of BiDMs of HC (i.e. 106 among 526
images) and BiDMs of patients (200 for HP, 98 for PP and 126 for TP),
we compute the EGAI associated to each BiDM (𝐺) as follows:
𝐸 𝐺 𝐴𝐼(𝐺) = ‖𝑐𝐺 − 𝑐𝐻 𝐶‖ where 𝑐𝐺 =

[

𝑐1𝐺 ,… , 𝑐𝑚𝐺
]

and 𝑐𝐻 𝐶 =
[

𝑐1𝐻 𝐶 ,… , 𝑐𝑚𝐻 𝐶
] (3)

where 𝑐𝐺 is the contribution vector of 𝐺 on the 𝑚 Eigen-Gait compo-
nents and 𝑐𝐻 𝐶 is the average normal gait reference vector.

2.4. Comparison to DTW-based asymmetry score

An alternative approach to finely quantify gait asymmetry is to
compute the Dynamic Time Warping (DTW) distance between left and
right raw cycles, as recently done in [35,36]. This method entails
identifying the optimal path within the dissimilarity matrix (i.e. dis-
similarity image) and subsequently calculating the cumulative distance
along this path, as displayed in Fig. 2 (the optimal path is represented
in white).

DTW is a technique employed to align and compare two signals with
different lengths. The method determines the optimal warping path that
minimizes the cumulative distance between corresponding points in the
3 
Fig. 2. Example of a dissimilarity image in which the optimal warping path (white
line around the diagonal) is searched to compute DTW distance between left and right
gait cycles. Each pixel in the image represents the Euclidean distance between an
observation from the left cycle and an observation from the right one.

two signals. The DTW distance can be mathematically represented as
shown in Eq. (4):

𝐷 𝑇 𝑊𝑞 (𝑥, 𝑦) = min
𝜋 ∈ 𝐴(𝑥,𝑦)

⎧

⎪

⎨

⎪

⎩

(

∑

(𝑖,𝑗) ∈ 𝜋

|

|

|

𝑥𝑖 − 𝑦𝑗
|

|

|

𝑞
)

1
𝑞
⎫

⎪

⎬

⎪

⎭

(4)

Here, 𝐴(𝑥, 𝑦) denotes the set of all feasible warping paths that adhere
to the boundary conditions (i.e., the initial and final points of 𝑥 and 𝑦
are aligned) and monotonicity (i.e., the warping path does not regress
in time). In this study, we fix 𝑞 = 2 within the DTW algorithm, enabling
the calculation of the Euclidean distance between the points along the
optimal warping path. By utilizing DTW, we can attain a more accurate
comparison of the signals, as it accounts for any temporal distortions
or variations that may be present.

2.5. Statistical analysis

To evaluate the differences between groups, we use non-parametric
statistical tests due to their ability in handling values that may not meet
the assumptions of parametric tests, such as normality and homoscedas-
ticity.

2.5.1. Kruskal–Wallis test
It is used to determine if there are statistically significant differences

between the medians of more than two independent groups [37]. The
test statistic 𝐻 is calculated as follows:

𝐻 = 12
𝑁(𝑁 + 1)

𝑘
∑

𝑖=1

𝑅2
𝑖

𝑛𝑖
− 3(𝑁 + 1) (5)

where, 𝑁 is the total number of cycles in the database, 𝑘 is the number
of groups (here 𝑘 = 4: HC, HP, PP and TP), 𝑅𝑖 is the sum of the ranks
in the 𝑖th group, and 𝑛𝑖 is the number of cycles in the 𝑖th group.

2.5.2. Mann–Whitney test
It assesses whether the distributions of two independent groups of

values are identical [38]. The test statistic 𝑈 is given by:

𝑈 = 𝑛1𝑛2 min{
𝑛1(𝑛1 + 1)

2
− 𝑅1;

𝑛2(𝑛2 + 1)
2

− 𝑅2} (6)

where, 𝑛1, 𝑛2 are the number of cycles within the two groups, and 𝑅1,
𝑅 are the sums of the ranks for the two groups.
2
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Fig. 3. The top eight singular vectors obtained on 80% of BiDMs of HC. In order to
ease the visualization, the grey-scale colormap is replaced by the viridis colormap, so
that whites are replaced by yellows and blacks are replaced by dark blues.

2.5.3. Cliff’s delta statistic
To quantify the degree of overlap between two groups, we use the

non-parametric effect size measure, namely Cliff’s delta (𝛿) [39]:

𝛿 =
Card{𝑥𝑖 > 𝑥𝑗} − Card{𝑥𝑖 < 𝑥𝑗}

𝑛1𝑛2
(7)

where, 𝑥𝑖 and 𝑥𝑗 are the values within two different groups, and 𝑛1, 𝑛2
are the number of cycles within the two groups. Cliff’s delta ranges from
−1 to 1; values close to 0 indicate a high degree of overlap between
groups, and values close to −1 or 1 indicate a low degree of overlap.

3. Experiments and results

3.1. EGAI analysis on the sagittal knee angle

We started experiments considering only the knee joint in the sagit-
tal plane. We performed the SVD as previously explained by choosing
𝑚, the number of Eigen-Gait components, for each image according
to Eq. (2).

Results showed that BiDMs of HP patients require a very high value
of 𝑚 in average (𝑚 = 405) to be reconstructed with good quality.
Also, we found that the TP group shows a high value of 𝑚 in average
(𝑚 = 115). Finally, the number of Eigen-Gait components doubles for
the PP group (𝑚 = 231) comparatively to incomplete TP. By contrast,
we found that BiDMs of HC require, as expected, a very small number of
Eigen-Gait components (𝑚 = 2). These first results show the pertinence
of our approach that exploits SVD on BiDMs for building a model of
normal symmetric gait characterized by Eigen-Gait components.

For a better insight into the Eigen-Gait components extracted during
training, we display in Fig. 3 the resulting top eight Eigen-Gait com-
ponents for the HC group. We remark that some of these maps are
symmetric about the first bisectors (𝐹1, 𝐹3, 𝐹4, 𝐹6 and 𝐹7) whereas
others are non-symmetric (𝐹2, 𝐹5, 𝐹8). The first components convey
the symmetry existing in normal gait; however, it is still interest-
ing to extend to more components to represent the variance existing
in symmetry among normal gait patterns. Consequently, given the
high heterogeneity among patients, more components are required to
reconstruct with enough quality their corresponding BiDMs.

Thus, to study in the sequel the potential use of EGAI for asymmetry
assessment in HC, HP, PP and TP, we construct all the BiDMs of
HC (526 images) and those of patients (424 images) with 𝑚 fixed
to 156. This value corresponds to the average number of Eigen-Gait
components required to reconstruct with good quality the images of
the test subset (containing the 20% remaining of HC BiDMs and all the
BiDMs of patients).

Fig. 4 displays the sagittal knee EGAI values per patient computed
for all his/her associated BiDMs, as indicated in Eq. (3). We notice that
the EGAI values of patients are in general much higher (9.73 ±2.16)
4 
Fig. 4. EGAI values for each individual (HC in green, HP in orange, PP in red and TP
in purple) considering the knee sagittal angle. Each boxplot represents intra-personal
variance of EGAI values across cycles (BiDMs).

Fig. 5. DTW asymmetry score for each individual (HC in green, HP in orange, PP in
red and TP in purple) computed between his/her left and right cycles, considering the
knee sagittal angle.

than those of HC (3.86 ±0.9), reflecting the asymmetry induced by
neurological diseases.

The statistical analysis using the Kruskal–Wallis test indicates a sig-
nificant difference among groups (𝑝 = 8.10−150). For pairwise compar-
isons, the Mann–Whitney test reveals significant differences between
HC and patients: 𝑝 = 3.10−96 for HC vs. HP, 𝑝 = 1.10−55 for HC vs. PP
and 𝑝 = 3.10−61 for HC vs. TP. For a deeper analysis, the Cliff’s delta
values indicate a very low degree of overlap between HC and patients,
with HC group showing lower EGAI values than patients (𝛿 = −0.99 for
HC vs. HP, 𝛿 = −0.99 for HC vs. PP and 𝛿 = −0.95 for HC vs. TP).

Moreover, patients with hemiparesis show the highest EGAI (10.4
±1.8), followed by patients with paraparesis (9.9 ±1.8) and patients
with tetraparesis (8.6 ±2.5). Indeed, patients with hemiparesis show
a more asymmetrical gait since only one side of the body is affected.
The Mann–Whitney test also shows significant differences (p< 0.05)
between pairs of patients’ groups (HP vs. PP, HP vs. TP and PP vs. TP).

Furthermore, HC show less variance of their EGAI values across
cycles than patients. Also, subjects presenting more variance in their
EGAI are among pathological populations, especially patients with HP
and TP.

3.2. Comparative analysis between EGAI and a DTW-based asymmetry
score

Fig. 5 shows that measuring gait asymmetry using the DTW score
(as described in Section 2.4) is less effective than using the EGAI (see
Fig. 4).
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Fig. 6. Asymmetry score distributions considering the knee sagittal angle, for HC (in
green), HP (in orange), PP (in red) and TP (in purple) with: (a) DTW and (b) EGAI.

Notably, several pathological cycles from the HP group, and particu-
larly from the PP and TP groups, exhibit DTW asymmetry scores within
the same range as those of HC. This is illustrated more precisely in
Fig. 6 that displays the distributions of the DTW score and EGAI across
the four groups. The overlap between healthy subjects and patients is
higher with DTW score (Fig. 6(a)) than with EGAI (Fig. 6(b)). This is
supported by the statistical analysis. The Mann–Whitney test indicates a
significant difference between HC and each group of patients with DTW
score. Nevertheless, compared to EGAI, the absolute values of Cliff’s
delta calculated between HC and patients are found lower with DTW
(𝛿 = −0.94 for HC vs. HP, 𝛿 = −0.83 for HC vs. PP and 𝛿 = −0.69 for HC
vs. TP).

Besides, the overlap also increases between patients with TP and
PP using DTW. This is confirmed by the Mann–Whitney test, which
shows no significant difference between TP and PP for the DTW score
(𝑝 = 0.79), in contrast to the EGAI (𝑝 = 3.10−5).

Furthermore, we remark that some bilateral gait cycles have a low
DTW-based asymmetry score while having a high EGAI score. This
phenomenon appears for some patients, as shown in Fig. 7(a). The left
and the right gait cycles of this person are very similar, leading to a
DTW path (plotted in white) close to the diagonal of the dissimilarity
map, and therefore to a low DTW score. By contrast, the BiDM of this
person shows a bilateral pattern that completely differs from that of
normal gait (see Fig. 7(b)), which explains the high EGAI score. This
confirms that our innovative approach enables a fine characterization
of bilateral gait asymmetry through BiDMs.
5 
Fig. 7. Example of a dissimilarity image of: (a) a patient with low DTW-based score
and high EGAI score; (b) a healthy subject. In order to ease the visualization, the
grey-scale colormap is replaced by the viridis colormap, so that whites are replaced by
yellows and blacks are replaced by dark blues.

3.3. EGAI analysis on the other joint kinematics

We extend our gait asymmetry analysis using EGAI to encompass
additional joints, focusing on the sagittal plane since our analyses on
other planes did not yield significant findings. For this reason, Fig. 8
presents EGAI results for HC, HP, PP, and TP groups in the sagittal plane
only. To facilitate comparisons across different joints, EGAI values were
scaled between 0 and 1.

We observe that HC present the lowest EGAI values for the four
joints, especially for the knee, the ankle, and the hip. Globally, we note
for pathological groups a trend of higher EGAI values for HP and lower
values for incomplete TP. The behavior of EGAI values in PP patients
is more variable depending on the considered joint: for the knee and
the ankle, there is an important overlap between EGAI values of PP and
HP, and for the pelvis, there is an important overlap between PP and
TP. Finally, we notice that the ankle does not allow distinguishing HP,
PP and TP in terms of asymmetry.



L. Hermez et al. Computers in Biology and Medicine 184 (2025) 109390 
Fig. 8. Boxplots of EGAI values for HC, HP, PP, and TP populations considering knee,
ankle, hip and pelvis angular kinematics in the sagittal plane.

Fig. 9. Average EGAI radar charts of: (a) HP, (b) PP and (c) TP patients (in orange).
The average EGAI for HC is represented in black. Each radar chart is composed of
average EGAI values and standard deviations for the knee, ankle, hip and pelvis in the
sagittal plane.

For a holistic understanding on gait impairments across multiple
joints, we plot in Fig. 9 radar charts for HP, PP and TP patients
separately, by representing in orange the average EGAI scores obtained
on the knee, ankle, hip, and pelvis kinematics in the sagittal plane. On
the same radar charts, we report in black the average EGAI scores of
HC.

The trend observed in Fig. 8 is confirmed in Fig. 9, where the
average profile of HP patients (Fig. 9(a)) is more distant from the
average profile of HC (displayed in black) than that of PP (Fig. 9(b))
and TP patients (Fig. 9(c)). This finding underscores the suitability of
our approach for characterizing asymmetry in each joint in the sagittal
plane. To provide a more comprehensive visualization, we present
examples of radar charts for some selected HP patients in Fig. 10, some
PP patients in Fig. 11, and some TP patients in Fig. 12. Actually, our
proposed method allows assessing gait asymmetry and deviation from
normal gait for a patients’ group, as well as for an individual.

4. Discussion

In the present study, we introduced a novel metric, referred to as
EGAI, for quantifying gait asymmetry in patients with HP, PP and TP.
Our method relies on the matching between raw gait cycles of both
lower limbs using a Bilateral Dissimilarity Map image. Such image,
denoted BiDM, conveys a rich information content: the mutual gait
6 
Fig. 10. Examples of radar charts for four HP patients: (a) Patient 0, (b) Patient 2,
(c) Patient 28 and (d) Patient 30. Average radar chart of HC subjects is represented in
black.

Fig. 11. Examples of radar charts for four PP patients: (a) Patient 5, (b) Patient 6,
(c) Patient 27 and (d) Patient 33. Average radar chart of HC subjects is represented in
black.

dynamics and the coordination between both sides. Then, using SVD,
we built a model of normal gait considering BiDMs of HC. By projecting
the dissimilarity maps of other HC (20% of the healthy population) as
well as HP, PP, and TP patients on the space of singular vectors, we
computed the EGAI.

Considering only the knee joint in the sagittal plane, experiments
have shown that BiDMs of HC require a very small number of Eigen-
Gait components (𝑚 = 2) to be reconstructed with good quality. On
the contrary, dissimilarity maps of TP require a high value of 𝑚 (𝑚 =
115), which doubles for the PP group (𝑚 = 231), and reaches the
highest value for the HP group (𝑚 = 405). These results reveal that
our approach allows quantifying the asymmetry in bilateral gait for
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Fig. 12. Examples of radar charts for four TP patients: (a) Patient 12, (b) Patient 16,
(c) Patient 22 and (d) Patient 38. Average radar chart of HC subjects is represented in
black.

patients, according to the type of motor impairment. More precisely,
since the singular vectors are estimated only on HC, by projecting
patients on this space, the EGAI is able to quantify the deviation
from normal gait symmetry. Indeed, more Eigen-Gait components are
required when the deviation from normal gait increases. From this
point of view, the HP population exhibits the highest asymmetry. These
first observations on 𝑚 values were also confirmed by EGAI values of
HC and patients: EGAI of HP, PP and TP are much higher in average
(9.73 ± 2.16) than those of HC (3.86 ± 0.9). The statistical analysis showed
significant differences between all groups’ pairs (𝑝 < 0.05). Also, HC
show less variance of their EGAI values across cycles than patients: this
is consistent with their better motor control and coordination of lower
limb movements. All these results demonstrate the effectiveness of our
approach in finely quantifying gait asymmetry in patients according to
their motor impairment.

By comparing the ability of EGAI versus DTW distance to assess
gait asymmetry [35,36], we found that the DTW-based asymmetry
score was not able to differentiate well HC cycles from pathological
ones, contrary to EGAI. Indeed, several cycles from the HP group, and
particularly from the PP and TP groups show DTW asymmetry scores
within the same range as those of HC (Fig. 5 versus Fig. 4, and Fig. 6).
Specifically, the absolute value of the Cliff’s delta calculated between
HC and each patient group was found much higher with the EGAI
approach than with DTW. Besides, the statistical analysis did not reveal
a significant difference between TP and PP with DTW-based score (𝑝 =
0.79). This can be explained by the fact that the DTW-based asymmetry
score relies only on one matching (the optimal path) between left and
right cycles, whereas the EGAI is based on the BiDM that incorporates
all possible matchings between left and right cycles.

This interesting finding underlines the importance of considering
all local matchings between left and right gait cycles to quantify gait
asymmetry. Indeed, this new paradigm provides a comprehensive view
on the spatiotemporal coordination of lower limbs. Additionally, with
SVD, we can further break down the dissimilarity maps into their
most essential information, represented by Eigen-Gait components.
Both aspects contribute to a refined understanding of gait symmetry.

To provide a complete assessment of gait, the EGAI has been calcu-
lated for the knee, ankle, hip, and pelvis on the sagittal plane. Fig. 8
showed that patients exhibit high EGAI values compared to HC for all
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joints. Also, HP patients exhibit the highest EGAI scores for all joints,
which reflects a pronounced gait asymmetry in all joints due to the
unilateral impact of the impairment. We obtained lower EGAI scores
in the TP group for most joints, and observed that the EGAI in the PP
group has an intermediate behavior depending on the joint.

Our results demonstrated the efficiency of the proposed EGAI in
quantifying the degree of asymmetry induced by motor impairments.
Our metric offers a holistic evaluation of gait achieving two key in-
novations: (i) the construction of dissimilarity maps capturing the
spatiotemporal deviations between the left and right lower limbs; (ii)
the application of SVD to extract Eigen-Gait components that en-
capsulate the spatiotemporal characteristics of symmetry in normal
gait.

However, some limitations remain. These first results were obtained
on a dataset containing young healthy adults. It would be interesting
to include a healthy population spanning a larger variety of ages for a
better representation of the existing variance in normal gait. Moreover,
we have few patients per motor impairment; also, there is an imbalance
in the number of patients across motor impairments. This necessitates
conducting our study on an extended dataset to confirm the obtained
trends.

5. Conclusion

In this study, we proposed a novel framework for quantifying gait
asymmetry, by switching from gait signal analysis to image analysis.
Such image (BiDM) represents the matching between gait signals of
both lower limbs, summarizing the mutual gait cycle dynamics. By
exploiting SVD on BiDMs of HC, we extracted the essential information
in normal gait symmetry, encoded by Eigen-Gait components. We
proposed to measure the specific deviation of each motor impairment
(HP, PP, and TP) with regard to normal gait symmetry via the EGAI.
A personalized analysis pointed out the progressive decrease of EGAI
from patients with hemiparesis, to those with paraparesis and finally to
those with tetraparesis. The most pronounced asymmetry is thus shown
in patients with hemiparesis.

In subsequent research, we aim at exploring the impact of consid-
ering a personalized number of Eigen-Gait components for evaluating
gait asymmetry. Indeed, our study has uncovered a gradual decrease in
the number of required components from HP (with the highest values)
to PP, and finally to TP, to well reconstruct BiDMs. Furthermore, we
intend to investigate the potential application of the EGAI for assessing
the effectiveness of therapeutic interventions in future studies.
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