Federated TimeGAN for Privacy Preserving Synthetic Trajectory Generation - Université d'Évry
Communication Dans Un Congrès Année : 2024

Federated TimeGAN for Privacy Preserving Synthetic Trajectory Generation

Résumé

Mobility datasets are crucial for various applications. However, sharing this data raises privacy concerns due to the sensitive nature of geolocation information. Synthetic data generation has recently emerged as a promising solution to protect geo-privacy of trajectory data. Current approaches rely on having a large set of authentic trajectories collected from individual users to train generative networks. However, this assumption proves impractical in many real-world scenarios due to the sensitive personal information typically embedded within trajectories. Our approach leverages federated learning to generate privacy-preserving synthetic trajectories without the need for centralized data collection. Experimental results demonstrate that our distributed framework effectively produces synthetic trajectories with distributions comparable to baseline, offering a privacy-conscious alternative for geo-privacy protection in mobility datasets.
Fichier principal
Vignette du fichier
Federated_TimeGAN_for_Privacy_Preserving_Synthetic_Trajectory_Generation.pdf (3.7 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04661117 , version 1 (24-07-2024)

Identifiants

Citer

Saloua Bouabba, Karine Zeitouni, Bassem Haidar, Nazim Agoulmine, Zaineb Chelly Dagdia. Federated TimeGAN for Privacy Preserving Synthetic Trajectory Generation. 25th IEEE International Conference on Mobile Data Management (MDM 2024), Jun 2024, Brussels, Belgium. pp.301-306, ⟨10.1109/MDM61037.2024.00062⟩. ⟨hal-04661117⟩
267 Consultations
76 Téléchargements

Altmetric

Partager

More