Communication Dans Un Congrès Année : 2019

Depth Estimation for a Point Feature: Structure from motion & Stability Analysis

Résumé

This paper presents a new approach to recover the depth information from images of a monocular vision system. The depth's estimation for a point is achieved by designing a nonlinear observer based on a polytopic a structure. The fulfillment of the conditions of the state estimation, that depends on the applied velocities for the nonlinear system, is required. To this end, the observability analysis is performed to establish the kinematic conditions for the reconstruction of unmeasured states. The stability analysis is carried out using Lyapunuv theory. The observer gains were computed from the resolution of the Linear Matrix Inequality (LMI) constraints. Illustrations and simulation results are given at the end to prove the effectiveness of the proposed approach.
Fichier principal
Vignette du fichier
CDC_2019_P2_vf_RB_HHA_LN_HA.pdf (1.68 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02419275 , version 1 (19-12-2019)

Identifiants

Citer

Rayane Benyoucef, Hicham Hadj-Abdelkader, Lamri Nehaoua, Hichem Arioui. Depth Estimation for a Point Feature: Structure from motion & Stability Analysis. 58th IEEE Conference on Decision and Control (CDC 2019), Dec 2019, Nice, France. pp.3991--3996, ⟨10.1109/CDC40024.2019.9029396⟩. ⟨hal-02419275⟩
144 Consultations
263 Téléchargements

Altmetric

Partager

More