Semi-supervised Penalized Output Kernel Regression for Link Prediction - Université d'Évry
Conference Papers Year : 2011

Semi-supervised Penalized Output Kernel Regression for Link Prediction

Abstract

Link prediction is addressed as an output kernel learning task through semi-supervised Output Kernel Regression. Working in the framework of RKHS theory with vector- valued functions, we establish a new repre- senter theorem devoted to semi-supervised least square regression. We then apply it to get a new model (POKR: Penalized Output Kernel Regression) and show its relevance us- ing numerical experiments on arti cial net- works and two real applications using a very low percentage of labeled data in a transduc- tive setting.
Fichier principal
Vignette du fichier
367_icmlpaper.pdf (193.21 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00654123 , version 1 (28-11-2013)

Identifiers

  • HAL Id : hal-00654123 , version 1
  • PRODINRA : 476223

Cite

Celine Brouard, Florence d'Alché-Buc, Marie Szafranski. Semi-supervised Penalized Output Kernel Regression for Link Prediction. 28th International Conference on Machine Learning (ICML 2011), Jun 2011, Bellevue, WA, United States. pp.593--600. ⟨hal-00654123⟩
390 View
349 Download

Share

More