A calibration methodology of low-cost air pollutant sensor using neural networks - Université d'Évry
Communication Dans Un Congrès Année : 2023

A calibration methodology of low-cost air pollutant sensor using neural networks

Aymane Souani
Alexandre Hucher
  • Fonction : Auteur
  • PersonId : 1330406

Résumé

Air quality Low cost sensors (LCSs) are cheap and can map extensive areas. They alert people about pollution spikes in smart city buildings (schools, universities, hospitals. . .) or industrial areas. Before using them for a specified task, they must be calibrated to give accurate readings, i.e. they must be aligned with a measure based on a reference machine. Unfortunately, classic calibration is limited by interferences with other pollutants or can be affected by atmosphere constants in the case of uncontrolled environments. This paper proposes a calibration solution based on artificial neural networks (ANN).
Fichier principal
Vignette du fichier
paperssd.pdf (373.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04367082 , version 1 (29-12-2023)

Identifiants

Citer

Aymane Souani, Alexandre Hucher, Vincent Vigneron, Hichem Maaref. A calibration methodology of low-cost air pollutant sensor using neural networks. 20th IEEE International Multi-Conference on Systems, Signals & Devices (SSD 2023), Feb 2023, Mahdia, Tunisia. pp.229--235, ⟨10.1109/SSD58187.2023.10411311⟩. ⟨hal-04367082⟩
111 Consultations
44 Téléchargements

Altmetric

Partager

More