Depth Estimation for a Point Feature: Structure from motion & Stability Analysis - Université d'Évry Access content directly
Conference Papers Year : 2019

Depth Estimation for a Point Feature: Structure from motion & Stability Analysis

Abstract

This paper presents a new approach to recover the depth information from images of a monocular vision system. The depth's estimation for a point is achieved by designing a nonlinear observer based on a polytopic a structure. The fulfillment of the conditions of the state estimation, that depends on the applied velocities for the nonlinear system, is required. To this end, the observability analysis is performed to establish the kinematic conditions for the reconstruction of unmeasured states. The stability analysis is carried out using Lyapunuv theory. The observer gains were computed from the resolution of the Linear Matrix Inequality (LMI) constraints. Illustrations and simulation results are given at the end to prove the effectiveness of the proposed approach.
Fichier principal
Vignette du fichier
CDC_2019_P2_vf_RB_HHA_LN_HA.pdf (1.68 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02419275 , version 1 (19-12-2019)

Identifiers

Cite

Rayane Benyoucef, Hicham Hadj-Abdelkader, Lamri Nehaoua, Hichem Arioui. Depth Estimation for a Point Feature: Structure from motion & Stability Analysis. 58th IEEE Conference on Decision and Control (CDC 2019), Dec 2019, Nice, France. pp.3991--3996, ⟨10.1109/CDC40024.2019.9029396⟩. ⟨hal-02419275⟩
110 View
179 Download

Altmetric

Share

Gmail Facebook X LinkedIn More