Human pose regression by combining indirect part detection and contextual information - Université d'Évry
Article Dans Une Revue Computers and Graphics Année : 2019

Human pose regression by combining indirect part detection and contextual information

Résumé

In this paper, we tackle the problem of human pose estimation from still images, which is a very active topic, specially due to its several applications, from image annotation to human-machine interface. We use the soft-argmax function to convert feature maps directly to body joint coordinates, resulting in a fully differentiable framework. Our method is able to learn heat maps representations indirectly, without additional steps of artificial ground truth generation. Consequently, contextual information can be included to the pose predictions in a seamless way. We evaluated our method on two challenging datasets, the Leeds Sports Poses (LSP) and the MPII Human Pose datasets, reaching the best performance among all the existing regression methods. Source code available at: https://github.com/dluvizon/pose-regression.
Fichier principal
Vignette du fichier
S0097849319301475.pdf (2.56 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02314445 , version 1 (20-07-2022)

Licence

Identifiants

Citer

Diogo C Luvizon, Hedi Tabia, David Picard. Human pose regression by combining indirect part detection and contextual information. Computers and Graphics, 2019, 85, pp.15--22. ⟨10.1016/j.cag.2019.09.002⟩. ⟨hal-02314445⟩
211 Consultations
100 Téléchargements

Altmetric

Partager

More