Article Dans Une Revue Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik Année : 2017

On the stability of nonconservative continuous systems under kinematic constraints

Résumé

In this paper we deal with recent results on divergence kinematic structural stability (ki.s.s.) resulting from discrete nonconservative finite systems. We apply them to continuous nonconservative systems which are shown in the well-known Beck column. When the column is constrained by an appropriate additional kinematic constraint, a certain value of the follower force may destabilize the system by divergence. We calculate its minimal value, as well as the optimal constraint. The analysis is carried out in the general framework of in(Thorn)nite dimensional Hilbert spaces and non-self-adjoint operators.
Fichier principal
Vignette du fichier
lerbet2017.pdf (200.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01518620 , version 1 (16-01-2020)

Licence

Identifiants

Citer

Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. On the stability of nonconservative continuous systems under kinematic constraints. Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2017, 97 (9), pp.1100--1119. ⟨10.1002/zamm.201600203⟩. ⟨hal-01518620⟩
190 Consultations
163 Téléchargements

Altmetric

Partager

More