Article Dans Une Revue International Journal of Geometric Methods in Modern Physics Année : 2017

Deforming $h$-trivial the Lie algebra Vect($S^1$) inside the Lie algebra of pseudodifferential operators $Ψ\mathcal{DO}$

Résumé

In this paper, we consider the action of Vect($S^1$) by Lie derivative on the spaces of pseudodifferential operators $Ψ\mathcal{DO}$. We study the $h$-trivial deformations of the standard embedding of the Lie algebra Vect(S1) of smooth vector fields on the circle, into the Lie algebra of functions on the cotangent bundle $T * S^1$. We classify the deformations of this action that become trivial once restricted to $h$, where $h=aff(1)$ or $si(2)$. Necessary and sufficient conditions for integrability of infinitesimal deformations are given.
Fichier principal
Vignette du fichier
basdouri2017.pdf (321.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01528767 , version 1 (11-11-2019)

Identifiants

Citer

Imed Basdouri, Issam Bartouli, Jean Lerbet. Deforming $h$-trivial the Lie algebra Vect($S^1$) inside the Lie algebra of pseudodifferential operators $Ψ\mathcal{DO}$. International Journal of Geometric Methods in Modern Physics, 2017, 14 (6), ⟨10.1142/S0219887817500827⟩. ⟨hal-01528767⟩
118 Consultations
114 Téléchargements

Altmetric

Partager

More