Communication Dans Un Congrès Année : 2024

Estimation of Instantaneous Frequency and Amplitude of Multi-Component Signals using Sparse Modeling of Signal Innovation

Résumé

This paper introduces a new method for estimating modes in non-stationary mixture signals. First, we establish a connection between the short-time Fourier transform (STFT) and sparse sampling theory, representing observations as pulses filtered by a known function. Leveraging the finite rate of innovation in the target signal, our specialized reconstruction approach enables mode estimation amidst noise. Second, we propose a variant based on a recursive version of the STFT allowing real-time mode parameter estimation with sequential acquisition. We compare our results with state-of-the-art methods, showing an improvement in estimation performance across various scenarios. Our approach paves the way of the future mode disentangling algorithms based on Finite rate of innovation.
Fichier principal
Vignette du fichier
eusipco24.pdf (315.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04618589 , version 1 (20-06-2024)

Licence

Identifiants

  • HAL Id : hal-04618589 , version 1

Citer

Quentin Legros, Dominique Fourer. Estimation of Instantaneous Frequency and Amplitude of Multi-Component Signals using Sparse Modeling of Signal Innovation. EUSIPCO 2024, ENS Lyon, Aug 2024, Lyon, France. pp.2502--2506. ⟨hal-04618589⟩
282 Consultations
32 Téléchargements

Partager

More