Communication Dans Un Congrès Année : 2021

Optimized adaptive MPC for lateral control of autonomous vehicles

Résumé

Autonomous vehicles are the upcoming solution to most transportation problems such as safety, comfort and efficiency. The steering control is one of the main important tasks in achieving autonomous driving. Model predictive control (MPC) is among the fittest controllers for this task due to its optimal performance and ability to handle constraints. This paper proposes an adaptive MPC controller (AMPC) for the path tracking task, and an improved PSO algorithm for optimising the AMPC parameters. Parameter adaption is realised online using a lookup table approach. The propose AMPC performance is assessed and compared with the classic MPC and the Pure Pursuit controller through simulations.
Fichier principal
Vignette du fichier
ICCMA2021.pdf (6.93 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04371708 , version 1 (04-01-2024)

Identifiants

Citer

Yassine Kebbati, Vicenc Puig, Naïma Aït Oufroukh, Vincent Vigneron, Dalil Ichalal. Optimized adaptive MPC for lateral control of autonomous vehicles. 9th International Conference on Control, Mechatronics and Automation (ICCMA 2021), Nov 2021, Belval, France. pp.95--103, ⟨10.1109/ICCMA54375.2021.9646218⟩. ⟨hal-04371708⟩
36 Consultations
112 Téléchargements

Altmetric

Partager

More